Литиевые аккумуляторы промышленные – , , , smart grid —

Производство литий-ионных аккумуляторов — технология и сложности

Любой прибор для превращения химической энергии в электрическую должен иметь активный металл с большим отрицательным потенциалом. То есть разность потенциалов на катоде и аноде должна быть максимальной. Оптимальными свойствами обладает литий.

Литий ионный аккумулятор

Устройство аккумуляторов

Легкий металл используется в виде химических соединений графита и литий-кобальт-оксида (LiCoO2), нанесенных в виде обмазки на медную и алюминиевую фольгу. Могут использоваться другие соли на основе лития. Весь процесс производства li-ion аккумуляторов состоит из этапов:

  • изготовление электродов;
  • сборка активной части и создание защиты;
  • упаковка, внесение электролита;
  • проверка работоспособности.

Две ленты сматываются в рулон или собираются из листов в корпус. Свободное пространство заливается электролитом, выполняются клеммные выводы в герметичном контуре. Литий-ионные аккумуляторы залиты жидким электролитом, литий-полимерные – гелевым.

В результате получаются приборы разных форм и габаритов. В пересчете на объем активной массы, характеристики:

  • плотность 150-200 Вт-ч/кг или 350-450 Вт-ч/л;
  • напряжение 3,6-3,7 В;
  • потеря 20 % емкости после 500-1000 циклов зарядки;
  • рабочие температуры -20 ~ +50 0.

Литий-ионные, литий-полимерные элементы

Применение компактные батарейки получили в ноутбуках, сотовых телефонах, фотоаппаратах. Ими оснащают электромобили. Производство литиевых аккумуляторов несложное, не требует больших площадей. Основные производственные площадки расположены в Азии, развивается производство литиевых аккумуляторов в РФ. Здесь построен самый большой «Ли-ион» завод в мире, в пригороде Новосибирска – Толмачево.

Технология производства литий-ионных аккумуляторов

Аноды и катоды в элементах сходны по форме, но имеют разное содержание. Смешение мелких компонентов до нанесения на анод или катод недопустимо. Поэтому, в производстве разнозаряженных полос для литиевых батарей, оборудование используется одно, а производственные площадки разные.

Этап 1.

Подготовка активного слоя для нанесения на фольгированную основу. В трубчатой печи состав спекается в однородную массу при температуре 1200

0 С. Полученное сырье размалывается на мельницах до мелкодисперсного состояния и тщательно перемешивается для полной однородности. Состав наносят на проводящую ленту, закрепляют в термопечи. Прецизионным прессом прокатывают заготовку и направляют с цех сборки.

Этап 2.

На высокоточном оборудовании нарезают материал на ленты или листы, