1 ампер это: физический смысл одного ампера, в чем измеряется?

Содержание

Ампер единица измерения — Справочник химика 21

    Магнитодвижущая (намагничивающая) сила Р — величина, которая характеризует намагничивающее действие электрического тока. Если магнитный контур замкнут, то магнитодвижущая сила (МДС) равна Р = Ш, т.е. произведению тока I в обмотке на ее число витков (рис. 1.27). Единица измерения МДС — ампер-виток. [c.248]

    Международная система (СИ) включает шесть основных единиц измерения длины — метр, массы — килограмм, времени — секунда, температуры — градус Кельвина, силы электрического тока — ампер и силы света — свеча. Кроме того, в эту систему входят две дополнительные единицы (плоского угла — радиан и телесного угла — стерадиан) и 27 важнейших производных. [c.5]


    Практической единицей измерения электрического тока является ампер (А) — основная единица в системе СИ (см. приложение в конце книги). Практической единицей электрического заряда является ампер-секунда (А-с), или кулон (Кл).
Если расчеты проводятся в системе СИ, то закон Кулона записывается в форме [c.183]

    Амперометрическое титрование. Предельный диффузионный ток можно использовать для нахождения точки стехиометричности при проведении титрований. Единица измерения тока — ампер, поэтому такой способ титриметрического анализа называют амперометрическим титрованием. [c.286]

    Единицей измерения силы тока служит ампер (1 А = 1 Кл/с). Ток в сплощной среде удобнее характеризовать его плотностью I — количеством электричества, перемещаемого за единицу времени через единицу площади, ориентированной перпендикулярно к направлению тока в проводящей среде (размерность — А/ м ). 

[c.654]

    Согласно системе СИ основными единицами измерения электромагнитных величин являются метр, килограмм, секунда и ампер. Построенная на этих единицах система электромагнитных величин называется МКСА (см. табл. 1.18 на стр. 19). Систему единиц МКСА обычно применяют при написании уравнений электромагнитного поля в рационализированной форме. Рационализация уравнений электромагнитного поля имеет своей целью исключение множителя 4я из наиболее важных и часто применяемых уравнений. В системе МКСА при рационализированной форме уравнений электромагнитного поля электрическая бц и магнитная Хо постоянные принимаются равными  

[c.21]

    Для дифференциальных детекторов при записи сигнала на диаграммную ленту самопишущего прибора выходкой сигнале получается в виде пиков, причем этот сигнал определяется высотой пика, его площадью или произведением объема удерживания на высоту пика. Выходной сигнал детектора лучше всего выражать в единицах измерения, характерных для физического явления, происходящего в детекторе. Например, если измеряется высота пика, то для катарометра выходной сигнал обычно выражается в. милливольтах, а для ионизационных детекторов — в амперах. 

[c.83]


    Х/3/2 2 единицы измерения 1 В = 1 кг м /(с -А) = =1 Дж/(А с) =1 Вт/А. ] Единица измерения электрического потенциала, вольт, есть разность потенциалов между двумя точками проводящей проволоки, по которой проходит ток 1 ампер, когда мощность, рассеиваемая на участке между этими точками, составляет 1 ватт. Знак э. д. с. определяется в соответствии с правилом, согласно которому положительный заряд должен двигаться от большего потенциала к меньшему. Э. д. с. гальванического элемента — это разность электрических потенциалов между двумя кусками металла одного и того же состава, представляющих собой концы цепи проводящих фаз. Например, в элементе Даниэля (см.) 
[c.228]

    Если в стакан, содержащий раствор электролита, поместить два платиновых электрода и присоединить их к источнику электричества, то через раствор потечет ток. Сила его определяется как приложенным напряжением Е, так и сопротивлением Я той части раствора, которая заключена между электродами. Это отношение математически выражается законом Ома 1=Е1Я, где / —сила тока в амперах, —напряжение в вольтах и сопротивление в омах. Электропроводность Ь определяется как величина, обратная сопротивлению, так что 1 — Е1. Единицей измерения электропроводности является обратный ом ом или л[c.12]

    В качестве основных единиц измерения физических величин в Международной системе единиц приняты метр, килограмм, секунда, ампер, кельвин, кан-дела. Предусмотрены также две дополнительные единицы — радиан и стерадиан. Для различных областей измерений рекомендуются производные единицы СИ. Ниже перечислены основные производные единицы измерения СИ (механические, тепловые, электрические), с которыми приходится наиболее часто оперировать и в химической технологии  [c.450]

    Сущность метода. Э. д. с. гальванического элемента определяется непосредственно чувствительными измерительными приборами, последовательно с которыми включается большое и точно известное сопротивление. При включении измерительного прибора в сеть гальванического элемента необходимо, чтобы внешнее сопротивление сети было во много раз больше внутреннего.

Тогда о напряжении между электродами элемента можно будет судить по силе тока. Подобная схема позволяет по изменению последней в цепи определять изменения э. д. с. испытуемого гальванического элемента. Шкала чувствительности прибора может быть отградуирована в милливольтах—милливольтметры в амперах — гальванометры в единицах измерения анализа, например в значениях pH, т. е. эти измерительные приборы выступают в роли индикаторов. 
[c.445]

    Сравним мысленно прохождение электрического тока по проволоке с точением воды в трубке. Количество воды измеряется в литрах или кубических метрах количество электричества обычно измеряют в кулонах или эл.ст.ед. Скорость течения или поток воДы, т.е. количество ее, проходящее в данной точке трубки в единицу времени, измеряют в литрах в секунду или в кубических метрах в секунду силу электрического тока измеряют в амперах (кулонах в секунду) или в эл.ст.ед. в секунду. Скорость движения воды в трубке зависит от разности давления на концах трубки это давление выражается в килограммах на квадратны11 сантиметр.

Сила электрического тока в проволоке зависит от электрической разности давления или от разности потенциалов (падения напряжения) между концами проволоки, обычно измеряемой в вольтах или эл.ст.ед. Единица измерения количества электричества (кулон) и единица измерения электрического потенциала (вольт) были приняты произвольно но международному соглашению. [c.57]

    Электрические единицы измерения (метр—килограмм—секунда—ампер) стандартизованы системой МКСА (ГОСТ 8033—56). [c.10]

    Основной стандартной единицей измерения электрических величин является ампер (а), служащий для выражения силы тока. [c.23]

    Основная единица измерения электрического напряжения — вольт (е). Вольт — это электрическое напряжение на концах проводника с сопротивлением в один ом, вызывающее протекание по нему тока величиной, равной одному амперу. Э. д. с. и напряжение измеряют в вольтах. В вольтах измеряют напряжение генераторов постоянного тока, возбудителей, питающей сети переменного тока, напряжение нз гальванических ваннах, выпрямителях в гальванотехнике (на шунтах) напряжение измеряют также и в милливольтах (1 б = 1000 мв).

Напряжение измеряют вольтметром. Вольтметр включают в электрическую цепь параллельно нагрузке. [c.17]

    Единицей измерения силы электрического тока служит ампер (а) это такая сила тока, при которой через поперечное сечение проводника за каждую секунду проходит количество электричества, равное одному кулону. [c.172]

    Единицы измерения. Единица силы тока называется ампером. [c.5]

    Международная система СИ имеет шесть основных единиц измерения и две дополнительные. Основными являются единица длины—метр м), единица массы—килограмм кг), единица времени—секунда сек), единица температуры—градус Кельвина (°К), единица силы тока—ампер (а) и единица силы света—свеча (се). Дополнительными являются единица плоского угла— радиан рад), единица телесного угла—стерадиан стер). 

[c.733]

    Единицы измерения ампер и градус Кельвина названы в честь выдающихся ученых французского физика и математика, основателя электродинамики А. М. Ампера (177 —1835) и английского физика, установившего абсолютную шкалу температур. Кельвина (У. Томсона) (1824— 1907). [c.544]

    Счетчики ампер-часов. Поскольку ампер-час служит единицей измерения емкости аккумуляторных батарей, счетчики ампер-часов являются удобным инструментом для контроля заряженности батареи и управления зарядом. 

[c.314]

    Основной электрической единицей в Международной системе единиц (СИ) является ампер (а) — сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1. и один от другого в вакууме, вызывал бы между этими проводниками силу, равную 2-10 н (1а = 0,1 абс. эл. ед.). Ампер одновременно является практической единицей измерения силы тока. [c.364]

    В настоящее время в большинстве стран мира принята международная система единиц СИ, в которой основными единицами измерения являются метр, килограмм (массы), секунда, ампер, моль. Наряду с СИ иногда используется стандартная метрическая система СГС (сантиметр, грамм, секунда). [c.10]

    Обозначения единиц, происходящих от имен собственных, начинаются с прописной буквы. Например, А — ампер, К — кельвин, Дж — джоуль. Единицы измерения, выражающие произведение двух других единиц, представляют знаком умножения, например Н м, Дж с. Единицы измерения, как частное от деления двух другах единиц, могут быть представлены любым из способов м/с, [c.6]

    Установление количественных соотношений в стехиометрии производится на основе понятия моль. В Международной системе единиц (СИ) моль является единицей измерения количества веш ества и относится к числу семи основных единиц этой системы. Другие основные единицы СИ метр — м, килограмм — кг, секунда — с, ампер — А, кельвин — К и кандела — кд. [c.11]

    Единицей измерения силы тока является ампер (а). 1 а — это ток, который переносит 1 кулон электричества за 1 сек. При прохождении через раствор нитрата серебра тока силой 1 а из раствора выделяется 1,1180 мг серебра в 1 сек. [c.199]

    Точно так же законы Фарадея применимы в случае анодного осаждения или растворения. Они были проверены для многочисленных реакций при высоких и низких температурах в различных растворителях и ионных расплавах. Как было сказано выше, эти законы используются для определения важной электрической единицы измерения — ампера. [c.202]

    Емкость. Разрядной емкостью С называют количество электричества, которое источник тока отдает при заданном режиме разряда до достижения заданного конечного напряжения i/. Единицей измерения емкости ХИТ согласно ГОСТ 4.362—85 является ампер-час. [c.50]

    Вниманию студентов. С 1 января 1963 г. в СССР введена Международная система единиц измерения (СИ), состоящая из шести основных единиц метр (м) — длина, килограмм (кг) — масса, секунда (с) — время, ампер (А) — сила тока, кельвин (К) — термодинамическая температура, кандела (кд) — сила света. XIV Генеральная конференция по мерам и весам (1971 г.) утвердила единицу количества вещества моль (моль) в качестве седьмой основной единицы Международной системы Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде — 12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц . Моль вещества соответствует числу Авогадро Л а= (6,022045 0,000031) X10 моль структурных элементов. При применении понятия моль следует указывать, какие структурные элементы имеются в виду. Например, моль атомов Н, моль молекул Нг, моль протонов, моль электронов и т. п. Так, заряд моля электронов равен [c.5]

    Абсолютная симметричная система электрических и магнитных единиц измерения (система Гаусса) возникла в результате объединения абсолютной электростатической системы СГСЭ и абсолютной электромагнитной системы СГСМ, В первой из них, основанной на законе электростатического взаимодействия электрических зарядов (закон Кулона), электрическая постоянная принята равной единице. Во второй, основанной на законе электродинамического взаимодействия токов (закон Ампера), магнитная постоянная принята равной единице. В связи с этим в системе СГС электрические единицы соответствуют электрическим единицам системы СГСЭ, а магнитные единицы — магнитным единицам системы СГСМ. [c.591]

    Международная система единиц измерений физических величин—единая универсальная система. Она свя-зызает единицы измерения механических, тепловых, электрических, магнитных и других величин. В состав системы входят шесть основных единиц (метр, килограмм, секунда, ампер, градус Кельвина, свеча), две дополнительные (радиан и стерадиан) и 27 важнейших производных единиц из различных областей науки (табл. 1.1). В государственных стандартах СССР применяется понятие размера единицы, являющегося количественной мерой физической величины, содержащейся в единице измерения. Размер производных единиц определяется законами, связывающими физические величины, и выражен через размер основных или других производных единиц. Например, единица силы ньютон (к) установлена на основе второго закона Ньютона она равна силе, которая сообщает ускорение 1 м сег массе 1 кг. При выборе размера соблюдается в основном условие когерентности (связности) системы в уравнениях, определяющих единицы измерения производных величин, коэффициент пропорциональности должен быть величиной безразмерной и равен единице. [c.9]

    В качестве основной системы единиц измерения в учебнике принята Международная система единиц СИ. Она построена на шести основных единицах и двух дополнительных. Три нервые основные единицы (метр, килограмм, секунда) позволяют образовать производные единицы для всех механических величин. Другие три основные единицы (ампер, градус Кельвина, свеча) дают возможность образовать производные электрические, магнитные, тепловые и световые единицы. К дополнительным единицам относятся радиан и стерадиан. [c.6]

    Приведем некоторые сведения относительно современного состояния вопроса об установлении единиц измерения энергии и теплоты. До настоящего времени в практике измерения физических величин используют несколько систем единиц. Последним ГОСТом [2] для измерения механических единиц допускается применение трех систем единиц системы МКС (метр, килограмм, секунда), системы СГС (сантиметр, грамм, секунда) и системы МКГСС (метр, килограмм-сила, секунда). Однако в этом ГОСТе указано, что преимущественно должна применяться система МКС. Кроме того, в соответствии с решениями X и XI Генеральных/конференций по мерам и весам (1954 и 1960 гг.) в СССР утвержден ГОСТ [3] Международная система единиц . Этот стандарт устанавливает как предпочтительную во всех областях науки, техники и народного хозяйства Международную систему единиц, основными единицами которой являются метр, килограмм, секунда, ампер, градус Кельвина и свеча. Международная система единиц является, следовательно, системой МКС, дополненной еще тремя основными единицами — ампер, градус Кельвина и свеча. Таким образом, в настоящее время могут встретиться случаи использования 4-х систем единиц измерения физических величин МКС, СГС, МКГСС и Международной системы единиц.[c.179]

    Как мы уже упоминали, Канниццаро в Кратком очерке курса химической философии после исторического введения, занимающего четыре первых лекции, говорит, что в пятой лекции он начинает применять гипотезу Авогадро и Ампера к определению весов молекул также и в том случае, когда их состав остается еще неизвестным. Из изложения Фарадеевской речи Канниццаро видно, какое значение он придавал как можно более раннему знакомству студентов с единицами измерения. Так, и в Sunto Канниццаро сразу же переходит к единице молекулярного веса, в качестве которой отдает предпочтение весу полумолекулы водорода перед весом целой молекулы. Таким образом, я отношу плотность различных воздухообразных тел к плотности водорода, принятой равной двум [82, стр. 7]. Канниццаро далее показывает, как проводить пересчет плотностей по воздуху на плотность по водороду. Подобные вычислительно-технические разделы Sunto , имевшие, конечно, значение для читателей того времени, мы будем опускать без упоминания, но первую таблицу [82, стр. 87] мы приведем полностью, потому что она прекрасно иллюстрирует эту работу [c.96]

    Единицы работы и мощности. Механическая работа выражается в килограмметрах (расстояние, умноженное на силу), кубометр-атмосферах (произведение рУ), литр-атмосферах и других подобных единицах, которые еще не упоминались выше. Механическая мощность будет выражаться в единицах работы, деленной на время, или в килограмметрах в минуту, литр-атмосферах в час и т. д. Лошадиная сила произвольно определяется равной 75 кгм/час. Поскольку сила, умноженная на время, равна работе, работа часто выражается в единицах мощность—время, например лошадиная сила-час. Электрическая работа будет выражаться в вольт-кулонах (называемых также джоулями ) или вольт-эквивалентах (эквивалент основан на электрохимических законах Фарадея и равен числу кулонов, отвечающих 1 грамм-эквиваленту иона), а мощность — в вольт-кулонах в секунду или вольт-амперах, обычно называемых ваттами . Аналогично механической работе электрическая работа может также выражаться в ватт-часах и других подобных единицах. В табл. II Приложения даются переводные коэфициенты для различных единиц энергии ). Эквиваленты мощности будут такими же, за исключением различных единиц измерения, которые могут быть использованы в различных случаях. [c.68]

    Величина L носит название коэфициента самоиндукции последний зависит от расположения проводника. Проводник обладает самоиндукцией, равной 1 генри, если на его концах при равномерном изменении тока в 1 А/сек возбуждается электродвижущая сила, равная 1 вольту, или если ток в 1 ампер в окружающем проводник пространстве вызывает поток, равный 1 Vs. Единицы измеренил и размерности см. табл. 1, стр. 708. Величина коэфициента самоиндукции. Соленоид  [c.730]

    Состоявшаяся в октябре 1960 г. в Париже XI Генеральная конференция по мерам и весам приняла Международную систему единиц (51, русское обозначение СИ — система интернациональная), в основу которой положены шесть единиц (измерение длины, массы, времени, силы зямстрического тока, термодинамической температуры и силы света) метр, килограмм, секунда, градус Кельвина , ампер и свеча.[c.544]

    В качестве основной системы единиц для измерения в различных областях удобно применить систему МКС с основными единицами длины — метр (м), массы — килограмм (кг) и времени— секунда (сек) в необходимых случаях добавляется четвертая основная единица градус Кельвина (°К)—при тепловых измерениях (система МКСГ), ампер (а)—при электрических и магнитных измерениях (система МКСА) и свеча (св)—при световых измерениях (система МКС). Эти системы входят как составные части в новую Международную систему единиц (СИ), утвержденную в 1960 г. XI Генеральной конференцией по мерам и весам [28—30]. [c.24]


Преобразовать мкА в А (микроампер в ампер)

Прямая ссылка на этот калькулятор:
https://www.preobrazovaniye-yedinits.info/preobrazovat+mikroamper+v+amper.php

  1. Выберите нужную категорию из списка, в данном случае ‘Электрический ток’.
  2. Введите величину для перевода. Основные арифметические операции, такие как сложение (+), вычитание (-), умножение (*, x), деление (/, :, ÷), экспоненту (^), скобки и π (число пи), уже поддерживаются на настоящий момент.
  3. Из списка выберите единицу измерения переводимой величины, в данном случае ‘микроампер [мкА]’.
  4. И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае ‘ампер [А]’.
  5. После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.


С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ’87 микроампер’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘микроампер’ или ‘мкА’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Электрический ток’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’38 мкА в А‘ или ‘4 мкА сколько А‘ или ’19 микроампер -> ампер‘ или ‘3 мкА = А‘ или ‘5 микроампер в А‘ или ’68 мкА в ампер‘ или ’33 микроампер сколько ампер‘. 3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 2,856 099 974 009 5×1030. В этой форме представление числа разделяется на экспоненту, здесь 30, и фактическое число, здесь 2,856 099 974 009 5. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 2,856 099 974 009 5E+30. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 2 856 099 974 009 500 000 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.


Сколько ампер в 1 микроампер?

1 микроампер [мкА] = 0,000 001 ампер [А] — Калькулятор измерений, который, среди прочего, может использоваться для преобразования микроампер в ампер.

Ампер | Allbreakingnews.ru

Ампер – единица измерения силы электрического тока в Международной системе единиц (СИ), одна из семи основных единиц СИ. Имеет русское обозначение – А; международное обозначение – A.

Ампер, как единица измерения:

Ампер – единица измерения силы электрического тока в Международной системе единиц (СИ), одна из семи основных единиц СИ, названная в честь французского физика Андре Ампера.

Ампер имеет русское обозначение – А; международное обозначение – A.

Ампер – это сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2⋅10−7 ньютона (формулировка действовавшая до 20 мая 2019 года, принятая IX Генеральной конференцией по мерам и весам (ГКМВ) в 1948 году).

Определение ампера, основанное на использовании численного значения элементарного электрического заряда, было принято на XXVI Генеральной конференции мер и весов (16 ноября 2018 года). Формулировка, вступившая в силу 20 мая 2019 года, гласит, что ампер есть единица электрического тока в СИ. Она определена путём фиксации численного значения элементарного заряда равным 1,602 176 634⋅10−19, когда он выражен единицей Кл, которая равна А·с, где секунда определена через ΔνCs.

Сила тока в проводнике равна 1 амперу, если за одну секунду через поперечное сечение этого проводника проходит электрический заряд, равный 1 кулону (6,241·10¹⁸ электронов).

А = Кл / с.

1 А = 1 Кл / 1 с.

Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

А = (В · Ф) / с.

1 А = (1 В · 1 Ф) / 1 с.

В амперах измеряется также магнитодвижущая сила и разность магнитных потенциалов (устаревшее наименование – ампер-виток).

Кроме того, ампер относится к числу основных единиц в системе единиц МКСА.

В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы ампер пишется со строчной буквы, а её обозначение – с заглавной (А). Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием ампера.

Применение ампера:

В амперах измеряется сила электрического тока в проводниках, а также магнитодвижущая сила и разность магнитных потенциалов (устаревшее наименование – ампер-виток).

Представление ампера в других единицах измерения – формулы:

Через основные и иные единицы измерения системы СИ ампер выражается следующим образом:

А = Кл / с.

А = В / Ом.

А = Вт / В.

А = (Вт / Ом)1/2.

А = (В · Ф) / с.

А = (Дж / (Ом · с)) 1/2.

где А – ампер, Кл – кулон, Ом – ом, В – вольт, Вт – ватт, Ф – фарад, с – секунда, Дж – джоуль.

Кратные и дольные единицы:.

КратныеДольные
величинаназваниеобозначениевеличинаназваниеобозначение
101 АдекаампердаАdaA10−1 АдециампердАdA
102 АгектоампергАhA10−2 АсантиамперсАcA
103 АкилоамперкАkA10−3 АмиллиампермАmA
106 АмегаамперМАMA10−6 АмикроампермкАµA
109 АгигаамперГАGA10−9 АнаноампернАnA
1012 АтераамперТАTA10−12 АпикоамперпАpA
1015 АпетаамперПАPA10−15 АфемтоамперфАfA
1018 АэксаамперЭАEA10−18 АаттоампераАaA
1021 АзеттаамперЗАZA10−21 АзептоамперзАzA
1024 АиоттаамперИАYA10−24 АиоктоампериАyA

Интересные примеры:

В 1893 году было принято определение единицы измерения силы тока как тока, необходимого для электрохимического осаждения 1,118 миллиграммов серебра в секунду из раствора нитрата серебра. Предполагалось, что величина единицы при этом не изменится, однако оказалось, что она изменилась на 0,015%. Эта единица стала известна как международный ампер. 

Электрогенераторы южноамериканского электрического угря могут генерировать напряжение до 1200 вольт при силе тока 1,2 А. Этого хватило бы, чтобы зажечь шесть стоваттных лампочек.

Ссылка на источник Читайте также

Зарядное устройство 2.4 ампера. Конвертер ватт в амперы

В электротехнике существует множество единиц измерения, используемых при выполнении расчетов. Большие значение делятся на более мелкие, а те в свою очередь — на еще более мелкие. Поэтому, в зависимости от обстоятельств, приходится переводить одни единицы в другие. В процессе перевода нередко возникают разные вопросы, например, сколько миллиампер в ампере или ватт в киловатте и мегаватте.

Опытные специалисты выполняют такие операции практически не задумываясь, однако начинающие электрики иногда могут и ошибиться, особенно если возникает вопрос, что больше ампер или миллиампер? Чтобы исключить подобные ошибки, нужно иметь наиболее полное представление о конкретной единице измерения и все проблемы разрешатся сами собой.

Ампер с точки зрения физики

В физике и электротехнике ампер является величиной, характеризующей силу тока в количественном отношении. Для ее определения используются различные способы. Среди них наибольшее распространение получил метод прямых измерений, когда используется , тестер или мультиметр. При выполнении замеров эти приборы последовательно включаются в электрическую цепь.

Другой способ считается косвенным, требующим проведения специальных расчетов. В этом случае необходимо знать напряжение, приложенное к данному участку цепи, и сопротивление этого участка. После чего, сила тока легко определяется по формуле I = U/R, а полученный результат отображается в амперах.

В практической деятельности амперы используются довольно редко, поскольку эта единица считается слишком большой для обычного пользования. Поэтому большинство специалистов пользуются кратными единицами — миллиамперами (10-3А) и микроамперами (10-6А), которые по-другому могут обозначаться в виде 0,001 А и 0,000001 А. Однако при выполнении расчетов необходимо вновь перевести миллиамперы в амперы и во всех формулах применять уже эти единицы. Именно на этой стадии у многих возникает вопрос, как переводить миллиамперы в амперы.

Как измерить

Для того чтобы определить силу тока на конкретном участке цепи, используются измерительные приборы, перечисленные выше. Среди них наиболее точным считается амперметр, производящий замеры только одной величины, с использованием одной шкалы. Однако более удобными считаются тестеры и , с помощью которых осуществляется измерение не только силы тока, но и других электротехнических величин в различных диапазонах. Данные приборы обладают возможностью переключаться с одних единиц измерения на другие и точно определять, сколько миллиампер в ампере.

В некоторых случаях измерительное устройство может показать превышение диапазона. Чтобы решить эту проблему достаточно сделать перевод миллиампер в амперы и получить требуемое значение. Несмотря на высокие погрешности измерений, мультиметры и тестеры на практике применяются намного чаще амперметров, поскольку с их помощью большинство неисправностей очень быстро обнаруживается и устраняется. Кроме того, эти приборы при выполнении измерений не требуют обязательного разрыва цепи, и сила тока может быть измерена бесконтактным способом.

Как перевести

Наиболее простым способом считается перевод единиц вручную, наглядно показывая ампер и миллиампер, разница между которыми составляет 10-3. В качестве примера можно рассмотреть участок электрической цепи с напряжением 5 вольт и сопротивлением 100 Ом. Для того чтобы определить силу тока, необходимо воспользоваться формулой и разделить значение напряжения на сопротивление I = U/R = 5/100 = 0,05 А. Полученный результат не совсем удобен использования, поэтому его рекомендуется пересчитать в кратных единицах измерения, то есть, в миллиамперах.

В этом случае 1 ампер равен 1000 миллиампер. Для пересчета 0,05 А нужно умножить на 1000 и получится 50 мА. Точно так же делается обратная процедура, когда 50 мА делится на 1000, и в итоге получаются первоначальные 0,05 А. Таким образом, решая задачу на 1 ампер сколько приходится миллиампер получается количество, равное 1000.

Для того чтобы ускорить процедуру перевода единиц, были разработаны специальные таблицы, отображающие различные типы величин. Например, если один миллиампер составляет 0,001 ампера, то в обратном порядке один ампер будет равен 1000 миллиампер. На корпусах аккумуляторов помимо силы тока, добавляется количество времени, в течение которого они смогут отдать или получить определенный заряд. На различных зарядных устройствах наносится количество ампер или миллиампер, которые дополнительно означают их мощность.

В таблице, приведенной на рисунке, исключается применение большого количества нулей. Вместо них используются специальные приставки, обозначающие какую-то часть от целых чисел. Все вместе они представляют собой единое слово, в котором присутствует не только приставка, но и сама основная единица.

Занимаясь проектированием электрических систем, необходимо грамотно оперировать такими величинами, как Амперы, Ватты и Вольты. Кроме того, нужно уметь правильно высчитывать их соотношение во время нагрузки на тот или иной механизм. Да, конечно, есть системы, в которых напряжение является фиксированным, например, домашняя сеть. Однако не нужно забывать о том, что сила и мощность тока все же являются разными понятиями, поэтому надо точно знать, сколько Ватт содержит 1 Ампер.

Есть ли разница между Вольтами и Ваттами?

Для начала давайте вспомним, что обозначают эти понятия. А также попробуем узнать, есть ли между ними существенная разница.

Итак, электрическое напряжение, производящее ток, сила которого равно 1 Ампер называется Вольт. При этом стоит отметить, что «работает» оно в проводнике с сопротивлением 1 Ом.

Вольт можно поделить:

  • 1 000 000 микровольт
  • 1 000 милливольт

В то же время можно сказать, что Ватт – это неизменная мощность электрического тока. При напряжении в 1 Вольт ее сила составляет 1 Ампер.

Исходя из вышесказанного, мы можем смело утверждать, что разница между этими понятиями все же есть. Следовательно, при работе с различными электрическими системами ее необходимо обязательно учитывать.

Что такое Ампер?

Далее, давайте попробуем разобраться с этим понятием. В первую очередь стоит отметить, что Ампер (А) — это сила тока считающаяся неизменной. Однако ее отличительной особенностью является то, что после взаимодействия с раствором кислотно-азотного серебра она отлагает каждую секунду по 0,00111800 г серебра.

Существует общепринятое деление, согласно которому 1 А содержит:

  1. 1 000 000 микроампер
  2. 1 000 миллиампер

Сколько Вольт содержит 1 Ампер?

Ответить на этот вопрос довольно сложно. Однако для того чтобы вам было легче разобраться с этим вопросом мы предлагаем вам ознакомиться с таблицами соотношений:

Для постоянного тока:

Для переменного тока:

Что такое Вольт-амперы и как их перевести в Ватты?

Еще одной единицей измерения мощности принятой в СИ является Вольт-ампер (ВА). Он равен произведению таких действующих значений, как ток и напряжение .

Дополнительно стоит отметить, что как правило, ВА применяются исключительно для того, чтобы оценить мощность в соединениях переменного тока. То есть в тех случаях, когда у Ватт и Вольт-ампер разное значение.

В настоящее время существует множество различных онлайн-калькуляторов, позволяющих быстро и легко перевести ВА в Вт. Процедура эта настолько проста, что мы не будем останавливать на ней свое внимание.

Но, специально для тех людей, у которых нет под рукой онлайн-калькулятора для перевода Вольт-ампер в Ватты, мы рассмотрим процесс перевода этих величин более подробно:

С помощью этой формулы мы можем узнать силу тока. Конечно, только в том случае, если нам уже известны напряжение и мощность .

То есть получается, что для пересчета Ватт в Амперы мы должны выяснить напряжение в системе. К примеру, в США напряжение в электросети составляет 120В, а в России – 220В.

При этом стоит отметить, что аккумуляторы или батареи, используемые в автомобилях , обычно имеют напряжение равное 12 В. А напряжение в небольших батарейках, используемых для различных портативных устройств, как правило, не превышает 1,5 В.

Таким образом, можно сказать, что зная напряжение и мощность, мы можем с легкостью узнать также и силу тока. Для этого нам нужно лишь правильно воспользоваться вышеприведенной формулой .

Давайте рассмотрим то, как это «работает» на конкретном примере: если напряжение равно 220В и мощность составляет 220Вт, то ток будет равен 220/220 или 1 А.

Сколько Ватт в 1 Ампере?

Теперь давайте попробуем перевести Ватты в Амперы. И для этого нам понадобится еще одна формула:

В ней I – это А, P – Ватт, а U – Вольт.

Произведя несложный расчет по данной формуле, мы сможем узнать, сколько Вт в одном А.

Как мы уже говорили ранее, существует еще один способ для того, чтобы рассчитать, сколько Ватт в 1 А. Для того чтобы воспользоваться им вам нужно будет открыть онлайн-калькулятор и ввести в него потребляемую мощность, а также напряжение.

Далее, вам всего лишь нужно будет нажать на кнопку с надписью «рассчитать» и в течение пары секунд специальная программа выдаст вам верное значение. Воспользовавшись таким способом вы, несомненно, сможете сэкономить свое время и силы, так как вам не придется самостоятельно рассчитывать все показатели с помощью формул.

На бытовых приборах (миксер, фен, блендер) производители пишут потребляемую мощность в ваттах, на устройствах, которые требуют больших объемов электрической нагрузки (электрическая плита, пылесос, водонагреватель), – в киловаттах. А на розетках или автоматических выключателях, через которые подключаются к сети приборы, принято указывать силу тока в амперах. Чтобы понять, выдержит ли розетка подключаемое устройство, нужно знать, как переводить амперы в ватты.

Единицы мощности

Перевод ватты в амперы и наоборот – понятие относительное, потому как это разные единицы измерения. Амперы – это физическая величина силы электрического тока, то есть скорость прохождения электричества через кабель. Ватт – величина электрической мощности, или скорость потребления электроэнергии. Но такой перевод необходим для того, чтобы рассчитать, соответствует ли значение силы тока значению его мощности.

Перевод ампера в ватты и киловатты

Знать, как посчитать соответствие ампер ваттам, нужно для того, чтобы определить, какое устройство способно выдержать мощность подключаемых потребителей. К таким устройствам относят защитную аппаратуру или коммутационную.

Перед тем как выбрать, какой автоматический выключатель или устройство защитного отключения (УЗО) установить, нужно посчитать мощности потребления всех подключаемых приборов (утюг, лампы, стиральная машина, компьютер и т.д.). Или же наоборот, зная, какой стоит автомат или защитное устройство отключения, определить, какое оборудование выдержит нагрузку, а какое нет.

Для перевода ампера в киловатты и наоборот существует формула: I=P/U, где I – амперы, P – ватты, U – вольты. Вольты – это напряжение сети. В жилых помещениях используется однофазная сеть – 220 В. На производстве для подключения промышленного оборудования работает электрическая трехфазная сеть, значение которой равно 380 В. Исходя из этой формулы, зная амперы, можно посчитать соответствие ваттам и наоборот – перевести ватты в амперы.

Ситуация: имеется автоматический выключатель. Технические параметры: номинальный ток 25 А, 1-полюс. Нужно посчитать, какую ваттность приборов способен выдержать автомат.

Проще всего технические данные внести в калькулятор и рассчитать мощность. А также можно использовать формулу I=P/U, получится: 25 А=х Вт/220 В.

х Вт=5500 Вт.

Чтобы ватты перевести в киловатты,необходимо знать следующие меры мощности в ватт:

  • 1000 Вт = 1 кВт,
  • 1000 000 Вт = 1000 кВт = МВт,
  • 1000 000 000 Вт = 1000 МВт = 1000000 кВт и т.д.

Значит, 5500 Вт =5,5 кВт. Ответ: автомат с номинальным током 25 А может выдержать нагрузку всех приборов общей мощностью 5,5 кВт, не более.

Применяют формулу с данными напряжения и силы тока для того, чтобы подобрать тип кабеля по мощности и силе тока. В таблице приведено соответствие тока сечению провода:

Медные жилы проводов и кабелей
Сечение жилы, мм²Медные жилы проводов, кабелей
Напряжение 220 ВНапряжение 380 В
Ток, АМощность, кВтТок, АМощность, кВт
1,5194,11610,5
2,5275,92516,5
4388,33019,8
64610,14026,4
107015,45033
168518,77549,5
2511525,39059,4
3513529,711575,9
5017538,514595,7
7021547,3180118,8
9526057,2220145,2
12030066260171,6

Как перевести ватт в ампер

Перевести ватт в ампер нужно в ситуации, когда необходимо поставить защитное устройство и нужно выбрать, с каким номинальным током оно должно быть. Из инструкции по эксплуатации ясно, сколько ватт потребляет бытовой прибор, подключаемый к однофазной сети.

Задача рассчитать, сколько ампер в ваттах или какая соответствует розетка для подключения, если микроволновая печь потребляет 1,5 кВт. Для удобства расчета киловатты лучше перевести в ватты: 1,5 кВт = 1500 Вт. Подставляем значения в формулу и получаем: 1500 Вт / 220 В = 6,81 А. Значения округляем в большую сторону и получаем 1500 Вт в пересчете на амперы – потребление тока СВЧ не менее 7 А.

Если подключать несколько приборов одновременно к одному устройству защиты, то чтобы посчитать, сколько в ваттах ампер, нужно все значения потребления сложить вместе. Например, в комнате используется освещение со светодиодными лампами 10 шт. по 6 Вт, утюг мощностью 2 кВт и телевизор 30 Вт. Сначала все показатели нужно перевести в ватты, получается:

  • лампы 6*10= 60 Вт,
  • утюг 2 кВт=2000 Вт,
  • телевизор 30 Вт.

60+2000+30=2090 Вт.

Теперь можно перевести ампер в ватты, для этого подставляем значения в формулу 2090/220 В = 9,5 А ~ 10 А. Ответ: потребляемый ток около 10 А.

Необходимо знать, как перевести амперы в ватты без калькулятора. В таблице показано соответствие скорости потребления электроэнергии силе тока при однофазной и трехфазной сетях.

Ампер (А)Мощность (кВт)
220 В380 В
20,41,3
61,33,9
102,26,6
163,510,5
204,413,2
255,516,4
327,021,1
408,826,3
5011,032,9
6313,941,4

Началось все с того, что у старенького планшета начал барахлить блок питания и я решил подобрать ему замену. Нашел вариант с привычной нам вилкой и не отсоединяемым кабелем.
Старый блок питания я скорее всего починю и уже даже придумал куда его применить, а сегодня попробую протестировать новый.

Постараюсь сделать обзор коротким, но максимально по делу. Будут как всегда, тесты, разборка, анализ.

Пришел блок питания в конверте, без всяких коробочек и т.п.
К слову в последнее время приятно удивляет скорость доставки с чайнабея, посылки удет примерно полторы недели.

Блок питания относительно маленьких размеров, на вид уменьшенная копия популярных блоков 12 Вольт 2 Ампера.
Длина кабеля около 1.4 метра, как по мне лучше бы он был раза в два короче.
Обрадовало несколько вещей.
1. Блок питания действительно с евро вилкой, а не с переходником в комплекте.
2. Кабель не отключаемый, лишние контакты никак не увеличивают надежность.
3. БП брался для планшета u9gt4. Он имеет алюминиевый корпус и далеко не все штеккеры нормально работают. Здесь проблем я не обнаружил.

Всем думаю понятно, что без тестов обзор блока питания это вообще не обзор, потому я собрал небольшой стенд для проверки.
В него входило:
Электронная нагрузка + блок питания к ней
Осциллограф
microUSB гнездо с припаянным проводом.
Ну и сам обозреваемый блок питания

Наверняка некоторые читатели скажут, что правильно измерять напряжение на выходе блока питания, а не после кабеля. Но я рассуждал так — раз кабель не отсоединяемый, то заменить его на лучший нельзя, значит он будет работать именно в таком виде, потому и тестировать надо именно так.

Первое испытание на холостом ходу.
Выходное напряжение несколько завышено, позже я объясню почему, но скажу сразу, сделано это было специально.

Пульсации измерялись в положении делителя щупа 1:1.
Ну на холостом ходу пульсации бывают очень редко, потому здесь так же все в порядке.

Дальше четыре теста с разным током нагрузки, заодно здесь хорошо видно что такое электронная нагрузка и зачем она нужна.
Испытательные токи:
0.5 Ампера — напряжение в норме.
1.0 Ампера — напряжение в норме, пульсации почти такие же как при 0.5 Ампера и составляют 90мВ.
1.5 Ампера — напряжение еще в норме, но пульсации уже явно повыше, около 120мВ
2.0 Ампера — напряжение уже сильно просело, пульсации выросли до 150мВ.
Не скажу что напряжение пульсаций ну очень критичное, но мне скорее не нравится их форма.

Ну и осциллограммы.

Еще с далеких времен, когда в ходу была 155 и 555 серия логических микросхем, я привык считать, что пока напряжение питания находится в пределах +/-5% (для 5 Вольт), то все нормально.
Соответственно я решил определить максимальный ток, который может выдать БП еще оставаясь в границах допуска.
Измерение показало, что это 1.71 Ампера, хотя БП промаркирован как 2 Ампера.
Но на самом деле это скорее не вина самого БП, а большой длины кабеля. Собственно потому я и жалел что кабель длинный.

После этого я погонял блок питания на токе 2 Ампера примерно с пол часа и измерил температуру. БП был включен в настенную розетку, кабелем вниз.
Самая горячая точка была примерно чуть ниже середины БП, температура корпуса в этом месте составила 62.2 градуса. В верху блока питания температура была около 55 градусов.

В процессе тестов я пробовал подключать этот БП к своему планшету и увидел знакомый многим дефект в виде «фантомных» нажатий тачскрина.
Выглядело это как:
Нажатие в одном месте, но реально отклик происходил в другом.
На одно нажатие несколько откликов
При длительном нажатии пробегает горизонтальная полоса с видимыми «фантомными» нажатиями. Т.е. правый клик (длительное удержание) произвести просто невозможно, вообще.
все глюки были в горизонтальной плоскости экрана.
Хотя БП брался и не для этого планшета, но я решил попробовать разобраться в проблеме.
Ну а как все понимают, любое разбирательство начинается с разборки:)

БП удивил меня в очередной раз. Я уже взял по привычке нож, молоток и стукнул пару раз по шву между половинками корпуса, но сразу понял что что-то не так, звук был другой.
Не дело, подумал я и начал искать крепеж, как и ожидалось он нашелся под наклейкой.
Удобно, уже так привык что БП клееные, что даже непривычно.

Долез я до платы и тут меня БП опять удивил.
Еще когда я увидел «фантомы», то первым делом подумал, что БП сделан как всегда по автогенераторной схеме, как самой дешевой и не имеет выходного дросселя.
БП был собран на довольно известном ШИМ контроллере и имел выходной дроссель.
А вот входной дроссель отсутствовал:(
Зато стоял Y1 конденсатор между входом и выходом, хотя часто ставят просто высоковольтный керамический.
Выходные конденсаторы по 470мкФ, мало, при 2 Амперах надо хотя бы 1000мкФ.

Но первое что бросилось в глаза, это слишком мелкий трансформатор. Насколько я знаю, для частоты 60КГц, на которой работает этот ШИМ контроллер, трансформатор должен быть раза в полтора больше.
По входу присутствует предохранитель.
Выше я писал, что объясню почему завышено выходное напряжение. Это не дефект, а именно так и задумано. микросхема, которая следит за выходным напряжением, имеет пороговое напряжение в 2.5 Вольта, значит для 5 Вольт ставят делитель 1 к 2. но здесь стоял делитель из резисторов 4.7 и 5.1 КОм. Соответственно выходное напряжение поднимали специально, именно из расчета работы на большую длину кабеля, но помогло это слабо:(

Хоть плата сделана на дешевом гетинаксе, пайка вполне терпимая, но ШИМ контроллер явно менялся, присутствуют следы пайки и флюса.

Более подробные фотографии.
1. ШИМ контроллер Viper22A, при этих условиях расчетная мощность около 12 Ватт, запас совсем маленький.
2. Выходной диод SR560 , Шоттки 5 Ампер, неплохо, при этом рядом присутствует место для еще одного диода, видимо расчет на установку двух более слабых диодов.
А вот кабель для такого тока тонковат, особенно при такой длине.
3. Входной конденсатор на 6.8 мкФ, мало. Для такого БП должно быть 10мкФ или больше.
4. Еще один электролитический конденсатор, в цепи питания ШИМ контроллера. Здесь емкость вполне достаточна. Проблем с запуском БП нет, стартует мгновенно.

После осмотра я составил принципиальную схему данного БП.

Так как я открыл Бп не только для осмотра, а и для попытки доработки, то я порылся в своих запасах и решил добавить\заменить некоторые компоненты.
1. Увеличить емкость входного конденсатора, но 10мкФ не нашел, пришлось взять 2.2 и добавить параллельно существующему (уменьшение пульсаций на частоте 100Гц и снижение нагрева ШИМ контроллера)
2. Поставить керамические конденсаторы емкостью 0.22мкФ параллельно выходным конденсаторам (уменьшение пульсаций выходного напряжения на ВЧ)
3. Поставить RC цепочку параллельно выходному диоду (немного уменьшает помехи от переключения диода)
4. Заменить выходной дроссель с 10мкГн на 20мкГн, кроме того старый дроссель был намотан явно тонким проводом и замена дросселя даст чуть меньшие потери на нагрев.
5. Заменить одни из выходных конденсаторов на более емкий и качественный.

На схеме я пометил цветом измененные и добавленные компоненты.
На самом деле я пробовал еще увеличивать емкость С3 до 100нФ и ставить такой же конденсатор параллельно С4, но разницы не было.

Вот как выглядел БП после доработки.

Но как показала практика, разницы не было, вообще. Так же никуда не пропали «фантомы».
Увеличение С3 и установка керамического конденсатора параллельно С4 была уже последней попыткой, но это ничего не изменило.
Первый раз моя модификация не помогла. Думаю что объяснение этому может крыться в неправильном трансформаторе, который скорее всего работает в режимах близких к насыщению.

Зато в процессе экспериментов я проверил температуру компонентов в работе. Прогрев около получаса, быстрое открытие корпуса и замер температур:
Трансформатор — 90-93 градуса
ШИМ контроллер — 80 градусов
Выходной диод — 80-86 градусов.


Но когда я подключил этот БП к планшету, для которого он вообще предназначался, то увидел что проблем с ним нет, все работает отлично.

После этого я решил уже скорее ради любопытства посмотреть как работает родной БП моего планшета. Ведь с ним проблем нет, можно спокойно работать во время заряда.
Измерение показало, что колебания напряжения от изменения нагрузки гораздо меньше.
При работе без нагрузки он показал около 5.06 Вольта, а под нагрузкой в 2 Ампера — 4.92 Вольта. Результат отличный.

Но когда я увидел осциллограмму пульсаций по выходу этого БП, то подумал, КАК?
Как БП с таким уровнем пульсаций не дает помех работе тачскрина, а при БП с явно меньшим уровнем пульсаций работать вообще невозможно?

На основании тестов, проведенных выше, разборки и попытки переделки, я вполне могу определить плюсы и минусы данного БП.
Плюсы
Блок питания имеет евровилку, а не переходник
Схемотехника с применением специализированного ШИМ контроллера
Неразъемная конструкция кабеля (хотя в данном случае это оказалось и минусом)
Штеккер имеет нормальную фиксацию в разъеме планшета, даже если гнездо утоплено в корпусе.

Минусы
На некоторых устройствах возможны проблемы с тачскрином.
Отсутствие входного фильтра питания.
Занижена емкость конденсаторов и размеры трансформатора.
Большое падение на кабеле из-за большой его длины и малого сечения жил.

Мое мнение. Если рассматривать его как просто блок питания, то он вполне нормально может работать до тока в 1.5 Ампера, при этом не будет проблем с перегревом и просадкой напряжения. но при большем токе напряжение упадет ниже допустимых границ. Так же непонятна причина возникновения помех работе тачскрина, но проблема есть и видна невооруженным глазом, хотя пульсации выходного напряжения не такие уж и большие.

Я не знаю, поможет ли кому нибудь этот обзор, но я старался показать что это за блок питания максимально подробно.

Для того, чтобы ответить на этот, в общем-то, несложный вопрос, нам необходимо еще раз коротко рассмотреть такие физические величины, как сила тока (А ), напряжение (В ) и мощность (Вт ). Они очень тесно связаны между собой и не могут существовать друг без друга.

Зависимость от электрического поля

Нам хорошо известно, что создание и поддержание электрического тока полностью зависит от электрического поля. напрямую зависит от величины электрического поля. Для лучшего понимания этой зависимости попробуем охарактеризовать эти понятия в количественном выражении.

Сила тока — это не совсем удачное название для данного процесса. Оно появилось в то время, когда далеко не совсем было понятно, что это такое. Ведь это вовсе не сила, как таковая, а количество электронов (электричества), которое протекает через поперечное сечение проводника за одну секунду. Эту величину можно было бы отобразить в виде количества электронов, проходящих через проводник за секунду. Однако заряд электрона — очень маленькая величина. Она непригодна для применения на практике.

Например: через нить накаливания лампочки обычного карманного фонарика за одну секунду проходит 2х1018электронов. Поэтому единицей измерения величины электрического заряда стали считать заряд, который имеют 6,25х1018 электронов. Этот заряд получил название кулон. Поэтому окончательно единицей считают такой ток, при котором за одну секунду через поперечное сечение проводника проходит заряд в 1 кулон. Такая единица получила название ампер и по сей день используется в электротехнике для измерения силы тока.

Для того, чтобы определить зависимость электрического тока от электрического поля необходимо уметь измерять величину поля. Ведь поле — это сила, которая действует на какой-либо заряд, электрон, или кулон. Именно наличие такой силы и характерно для электрического поля.

Измерение силы поля

Измерить силу поля очень трудно, ведь в разных местах проводника оно неодинаковое. Пришлось бы проводить большое число сложный измерений в различных точках. В связи с этим величина поля характеризуется не силой, действующей на заряды, а работой, совершаемой ею, при перемещении одного кулона из одного конца проводника — до другого. Работа электрического поля называется напряжением. Еще ее называют разность потенциалов (+ и -) на концах проводника. Единицей напряжения называют вольт .

Таким образом, можно сделать вывод, что понятие электрического тока характеризуется двумя основными величинами: сила тока — это непосредственно электрический ток, напряжение — величина поля, при котором создается сам ток. Получается, что сила напрямую зависит от напряжения.

Что такое мощность

И, наконец, коротко рассмотрим, что же такое мощность. Мы уже знаем, что U (напряжение) — работа, которая выполняется при перемещении 1 кулона. I — это сила тока, или количество кулонов, проходящих за одну секунду. Таким образом I х U — есть показатель полной работы, выполненной за 1 секунду. Фактически, это и есть мощность электрического тока. Единицей измерения мощности является ватт .

Как перевести ватты в амперы

Ватт = Ампер х Вольт или Р = I х U

Ампер = Ватты/Вольт или I = P/U

В качестве наглядного примера можно рассмотреть такой вариант

4,6 Ампер = 1000Вт/220В

2,7 Ампер = 600Вт/220В

1,8 Ампер = 400Вт/220В

1,1 Ампер = 250Вт/220В

24 Вольта 5 Ампер 120 Ватт и 1 Ампер в подарок

Так как я давно работаю с разными блоками питания, то часто получается определить качество блока питания уже ‘по фотографии’. Так получилось и в этот раз, заказал на тест пару блоков, как мне показалось, неплохих. Пока интуиция оказалась на моей стороне, подробнее как всегда под катом 🙂

Вообще меня часто спрашивают- а этот блок питания хороший или нет? На что я не менее часто отвечаю — на вид хороший, но пока не протестирую, точно не скажу. Практика показывает, что внешний вид может быть довольно обманчивым.

Кроме внешнего вида большое значение имеет цена, дешевый БП хорошим быть не может, но это не значит, что дорогой не может быть плохим. Вот и проверим.

Обзор постараюсь сделать коротким, но дать при этом максимум информации.

Для начала немного об упаковке. Скажу коротко — она есть 🙂

На самом деле наличие картонной упаковки скорее необходимо бескорпусным блокам питания, БП в кожухе повредить гораздо тяжелее, но тем не менее наличие упаковки всегда плюс, если не защитит, так хоть детали не потеряются 🙂

Никакой инструкции к блоку питания в комплекте не идет.

Как я писал в начале. блок питания в железном перфорированном корпусе. Дизайн вполне стандартный, алюминиевое шасси, которое служит теплоотводом и перфорированный кожух.

Охлаждение пассивное так как мощность относительно небольшая. Активное охлаждение начинается от мощностей 240-300 Ватт.

Сбоку присутствует наклейка с указанием характеристик блока питания.

Правда я не совсем понял про 110/220, так как блок питания не имеет переключателя напряжения и рассчитан только на 220, хотя судя по схемотехнике вообще должен работать в полном диапазоне 85-240, но будем считать что он на 220.

Технические характеристики:

Входное напряжение — 220 Вольт +/-15%

Выходное напряжение — 24 Вольта

Максимальный ток нагрузки — 5 Ампер

Размеры, для такой мощности, не очень большие и составляют:

Длина — 143мм

Ширина — 58мм

Высота — 41мм

На торцах блока питания расположены винтовые клеммники:

1. Для подключения входа питания и заземления

2. Для подключения выхода 24 Вольта, также с этой стороны расположен светодиод индикации наличия напряжения на выходе и подстроечный резистор для регулировки выходного напряжения.

Видно что производитель решил использовать такой же клеммник как на выходе, но вывел на него два минусовых контакта и один плюсовой.

Снимается кожух не совсем удобно, откручивается два винта по бокам, а вот с защелками пришлось немного помучатся, первую пришлось отгибать при помощи плоской отвертки. Теперь о некоторых особенностях блока питания, хороших и не очень.

Для начала сетевой фильтр, он есть, причем не только есть, а почти правильный сетевой фильтр. Присутствует и синфазный дроссель (причем явно на приличный ток), два помехоподавляющих Х конденсатора, два Y конденсатора. Нет только терморезистора, ограничивающего пусковой ток.

Диодный мост применен GBU6D, что поставило меня в тупик. Судя по даташиту он на 6 Ампер и 140-200 Вольт, но при этом отлично прошел все тесты, хотя в сети было 240-245 Вольт (у нас часто ночью такое напряжение), пережил штук 30 включений (специально проверял). Такое чувство, что диодный мост все таки на нормальные 600-800 Вольт, просто напечатали другую маркировку (типа как процессоры с разными частотами, но одним кристаллом). Мало того, часто более ширпотребные 600-800 Вольт имеют даже меньшую цену.

Иногда мне кажется, что китайские инженеры читают наши форумы 🙂

По входу стоит 2 конденсатора по 82мкФ, что дает в сумме 164мкФ. Для заявленной мощности в 120 Ватт это более чем с запасом.

Транзистор и выходной диод прижаты к корпусу через алюминиевую пластину, прижаты стандартно небольшой металлической пластиной.

Здесь также есть небольшое замечание, если по входу стоят Y1 конденсаторы, то почему межобмоточный поставили обычный? Причем я часто наблюдаю такое, ведь цена этому конденсатору — копейки.

Выходные конденсаторы поставили так же довольно большой емкости, 2 штуки 2200х35 Вольт.

Странно то, что конденсаторы имеют разные размеры, но одинаковые емкость/напряжение, фирма производитель также отличается.

Не забыли и о ложке дегтя, вместо выходного помехоподавляющего дросселя стоит ‘специально обученная’ перемычка. Данная экономия выглядит несколько странно на фоне нормального сетевого фильтра. Первое включение, напряжение на выходе 23.78 Вольта.

Проверка диапазона регулировки выходного напряжения:

Минимальное — 20.71, максимальное — 29.79.

В конце я выставил в итоге заявленные 24 Вольта.

Копнем глубже 🙂

Отвинчиваем винт, которым прижимаются транзистор и диод, он находится под наклейкой с указанием характеристик.

Транзистор и диод прижаты к радиатору через теплопроводящую резину и при этом промазаны теплопроводящей пастой.

На плате присутствует маркировка, WJXPS-P1210B6 и дата разработки платы — 2013 год 25 сентября.

Первая маркировка указывает, что видимо изначально плата разрабатывалась для блока питания 12 Вольт 10 Ампер, т.е. те же 120 Ватт, и уже потом выпустили вариант 24 Вольта 5 Ампер на базе той же платы (меняется трансформатор и несколько компонентов).

БП на 24 Вольта обычно имеет немного выше КПД и если версия на 12 Вольт была рассчитана правильно, то вот мы и получили наш ‘подарочный’ 1 Ампер.

Немного подробнее о компонентах.

1. Помехоподавляющие конденсаторы Y1

2. В качестве ШИМ контроллера применен OB2269CP от известного производителя LITEON.

3. Высоковольтный транзистор фирмы Infineon 20N60C3, причем в корпусе ТО-247.

4. Выходная диодная сборка BYQ28E-200, это сборка из двух 10 Ампер 200 Вольт UltraFast диодов.

Обычно на выходе ставят диоды Шоттки, но в данном случае применение сборки из просто быстрых диодов вполне оправданно, так как на больших напряжениях диоды Шоттки теряют часть своих ключевых преимуществ — малое падение напряжения. 200 Вольт здесь более чем с запасом.

К плате претензий не было, в необходимых местах присутствуют прорезы для защиты от пробоя по текстолиту. Дорожки, по которым течет большой ток, пролужены. Пайка среднего качества. Все пропаяно, но обрезка выводов не очень аккуратная. Измерение емкости конденсаторов показало соответствие тому, что написано, и это не может не радовать 🙂 А вот на измерении ESR выходных конденсаторов мой прибор спасовал, выдав нереальные 0 Ом, почему так, не знаю, раньше такого не видел. По плате была составлена ее принципиальная схема, позиционные обозначения элементов старался соблюдать, но не уверен что все корректно, так как не везде на плате было это видно. Ладно, с обзором внутренностей закончили, перейдем к обязательному тестированию.

Стенд для тестирования стандартный, электронная нагрузка, осциллограф, мультиметр, бесконтактный термометр, ручка и бумажка.

Методика такая же как и в прошлых обзорах:

Включение, нагрузка током 1 Ампер, прогрев 20 минут, измерение температур основных элементов, повышение тока на одну ступень.

1. Холостой ход, напряжение 23.98 Вольта, пульсации 100мВ

2. Ток нагрузки 1 Ампер, напряжение 23. 93 Вольта, пульсации 0,3 Вольта

1. Ток нагрузки 2 Ампера, напряжение 23.77 Вольта, пульсации 0,6 Вольта. это довольно много.

2. Ток нагрузки 3 Ампера, напряжение 23.62 Вольта, пульсации 0.6 Вольта.

1. Ток нагрузки 4 Ампера, напряжение 23.5 Вольта, полный размах пульсаций 0,8 Вольта

2. Ток нагрузки 5 Ампер, напряжение просело до 23.43, но пока в пределах нормы, пульсации как ни странно меньше, 0.6 Вольта. Но в кадр попали пульсации только в верхнюю сторону.

Теперь о ‘подарочном’ Ампере 🙂

Так как в плане нагрева блок питания вел себя отлично, то я решил продолжить тест.

1. Ток нагрузки 6 Ампер, напряжение 23.5 Вольта, пульсации 0.8 Вольта.

2. я решил попробовать немного доработать блок питания, установив отсутствующий дроссель и три керамических конденсатора по 0.22мкФ, один до дросселя, два после.

Как говорится — разница видна невооруженным (ну почти) глазом, пульсации упали в два раза и стали гораздо реже.

В доработке я использовал не совсем подходящий дроссель, он имеет малую индуктивность и рассчитан на большой ток. В блок питания вполне влезет дроссель с индуктивностью раз в 5 больше, что еще больше снизит уровень пульсаций.

Также я разобрался с просадкой напряжения под нагрузкой. Сначала я думал что блок питания ‘не тянет’, хотя для БП имеющего обратную связь с выхода это несколько странно. Охлаждая поочередно компоненты цепи детектирования напряжения я определил, что проблема кроется в уходе номинала у резистора R2. Нагрев уменьшает выходное напряжение. Если заменить R2 на точный, то проблема полностью уйдет. Греется резистор от трансформатора, можно даже просто вынести резистор подальше, но лучше заменить.

Ну и полученные мною температурные режимы.

Корпус в конце эксперимента достиг температуры в 70 градусов в районе силовых элементов.

Стоит сказать, что охлаждение в тесте было не очень хорошее, лето (кондиционер я не включал), блок лежал на столе, который является плохим теплоотводом и затрудняет охлаждение нижней части БП.

Последние цифры фактически получены после двухчасового ступенчатого прогрева.

Резюме.

Плюсы

Наличие упаковки

Номиналы элементов подобраны с запасом (кроме вопроса о входном диодном мосте)

Нагрев позволяет использовать данный БП даже при токе нагрузки до 6 Ампер

Нормальный сетевой фильтр на входе.

Аккуратная и качественная конструкция.

Наличие возможности подстройки выходного напряжения в больших пределах

Минусы

Большой уровень пульсаций (по крайней мере без доработки)

Низкая термостабильность резисторов делителя обратной связи.

Межобмоточный конденсатор неправильного типа

Непонятная ситуация с входным диодным мостом.

Мое мнение. Впечатление о блоке питания создалось очень двоякое, с одной стороны хороший блок питания, с большим запасом по току, с нормальными номиналами конденсаторов, но при этом требующий доработки. Доработка копеечная и несложная, но она желательна, с ней характеристики БП становятся гораздо лучше, зачем так экономить?

Вторая непонятная ситуация, с входным диодным мостом, но я все таки склонен считать, что диодный мост стоит нормальный, но неправильно промаркирован. Как я выше писал, часто диоды и мосты на напряжение 600-800 Вольт стоят даже дешевле их низковольтных аналогов, кроме того БП прошел все тесты на ура даже при превышенном сетевом напряжении.

Сегодня позже попробую проверить свою теорию, сгорит, так сгорит.

Рекомендовать или нет, тяжело сказать. Для тех кто умеет держать в руках паяльник, это способ получить хороший блок питания. Либо для тех, кому не важен уровень пульсаций и снижение напряжения (можно изначально выставить 24.25-24.3 и будет лучше). Для остальных, не знаю, решать вам, я постарался дать всю необходимую информацию.

Какая связь между усилителями и АН?

При измерении электроэнергии ампер — это единица измерения электрического тока; ампер-часы — единицы текущей емкости памяти. Для данного напряжения, чем больше энергии потребляет электрическая цепь, тем больше тока проходит через нее. Ампер-час — это более абстрактная идея, умножающая величину тока на период времени: один АН определяется как ампер тока, протекающего в течение одного часа.

Ампер

Ток — это величина электрического заряда, протекающего в цепи.Статическое электричество — это заряд, который остается на объекте; когда заряд движется, он производит ток. Ученые измеряют заряд в кулонах, а ампер — это кулон заряда, проходящего через заданную точку в цепи за одну секунду. Маломощные устройства, такие как цифровые часы, потребляют миллионные доли ампер тока. Фен или тостер могут потреблять десять ампер. Стартер в вашем автомобиле потребляет сотни ампер, но только в течение нескольких секунд.

Ампер-часы

Техники используют ампер-часы для выражения производимого или потребляемого тока или способности чего-либо производить или потреблять ток.Стартер, который потребляет 400 ампер в течение 10 секунд, потребляет 400 * 10/3600 = 1,1 Ач мощности. Фонарь, который потребляет 400 миллиампер в течение 4 часов, потребляет 0,4 * 4 = 1,6 Ач емкости. Хотя стартер является более мощным устройством, чем фонарик, он потребляет ток в течение короткого промежутка времени.

Ток и сопротивление

Формула, называемая законом Ома, определяет величину тока, протекающего по цепи. Для заданного напряжения, чем ниже сопротивление цепи, тем больше тока течет.Это похоже на протекание воды по трубе: если вода встречает сопротивление, потому что труба заблокирована или слишком мала, по трубе проходит меньше воды за заданный промежуток времени. Устройствам, которые используют большой ток, необходимы кабели большого диаметра с низким сопротивлением для проведения электричества.

Батареи

Все батареи имеют номинальную емкость в ампер-часах. Маленькие батарейки, такие как элементы AA, имеют скромную емкость, поэтому производители измеряют их в миллиампер-часах.Батарея AA имеет емкость 2200 мАч. Более крупный образец, такой как фонарь, имеет емкость 11000 мАч или 11 Ач. Автомобильные аккумуляторы имеют емкость несколько сотен Ач. В дополнение к большей общей емкости автомобильный аккумулятор имеет более низкое внутреннее сопротивление, чем небольшие потребительские аккумуляторы, поэтому по запросу он выдает большой ток.

Определение усилителя по Merriam-Webster

\ ˈAmp \ 2 : усилитель также : Блок, состоящий из электронного усилителя и громкоговорителя.

переходный глагол

1 неофициальный : , чтобы сделать (кого-то) более возбужденным или энергичным : возбуждать, заряжать энергией Игроки либо получают заряд электричества от события, либо погружаются в окружающий хаос. — Джон Вертхайм — часто используется с до Когда Смит вышел, чтобы принять ее трофей, Бибер задушил ее поцелуями, а затем замахал кулаком, чтобы поднять толпу… — Мелисса Руджиери 2 : сделать (что-то) более интенсивным : усилить, усилить Насилие усиливается наличием автоматического оружия и вращающейся камерой, но все это кажется очень знакомым.- Кевин Краст — обычно используется с до Молодая студия, которая в итоге сняла фильм… знала, что в кармане есть девочки-подростки, и мудро усилила сцены действия в трейлере, пытаясь привлечь внимание зрителей-мужчин. — Карен Валби свинина при низкой температуре в смеси солей со специями усиливает аромат мяса и делает его очень нежным. — Габриель Гамильтон 3 : для увеличения суммы (чего-то) : повышения В этом году съезда … ставки были увеличены.- Чарльз МакГрат — обычно используется с до По мере того, как инвесторы привыкают к стабильной доходности, они начинают брать займы, чтобы увеличить прибыль … и покупать все более сомнительные вещи … — Пэт Ренье … продюсерам всегда нужно увеличивать ставки, и в этом сезоне они несколько новых поворотов… — Энди Эдельштейн — см. Также усиленный, усиленный \ Ā-em-pē \ : a нуклеотид C 10 H 12 N 5 O 3 H 2 PO 4 , состоящий из аденозина и одной фосфатной группы, которая обратимо превращается в АДФ и АТФ в метаболических реакциях

— также называется аденозинмонофосфат, адениловая кислота

— сравнить циклический усилитель

Преобразование мА в ампер — Преобразование единиц измерения

›› Перевести миллиамперы в амперы

Пожалуйста, включите Javascript для использования конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php



›› Дополнительная информация в конвертере величин

Сколько мА в 1 ампер? Ответ — 1000.
Мы предполагаем, что вы конвертируете миллиампер и ампер .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
мА или amp
Основной единицей СИ для электрического тока является ампер.
1 ампер равен 1000 ма, или 1 ампер.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать миллиамперы в амперы.
Введите свои числа в форму, чтобы преобразовать единицы!


›› Таблица быстрой конвертации ma в amp

от 1 мА до А = 0,001 А

от 10 мА до А = 0,01 А

50 мА до А = 0,05 А

от 100 мА до А = 0,1 А

200 мА до А = 0,2 А

500 мА до А = 0,5 А

1000 мА до усилителя = 1 ампер



›› Хотите другие единицы?

Вы можете произвести обратное преобразование единиц измерения из от ампер до ма, или введите любые две единицы ниже:

›› Преобразователи общего электрического тока

ма на наноампер
ма на дециамп
ма на биот
ма на гигаамп
ма на мегаамп
ма на килоампер
ма на га
ма на кулон в секунду
ма на усиление
ма на электростатический блок


›› Определение: Миллиампер

Префикс системы СИ «милли» представляет собой коэффициент 10 -3 , или в экспоненциальной записи 1E-3.

Итак, 1 миллиампер = 10 -3 ампер.


›› Определение: Amp

В физике ампер (символ: A, часто неофициально сокращается до ампер) — это базовая единица СИ, используемая для измерения электрических токов. Нынешнее определение, принятое 9-й ГКПМ в 1948 году, гласит: «Один ампер — это тот постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины и пренебрежимо малого круглого сечения, и помещенных на расстоянии одного метра в вакууме, будет производить между этими проводниками действует сила, равная 2 × 10 -7 ньютон на метр длины ».


›› Метрические преобразования и др.

ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

Ампер, мощность и вольт для электроинструмента — инструменты в действии

Вольт, ампер, крутящий момент и мощность.Что, что и что. Почему некоторые инструменты рассчитаны в амперах, некоторые в лошадиных силах, а другие в вольтах? Хороший вопрос. За прошедшие годы мы получили множество электронных писем по этой теме, поэтому мы попытались составить что-то вместе, чтобы объяснить каждую из них и все тонкости, не вдаваясь в технические или сложные моменты.

Ампер

Номинальный ток инструмента указывает на нагрузку по току, которую двигатель может выдерживать в течение неопределенного периода времени без ухудшения изоляции и других электрических соединений двигателя.

В инструменте, прошедшем проверку UL, двигатель проверяется, чтобы убедиться, что он может работать или работать при температуре ниже определенной, когда через него протекает ток или электричество. Итак, по сути, сколько мотор может поглощать и рассеивать тепло.

Скорость двигателя важна. Чем быстрее двигатель вращается, тем больше воздуха он может протянуть через двигатель, чтобы охладить его. Таким образом, ампер измеряет или указывает максимальное время, в течение которого инструмент может непрерывно работать без превышения температурных пределов. Ампер в основном измеряет, насколько эффективно двигатель охлаждается, а не его мощность.Имея это в виду, больше усилителя может быть хорошо, потому что двигатели будут работать дольше и не будут нагреваться так быстро. Помните, что тепло убивает мотор. Вы когда-нибудь щелкали выключателем на панели? Это может раздражать, но это защищает ваши инструменты. Обратите внимание, когда вы нажимаете прерыватель, ваш инструмент, вероятно, застревает, вызывая больше тепла и, в свою очередь, потребляет больше ампер.

Другое заблуждение состоит в том, что, поскольку два инструмента имеют одинаковый номинал усилителя, они должны быть одинаковыми. Не тот случай.Возьмем, к примеру, две дисковые пилы, каждая из которых рассчитана на 15 ампер. Они должны быть одинаковыми, правда? Неправильно, хотя у них обоих по 15 ампер, червячный привод может передавать мощность на лезвие более эффективно, чем линейная версия, давая червячной пиле больший крутящий момент.

Что касается аккумуляторных инструментов: чем больше у аккумулятора тока, тем дольше инструмент проработает. У вас могут быть две батареи на 18 В, но одна может работать дольше, чем другая, потому что у нее более высокий ток. У одного может быть номинальная мощность 3 Ач, а у более продолжительного инструмента — 6 Ач.

Крутящий момент

Крутящий момент — это сила вращения. Опять же, цифры крутящего момента могут вводить в заблуждение. Большая часть крутящего момента зависит от того, насколько хорошо спроектирована система передач. Вы когда-нибудь задумывались, почему инструмент без названия имеет такой же ток и такой же крутящий момент, но может составлять 1/3 стоимости профессионального электроинструмента. Ну, зубчатая передача другая, качество деталей другое и некоторые другие очень важные вещи другие. Поэтому, когда вы думаете, что на самом деле заключаете сделку, вас на самом деле обманывают.Большинство значений крутящего момента показывают инструмент на холостом ходу (когда инструмент работает на полную мощность и фактически не выполняет рез). Крутящий момент представляет собой точку остановки. Если двигатель заглохнет, его крутящий момент будет максимальным. Заглохший двигатель — худшее, что вы можете сделать, так как он создает больше ампер, которые создают больше тепла.

Не существует стандарта измерения крутящего момента, поэтому будьте осторожны. Некоторые компании измеряют крутящий момент на внутренней стороне инструмента еще до передачи крутящего момента. Другие производители проверяют крутящий момент после передачи.В конце долота будет произведено измерение. Когда доходит до дела, это просто большая маркетинговая афера.

Мощность

лошадиных сил — это математическое выражение зависимости между скоростью и крутящим моментом. Опять же, мощность в лошадиных силах вводит в заблуждение, потому что это математическое уравнение, и производитель может использовать либо постоянный, либо остановленный крутящий момент, и, таким образом, вы можете получить два разных числа. Большинство производителей используют пиковую мощность (точку остановки) как большее число.Это фиктивная мера, потому что она показывает максимально возможную производительность. Если вы сделаете это со своим инструментом, вы очень быстро сожжете двигатель из-за большого тока и сильного нагрева. Так что на самом деле это нереальная числовая мера.

Вольт

Вольт — это сила, которая чаще всего используется при измерениях с помощью аккумуляторных инструментов. Вы можете думать о вольтах как о лошадиных силах для аккумуляторных инструментов. Чем выше напряжение, тем большую мощность он может использовать для приложений с более высоким потреблением энергии.Более высокое напряжение также может работать с более крупными долотами и лезвиями. Я не собираюсь слишком увлекаться вольтами, потому что это становится слишком техническим. Для беспроводного инструмента вам действительно нужны вольты и усилители для совместной работы в приложениях с повышенными требованиями.

КПД

Эффективность очень важна, но никогда не упоминается. Эффективность — это то, насколько эффективно мощность передается на выход. Не вся энергия попадает на выход. Некоторая энергия теряется в процессе передачи ее на выход, лезвие или сверло.

Энергия теряется из-за трения, такого как шарикоподшипники, потери в стали, потери меди в щетках и многими другими способами. Чем эффективнее двигатель, тем больше мощности вы получите в конечном результате, поэтому вы видите больший скачок в использовании бесщеточных двигателей. Что делает мотор более эффективным? Просто тип, качество, конструкция и сорта материалов, из которых изготовлен эффективный инструмент. Вот почему профессиональные электроинструменты обычно стоят дороже. Конечно, часть стоимости связана с названием, но качество — это то, что вы действительно получаете.

Взять мотор на 10 лошадиных сил. Эффективный двигатель может передавать 93% на выходе, в то время как более дешевая модель может передавать только 79%. Ну, кого это волнует, если они оба ввинчивают шуруп в стену? Ну, во-первых, неэффективный двигатель, без сомнения, откроет больше винтов и вызовет большее нагревание инструмента, что приведет к его очень быстрому сгоранию. Каждый раз, когда вы ввертываете винт в древесину, вам придется прикладывать немного большее давление к инструменту, что приводит к увеличению крутящего момента и силы тока, что приводит к большему нагреву.В конечном итоге, потратив лишние деньги сейчас, вы сэкономите деньги, время и сэкономите потом.

Как измерить батареи аккумуляторных электроинструментов

Один из способов узнать немного о батарее — это подумать о ватт-часах. Ватт-час (Втч) — это мера энергии или потенциала для выполнения работы. Так что да, хотя у вас есть отличная батарея, вам все равно нужен отличный инструмент для передачи этой энергии на работу. Батареи измеряются вольтами и амперами. Если вы возьмете напряжение x ампер, вы получите ватт-часы.Итак, давайте посмотрим на ваш рабочий грузовик.

  • Напряжение — Думайте об этом как о размере вашего бензобака.
  • ампер-часов — это количество бензина в вашем баллоне
  • Ватт-часов — это расстояние, на которое вы можете проехать на грузовике за час, или как быстро вы можете преодолеть это расстояние. Итог, это производительность.

Итак, если вы посмотрите на это таким образом, мы сможем сравнить их друг с другом

Современная стандартная батарея — 18 В, 6 Ач = 108 Вт · ч

Dewalt (Flexvolt) — 60 В (номинал 54 В) 2 Ач = 120 Вт · ч

Милуоки — 18 В 9 Ач = 162 ватт-часа

Makita (батареи 2-18 В) — 36 В 6 Ач = 216 ватт-часов

Заключение

Звучит глупо, но на самом деле сравнивать мощность и мощность одного инструмента от другого производителя в значительной степени бесполезно. Единственное исключение — это сетевые электроинструменты и усилители. Электродвигатели сетевых электроинструментов должны проходить испытания в соответствии со стандартами Underwriters Laboratories, поэтому усилители находятся на равных условиях. Однако они проверяют только усилители и не проверяют выходную мощность.

Я разговаривал со многими плотниками и другими рабочими, и мы все еще всегда смотрим на усилители, мощность, вольты и крутящий момент, и мы всегда будем это делать. Но большинство профессиональных электроинструментов имеют примерно одинаковые числа, поэтому мы склонны рассматривать функции как решающий фактор.Главное помнить, что все это означает. Понимая, что производители могут сделать все, чтобы все выглядело хорошо, вы поймете, стоит ли тратить пару дополнительных долларов на дополнительные усилители или мощность. Никто, вероятно, никогда не почувствует разницу между 450 фунтами крутящего момента и 460 фунтами крутящего момента. Главное — взглянуть на все в целом и задать себе несколько простых вопросов:

  • Для чего я буду использовать этот инструмент?
  • Какие опции или функции будут полезны или бесполезны для меня?
  • Сколько мощности мне действительно нужно?

Как только вы ответите на эти вопросы, вы лучше поймете, какой инструмент подходит вам, и сможете сравнивать и делать покупки более разумно.

ампер | WARFRAME Wiki | Фэндом

О способностях Октавии см. Усилитель.

«Тебе здесь не должно быть! Ты испортишь сюрприз! »

Следующий раздел содержит спойлеры.

усилитель

Эйдолон — необычный зверь на Равнинах, и его невозможно уложить с помощью инструментов обычного охотника.Эти «усилители» фокусируют волю пользователя в смертоносный луч, способный в конечном итоге уничтожить одно из этих чудовищ.

—Фрагмент Amps

Усилитель — это продолжение вашей воли. Ни одна из его частей не может быть выбрана легкомысленно.

Усилители — это специальное модульное оружие, используемое операторами Тэнно для повышения их боевых возможностей, которое можно получить у Квиллов и Вокс Солярис. Появляясь как перчатка на правом предплечье, эти Усилители улучшают и изменяют Луч Бездны Оператора, а также дают им свой собственный отдельный индикатор энергии от основного пула Энергии Бездны Оператора, позволяя им стрелять своей энергией Бездны, не снижая эффективности их другие способности.


Ампер состоит из трех компонентов. Эти взаимозаменяемые части можно смешивать и сопоставлять перед созданием, чтобы обеспечить различные характеристики и способности, что позволяет игроку создавать усилитель с желаемыми функциями. После позолоты они также могут назвать усилитель, который они создали, и выбрать собственные цвета для дальнейшего уровня настройки.

При первом запуске The Quills Syndicate в Cetus, игрок немедленно получит свой первый стартовый усилитель, Mote Amp.Оружие можно получить повторно, если необходимо, купив их чертеж за 500‍ 500 и обработав его. Дополнительные усилители можно получить, создав их из компонентов, приобретенных у The Quills и Vox Solaris.

Компоненты [править | править источник]

Усилитель состоит из трех компонентов: Prism , Scaffold и Brace . Призма определяет основной режим стрельбы усилителя, эшафот определяет альтернативный огонь (альтернативный огонь), а скоба изменяет определенные характеристики. Поскольку усилители представляют собой модульное оружие, каждую часть можно смешивать друг с другом по желанию.
Примечание: Хороший способ запомнить, что делает каждая часть: P rism = P rimary, S caffold = S вторичный, B race = B uff / B oost

Призма [править | править источник]

Призмы влияют на основной режим стрельбы Пустотного луча, тем самым изменяя тип выстрела, производимого традиционным прямым потоком энергии.Это компоненты, за которые усилитель получает очки ранга мастерства. Также он определяет, какая картинка будет в арсенале.

Эшафот [править | править источник]

Леса влияют на режим вторичного огня Пустотного луча (по умолчанию Мышь 3).

Brace [править | править источник]

Подтяжки обеспечивают другие различные улучшения как для призмы, так и для каркаса.

Компоненты Призма Строительные леса Скоба
Серия 1
(1 / C1)

Призма Раплака

Строительные леса Pencha

Скоба Clapkra
Полуавтоматический, дальний, точный поиск попаданий. Заряженный луч. Энергетический пул +40 ампер
Серия 2
(2 / C2)

Призма Шваака

Шраксунские леса

Juttni Brace
Полуавтоматический, средней дальности, пробивающий снаряд. Зенитная граната ближнего действия. -1 секунда Задержка перезарядки усилителя
Серия 3
(3 / C3)

Призма Гранму

Леса Клебрика

Лорин Brace
Трехзарядная граната очередью. Луч непрерывного самонаведения. + 12% шанс критического удара / статуса
Серия 4
(4 / C4)

Призма Рана

Строительные леса Phahd

скоба Анспата
Полностью автоматический, дальний выстрел. Мощные выстрелы отражаются между целями. Запас энергии +20 ампер, скорость перезарядки энергии + 15 / с
Серия 5
(5 / F1)

Кантическая призма

Эшафот Exard

Suo Brace
Быстрая и точная очередь из трех выстрелов. Автоматический гранатомет, стреляющий до тех пор, пока не закончатся патроны. Энергетический пул +100 А, задержка перезарядки +2 с
Серия 6
(6 / F2)

Lega Prism

Леса Dissic

Плага Brace
Непрерывная широкораспространенная струя пустотного огня со средней дальностью. Пусковая установка кассетных бомб. Пул энергии -20 ампер, -1. Задержка перезарядки усилителя 5 с
Серия 7
(7 / F3)

Призма Кламора

Строительные леса Propa

Certus Brace
Широкая ближняя балка. Временное взрывчатое вещество. Также взрывается при ударе о предмет + 20% шанс критического удара

Сборка [редактировать | править источник]

Экран Amp Assembly, показывающий пользовательский усилитель.

Прежде чем игроки смогут создать усилитель, они должны сначала приобрести чертежи деталей, которые они хотят, у Квилла Онкко или Маленькой Утки для ряда Стендов, после чего эти детали должны быть построены в Литейной.

После того, как компоненты были созданы, игроки должны вернуться либо к Onkko, либо к Little Duck и выбрать опцию Amp Assembly . Здесь игроки должны выбрать созданные компоненты для создания оружия. После выбора призмы, эшафота и скобы игроку будет показан предварительный просмотр внешнего вида оружия вместе с их характеристиками.Если оружие удовлетворительное, игроки могут перейти к действию Build Amp , которое мгновенно создаст оружие за плату в размере 4 000‍ 4 000 . Игроки также могут использовать экран «Сборка усилителя» для предварительного просмотра сборок компонентов усилителя, которыми они еще не владеют.

В то время как Onkko и Little Duck продают свои собственные уникальные компоненты усилителей, можно создавать усилители, используя компоненты любой из их конструкций, например игрок может построить усилитель, который сочетает в себе призму Раплака и скобу Цертуса.

После сборки усилитель нельзя разобрать, чтобы вернуть его составные части.

Усилители управляются на вкладке Оператора Оборудование на борту Перемещающей комнаты Орбитера, где игроки могут выбрать усилитель, который они хотят оборудовать, из доступного выбора, а также настроить внешний вид своего усилителя и установить Arcanes и Focus Lenses.

Недавно построенный усилитель нельзя переименовать, настроить, оснастить линзой фокусировки или получить опыт ранга мастерства. Чтобы разблокировать эти возможности, усилитель необходимо сначала позолочить.

Позолота [править | править источник]

Только что собранный усилитель (вверху) и тот же усилитель после золочения (внизу).

Позолота — это процесс, при котором раскрывается весь потенциал усилителя. Чтобы получить оружие, игроки могут посетить Onkko или Little Duck и спросить о «других услугах», а затем использовать опцию Gild и, наконец, выбрать желаемый усилитель. Затем игроков попросят дать усилителю индивидуальное имя, после чего можно будет выполнить процесс позолоты для 5,000‍ 5,000 .
Примечание: в зависимости от выбора, где будет позолочен усилитель, положение будет вычтено из соответствующего синдиката. Также возможно позолочить усилитель, который был собран где-то еще.

Игроки должны иметь ранг Приверженец, , чтобы выполнить золочение с помощью Онкко, или Ранг, ранг с Голосом Солярис, чтобы выполнить позолоту с помощью Маленькой Утки, и только усилители 30 ранга могут быть позолочены. Позолота сбрасывает оружие до 0 ранга, но дает улучшенные характеристики, возможность установить фокусирующую линзу и магические улучшения виртуалов, а также возможность перекрашивать усилитель.Вы сможете зарабатывать очки ранга мастерства только после того, как позолите свой усилитель.

Позолоченный усилитель дает + 10% шанс критического удара, + 0.5x множитель критического удара и + 10% шанс статуса. В качестве исключения, Mote Amp получает +10 метровый диапазон в позолоченном состоянии, а не какие-либо другие характеристики.

Визуально позолоченный усилитель будет казаться чище, чем недавно построенный, с более гладкими поверхностями, удаленными ржавчиной и грязью, а некогда желтые детали станут блестящими.

  • Усилители должны быть позолочены, чтобы заработать очки ранга мастерства, причем их прогресс зависит только от призмы оружия.Например, если игрок повысит уровень позолоченного усилителя, созданного с помощью призмы Раплака, до 30, любые будущие усилители, созданные с использованием призмы Раплака, больше не будут обеспечивать мастерство независимо от того, какая комбинация лесов и скоб у них есть.
    • Поскольку в настоящее время доступно семь призм плюс Mote Amp, максимальное количество очков ранга мастерства, которые можно заработать при создании Amp, составляет 24 000 .
  • Установка усилителя изменит как позицию бездействия оператора, так и его позицию стрельбы Пустотным лучом во время миссии.
  • Усилители
  • — это одноручное оружие, то есть операторы могут использовать их при переноске ячеек питания или массивов данных.
  • С каждым компонентом, имеющим 7 частей каждый, в настоящее время существует 343 возможных конфигураций усилителей, которые могут быть созданы.
  • Ранг 30 или Позолоченные усилители можно подарить Онкко в обмен на Стойку с перьями или Маленькую утку на Стойку Вокс Солярис. В качестве исключения нельзя продавать Mote Amp.
  • ампер не могут быть доставлены на тест на повышение уровня мастерства на 24, в котором участвует оператор.
  • Пользовательские имена для усилителей имеют ограничение на 24 символов, включая пробелы, и не принимают специальные символы, такие как запятые (,) или апострофы (‘), хотя дефисы (-), точки (. ) И числа допускаются.
    • Имена не могут содержать ненормативную лексику, например нецензурную лексику.
  • У усилителей
  • есть свои собственные специальные слоты для инвентаря, которые они занимают, когда игрок создает их. По умолчанию игрокам предоставляется 8 слотов, дополнительные слоты можно приобрести по цене фунт стерлингов 12 за два слота.
  • Несмотря на то, что усилитель обеспечивает свой собственный источник энергии лучу пустоты, удаление усилителя (выбор «Нет» в меню выбора усилителя) не возвращает пул энергии обратно в его универсальное состояние.

Урон против щитов Эйдолона [править | править источник]

Щиты

Эйдолонов уязвимы только для урона Бездны, поэтому усилители являются основным способом нанесения им любого урона. Несмотря на то, что щиты обычно не снижают урон, щиты Эйдолона уменьшают урон до 1/25 от первоначального урона усилителя.После того, как это снижение урона применяется, к верху добавляется фиксированный бонус к урону, при этом этот бонус масштабируется на обратно на скорострельности усилителя. На этот фиксированный бонус к урону не влияют какие-либо баффы урона, включая Void Strike, Unairu Wisp и урон от критического удара. На данный момент урон, наносимый усилителями, рассчитывается следующим образом:

Урон усилителя против эйдолонов = (теоретический урон x 0,04) + (108 / скорострельность)
Критический урон усилителя против эйдолонов = (теоретический урон x 2 x множитель крита x 0.04) + (108 / Скорострельность)

Где Теоретический урон — это указанный урон усилителя, умноженный на любые баффы урона, такие как Void Strike и Unairu Wisp.

  • Как показано в уравнении, эффективный критический множитель усилителя против эйдолонов вдвое превышает значение, отображаемое в арсенале, что делает усилители с критической фокусировкой очень подходящими для создания усилителя с высоким DPS.
  • Важно отметить, что урон, наносимый за выстрел, обратно пропорционален скорости стрельбы усилителя, что объясняет, почему Virtuos Tempo (+ 60% скорости стрельбы при убийстве) приводит к тому, что урон усилителя за выстрел уменьшается на на , пока он активен. Однако увеличение скорости стрельбы более чем компенсирует урон, потерянный за выстрел, что дает чистое увеличение DPS.
  • Некоторые типы усилителей, кажется, применяют фиксированный бонус к урону (часть, на которую влияет скорострельность) способом, несовместимым с приведенными выше формулами. В настоящее время известно, что такое несоответствие характерно для усилителей: призмы Гранму и Кантик, а также леса Exard.
    • Granmu и Exard дают правильные значения урона, когда их скорострельность установлена ​​на 1 в приведенных выше уравнениях, вместо использования их перечисленных скоростей стрельбы.Cantic использует скорострельность примерно 2,65.
  • Вот несколько примеров расчетов для определения урона усилителя против Эйдолонов с использованием призмы Раплака, которая имеет базовый урон 3000, скорострельность 2 и множитель крита 2,6:
    • Стрельба по Эйдолону без активных баффов даст: (3000 x 0,04) + (108/2) = 174 урона при обычном попадании.
    • Критическое попадание даст: (3000 x 2 x 2,6 x 0,04) + (108/2) = 678 урона.
    • Критическое попадание с множителем урона Void Strike равным 5 и активным Virtuos Strike (+ 60% критического урона) даст: (3000 x 5 x 2 x 2.6 x 1,6 x 0,04) + (108/2) = 5046 урона.
  • Призма для усилителя будет выглядеть сложенной под рукой, пока не будет использована в миссии, после чего призма складывается и появляется перед рукой.
    • Призма втянется, если игрок использует сканер кодекса, продолжая использовать своего Оператора.
  • Технология усилителей
  • основана на Разумных, в частности на Эйдолоне, фрагменты которого можно найти и собрать на Равнинах Эйдолона.Это несколько иронично, поскольку усилители используются для направления энергии Бездны, которая по сути является ядом для разумных.
  • Несмотря на то, что усилители отмечены как имеющие «тревожный» уровень шума, оружие фактически бесшумно.
  • Хотя усилители можно использовать для улавливания облаков Кувы, усилитель очень редко вместо этого уничтожает облако (с точки зрения программирования само облако представляет собой эффект частицы, который следует за невидимой маской Corrupted). В этом случае облако задержится на месте на несколько мгновений, прежде чем взорвется, а на его место появится другое.

Обновление 29.5

  • Уменьшена дальность самораскачивания лесов Шраксуна, призм Гранму, лесов Эксарда, лесов Диссик и лесов Пропа.
  • Снаряд
  • Phahd теперь взрывается при каждом отскоке.
  • Урон от взрыва Phahd уменьшен с 3100 до 1100.
  • Исправлено несколько экземпляров отдельной призмы, появляющейся в вашем профиле.

Исправление 25.7.3

  • Исправлены некоторые усилители, которые больше не наносили множественный урон Эйдолонам.Это привело к тому, что Призме Шваака не хватало пробивной способности, хотя на самом деле это был Эйдолон, который не регистрировал попадания.

Исправление 25.5.1

  • Дополнительные исправления относительно поворота призмы Кламоры в диораме здания Operator Amp.
  • Исправлены детали Fortuna Brace, которые выглядели повернутыми на 180 градусов.

Исправление 25.4.1

  • Исправлена ​​возможность пропустить перезарядку стрельбы Operator Amp с Vazarin Guardian Shell.

Обновление 24.6

POE / CETUS ECONOMY REMASTER LITE

С выпуском Fortuna мы применили некоторые общие изменения в экономике, основанные на выводах от Cetus. Теперь, когда мы вернулись на Цетус и Равнины Эйдолона с ремастером, мы применяем некоторые изменения «Экономического ремастера», чтобы они соответствовали изменениям, чтобы применить наши непрерывные знания. Изменения — это название игры — спасибо за все отзывы о нашей экономике и за вашу готовность к изменениям!

  • Нормализованная стоимость части рыбы в чертежах частей усилителя — у некоторых было 5 редких частей, у некоторых — 2, теперь для всех требуется 3.
  • : Убраны огоньки Кита из чертежа призмы усилителя и заменены на части рыбы или самоцветы эйдолона.
Изменения
  • Убийство врагов с помощью способностей Оператора (Void Blast, Void Dash) теперь по возможности дает сродство убийства к усиленному усилителю.

Hotfix 23.8.2

  • Исправлена ​​ошибка, из-за которой ссылки чата для усилителей потенциально не работали, если включен фильтр ненормативной лексики.

Обновление 23.5

  • Исправлены отсутствующие «индикаторы попадания» для операторских усилителей.

Обновление 23.0

  • Фиксированная кнопка для отправки слотов усилителей в качестве подарка, а не отправки подарка при использовании контроллера.
  • Исправлена ​​невозможность покупки слотов усилителей на экране инвентаря на вкладке усилителя.

Исправление 22.20.8

  • Исправлена ​​невозможность присвоить усилителю статус «111» из-за фильтра ненормативной лексики.

Исправление 22.18.1

  • Удалены непредусмотренные детали усилителя оператора из предложений Quills.

Исправление 22.16.4

  • Усилители с исправленным мерцанием при выборе усилителя во время настройки оператора.

Исправление 22.16.1

  • Исправлены некоторые операционные усилители, некорректно разрушающие облака Кувы.

Обновление 22.16

  • Уменьшены некоторые визуальные шумы / блики от линз при взрывах Operator Amp / взрывах ближнего боя.
  • Удалена возможность установки фокусирующей линзы на позолоченный усилитель, поскольку для этого действия требуется усилитель 30 ранга.
  • Усилители оператора
  • теперь будут отображать свои модульные части на экране настройки оператора.

Обновление 22.14

  • Не позолоченные усилители удалены из статистики профиля, так как только позолоченные усилители учитываются в качестве мастерства.
  • Исправлено обрезание текста на экране статистики усилителя оператора.

Исправление 22.13.3

  • Фиксированные усилители не отслеживаются должным образом в вашем профиле из-за того, что требуется позолота, прежде чем он будет считаться «мастером».
  • Исправлен эффект статуса аттрактора пули, когда урон от пустоты (операторы и усилители) становился визуально твердым при замораживании / окаменении.

Исправление 22.12.3

  • Снижены эффекты взрыва и дыма при стрельбе из Operator Amp.

Обновление 22.12

  • Операторские усилители теперь имеют статистику в вашем профиле.

Обновление 22.11

  • Теперь вы можете предварительно просмотреть кастомные усилители Onkko с деталями, которых у вас еще нет. Это должно помочь вам понять, какие детали вы хотите приобрести самостоятельно. (Предмет не будет предварительно просмотрен, пока не будут выбраны все 3 части)

Исправление 22.8,3

  • Исправлено мерцание усилителя оператора в сложенном положении при предварительном просмотре / выборе новых цветов для усилителя на экране настройки оператора.
  • Исправлены клиенты, не получающие бонусы Amp Brace.

Обновление 22. 6

  • Добавлены усилители на вкладку «Оборудование» в профилях игроков. Теперь также отслеживается усиление мастерства усиления.

Исправление 22.3.5

  • Исправлено пропадание предварительного просмотра крафта усилителя при выборе скобки.

Исправление 22.2.5

  • Исправлена ​​ошибка, из-за которой все привязки к усилителю оператора, заработанные в качестве клиента, исчезали при миграции узла.
  • Исправлена ​​ошибка, при которой скорость регенерации энергии усилителя оператора была намного выше для клиентов при использовании усилителя с каркасом Клебрика.
  • Исправлена ​​потеря вашего Operator Amp, если вы умерли на заключительном этапе квеста The Chains of Harrow с оператором с усилителем.
  • Исправлена ​​ошибка, из-за которой усилитель оператора не отображался на экране выполнения задания и наград.
  • Исправлен переименованный операторский усилитель, отображаемый для клиентов как «усилитель».

Обновление 22.1

  • Исправлены проблемы с нечеткими сообщениями об ошибках, когда усилители Gilding были без рейтинга.
  • Исправлены проблемы с настройками Operator Amp, которые не применялись в миссиях.
  • Исправлена ​​ошибка, из-за которой скоба Лорина не применяла улучшения к усилителям.
  • Исправлены улучшения характеристик от позолоты усилителя, которые не применялись.

Исправление 22.0.9

  • Увеличен урон всех призм усилителя и каркасов.
  • Уменьшены все случаи самоуничтожения усилителя.
  • Фиксированные усилители, построенные с использованием призмы Шваак и лесов Шраксун, не проходящие через электрический щит Вольта.
  • Стационарные усилители, не требующие позолоты.

Исправление 22.0.8

  • Исправлен эксплойт для быстрого набора сродства к усилителям.
  • Исправлено усиление сродства усилителя, которое не отображалось должным образом на экране прогресса миссии или экране результатов миссии Liset.
  • Исправлена ​​мягкая блокировка, вызванная использованием Virtuos Arcane на усилителе.
  • Исправлены зависания при оснащении усилителем.

Исправление 22.0.6

  • Компоненты усилителя для обучения ремесленников теперь дают Стенду перьями.

Исправление 22.0.3

  • Изменена анимация руки оператора при стрельбе из усилителя, чтобы она не сильно отличалась от других направлений прицеливания.
  • Изменена громкость Operator Amps и добавлены звуковые эффекты к зарядке.

Исправление 22.0.2

  • Первый усилитель оператора теперь корректно снимает сопротивление.

Исправление 22.0.1

  • Исправлены длинные числовые значения при создании усилителей в Cetus.
  • Исправлена ​​некорректная статистика усилителя при просмотре на экране настройки оператора.

Обновление 22.0

Последнее обновление: исправление 25.5.1

AMP-X300 [Crestron Electronics, Inc.

]

Crestron® AMP-X300 — это высокопроизводительный, компактный, энергоэффективный усилитель профессионального уровня, полностью настраиваемый, но простой в использовании.Если вам нужен стереоусилитель, который устанавливается на стене или под столом, или многоканальный усилитель для монтажа в стойку с несколькими типами выходов и уровнями мощности, AMP-X300 легко настроить и установить в любой конфигурации.

Выход LoZ (4/8 Ом) и Hi-Z (70 В или 100 В)
AMP-X300 представляет собой 4-канальный усилитель (до 75 Вт на канал), который также можно настроить для работы в мостовом режиме с 3 каналами (до 75 Вт на несимметричный канал и до 150 Вт для мостового канала) или 2-канальный мостовой режим (до 150 Вт на канал) или 1-канальный мостовой режим (до 300 Вт), с выбором выходов «LoZ» для управления 4- или 8-омными динамиками или «Hi-Z» выходы для управления распределенной акустической системой (70 В или 100 В).Симметричные и несимметричные входы предназначены для подключения к двум стерео или четырем моно источникам через съемные клеммные колодки или разъемы RCA.

ПРИМЕЧАНИЕ. Каждая конфигурация может обеспечивать выходную мощность до соответствующей номинальной мощности.

Надежная и эффективная работа
AMP-X300 разработан для обеспечения исключительной производительности и надежности с низким уровнем искажений, низким уровнем шума и высоким запасом мощности. Усовершенствованная технология класса D обеспечивает максимальную эффективность для снижения энергопотребления и рассеивания тепла.Внутренний универсальный источник питания обеспечивает стабильную работу при различных сетевых напряжениях.

Конвекционное охлаждение
Эффективная конструкция обеспечивает холодную работу и долгосрочную надежность. AMP-X300 можно штабелировать с высокой плотностью размещения с другими модульными усилителями Crestron, что позволяет устанавливать несколько устройств вертикально в стойку для оборудования без необходимости в дополнительном пространстве для вентиляции.

Модульная конструкция
AMP-X300 имеет форм-фактор половинной ширины, монтируемый в стойку, который может быть установлен по отдельности или вместе в едином пространстве стойки. Усилитель поставляется в комплекте со всем оборудованием, необходимым для установки. Детали для монтажа в стойку и на поверхность входят в комплект, поэтому других монтажных принадлежностей или полок для стойки не нужно покупать.

При установке в стойку, на плоской поверхности или на полке два усилителя легко объединить в один узел.

Полная защита
AMP-X300 имеет защиту от перегрева, короткого замыкания или перегрузки линий громкоговорителей, чрезмерного входного сигнала и других неисправностей.В случае короткого замыкания линии громкоговорителя или перегрева оба выхода автоматически отключаются до устранения неисправности. В случае длительной неисправности, такой как отказ внутреннего компонента, выходы немедленно отключаются, и усилитель отключается.

Сертификат ENERGY STAR®
Энергоэффективный дизайн позволяет AMP-X300 удовлетворять строгим требованиям стандарта ENERGY STAR. Помимо высокой эффективности во время работы, AMP-X300 не потребляет дополнительный пусковой ток во время включения, тем самым снижая требования к цепи переменного тока и позволяя подключать несколько устройств к одной коммутируемой цепи. Для дальнейшего снижения энергопотребления AMP-X300 можно настроить для перехода в режим ожидания с низким энергопотреблением, если в течение 25 минут ни на одном из каналов не обнаруживается входной сигнал. Обнаружение сигнала было оптимизировано по чувствительности, чтобы улучшить время отклика при переключении усилителя в состояние «включено», что позволяет ему вернуться к полной работе в течение полсекунды после обнаружения входного сигнала.

Напряжение

в ампер-часах: какая связь?

Может быть, вы просто хотите узнать больше или посмотреть, насколько ваши представления о напряжении vs.ампер-часы правильные. Может быть, вы новичок в беспроводных инструментах и ​​не знаете, с чего начать. Рад, что ты смог попасть на вечеринку!

Зависимость напряжения от ампер-часов — один из основных вопросов, которые задают аккумуляторным инструментам. Это может сбивать с толку. С помощью проводных инструментов мы часто описываем количество энергии в зависимости от количества потребляемых усилителей. Это замечательно, когда есть практически бесконечный источник питания. Большинство людей сводят номера аккумуляторных инструментов к идее, что напряжение эквивалентно мощности, а количество ампер-часов эквивалентно времени работы.Да… ну, вроде… может быть. Эти два измерения основаны на фактической емкости батареи — термине, известном как ватт-часы. Вот уравнение:

ампер-часов x номинальное напряжение = ватт-часы

Если вы посмотрите на этикетку большинства аккумуляторов, вы увидите общую их емкость в ватт-часах. По сути, чем больше топливный бак (ватт-часов), тем выше ваш энергетический потенциал — все зависит от того, как вы его используете.

Напряжение Vs. Ампер-часы: проводка для увеличения напряжения

Если бы вы разобрали аккумулятор (пожалуйста, не делайте этого!), Вы бы обнаружили отдельные аккумуляторные элементы, которые накапливают и передают электроэнергию инструменту.Каждая батарея способна выдавать определенное количество напряжения, обычно 3,6 вольта в используемых литий-ионных элементах 18650. Нужен аккумулятор на 12 В? Нанижите 3 штуки в ряд. Нужна батарея на 18 В? Используйте 5.

Если вы вместе со мной делаете математические вычисления, вы уже знаете, что есть проблема. Напряжение внутри ячеек немного меняется в зависимости от количества заряда, который они удерживают. Они могут создавать более высокое напряжение при полном заряде, чем при низком. Эта ячейка 3,6 В на самом деле выдает чуть больше 4 В при полном заряде.Даже с этим математика не работает идеально. Но пока не теряйте веры в меня. Я объясню эти аномалии в одной из следующих статей. А пока давайте сосредоточимся на напряжении как на мощности.

Если вам нужно больше мощности, просто добавьте к батарее еще одну ячейку. Вы увеличиваете примерно на 4 В для каждого нового, которое вы добавляете. Теоретически вы можете сделать 12В, 16В, 20В, 24В и так далее. К счастью, инструментальная промышленность использует платформы на 12 В, 18 В / 20 В и 36 В для инструментов, в то время как для наружного силового оборудования существуют другие комбинации.

Напряжение Vs. Ампер-часы: проводка для увеличения ампер-часов

Простым определением ампер-часов будет величина силы тока, которую аккумуляторная батарея может обеспечить в течение одного часа. Если не учитывать все остальные факторы (например, температуру и вибрацию), батарея на 3,0 А в час даст вам 3 А тока в течение часа. Батарея на 5,0 ампер-час даст вам 5 ампер в час. В отличие от напряжения, это не фиксированная цифра. Вы можете потреблять более высокую силу тока от батареи и сократить время работы.Джон Баклью блестяще продемонстрировал это с помощью бесщеточной угловой шлифовальной машины Makita 18V LXT. Вы также можете потреблять меньше ампер и дольше работать.

Все линейно. Работайте 2,5 ампера от батареи на 5,0 ампер-час — вы получаете 2 часа работы. Потребляйте 6 ампер от батареи на 3 ампер-часа — теперь у вас всего 30 минут. Вот диаграмма, которая показывает, как текущий розыгрыш влияет на время выполнения.

Итак, как нам получить эти числа? Большинство литий-ионных аккумуляторных элементов работают где-то около 2000 миллиампер-часов, или 2. 0 ампер часов. Когда вы соединяете эти ячейки последовательно, они по-прежнему производят всего 2,0 ампер-часа. В серии складывается напряжение, а не ампер-часы.

Когда пришло время увеличить ампер-часы, вы соединяете ячейки параллельно. Вот пример типичного аккумулятора 12 В.

Три литий-ионных аккумулятора 18650 подключены последовательно.

На каждую ячейку подается напряжение 3,6 В и 2,0 ампер-часов. Поскольку они соединены последовательно, мы получаем 10,8 В (или 12 В при полной зарядке), но все равно только 2.0 ампер часов.

Другое электронное устройство использует те же три ячейки, но соединяет их параллельно. Теперь они выдают всего 3,6 вольт, но 6,0 ампер-часов.

Напряжение и ампер-часы: совместная работа

В аккумуляторах большой емкости происходит комбинация последовательного и параллельного подключения. Во-первых, вы берете 5 ячеек, соединенных последовательно, чтобы получить необходимое вам 18 В. Затем подключите параллельно другой комплект, подключенный к нему таким же образом. Мы сохранили напряжение на уровне 18, но удвоили ампер-час до 4.0. Теоретически мы могли бы добавить еще один комплект, чтобы получить 6,0 ампер-часов при 18 В.

В обзоре литиево-ионных газонокосилок мы отметили, что похоже, что Black & Decker и Craftsman в основном использовали перепрофилированные батареи с максимальным напряжением 20 В. Наверное, были. Возьмите эту батарею на 20 В, 5,0 ампер-час в конфигурации 5S2P (5 последовательных, 2 параллельных — всего 10 ячеек, расположенных как 2 набора по 5) и соедините их все последовательно. Теперь у вас есть батарея с максимальным напряжением 40 В и 2,5 ампер-часа, если изменить конфигурацию только на 10S (серия 10).

Теперь вернемся к идее общего количества ватт-часов… независимо от того, как вы соединяете элементы батареи, каждый из них увеличивает ватт-часы. И батарея Black & Decker на 40 В (номинал 36 В), 2,5 ампер-час, так и ее родственник на 20 В (номинал 18 В), 5,0 ампер-час имеют в общей сложности 90 ватт-часов.

В реальном мире все начинает сходить с ума. Когда вы говорите о температуре (как слишком высокой, так и слишком низкой), вибрации и других условиях окружающей среды, напряжение и количество ампер-часов начинают уходить от идеального.Однако эти условия являются частью жизни на рабочем месте. В некотором смысле производители устанавливают лучшие ожидания, просто перечисляя более низкий рейтинг, который более соответствует реальному опыту работы (номинальное 18 В вместо 20 В макс.).

Есть способы сделать батареи лучше. Когда вы начинаете играть с химией внутри батареи (аноды, катоды и электролиты среди других компонентов), вы начинаете видеть различия в сопротивлении, импедансе и других забавных словах, которые большинство нормальных людей не могут определить, какие результаты лучше (или иногда хуже) производительность.Внезапно такое же количество ячеек, которые вырабатывали 18 вольт и три ампер-часа, выдают такое же напряжение, но с 4 ампер-часами, а теперь уже 5!

Выводы

Различия в производительности от одной компании к другой во многом связаны с батареями, которые они используют.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *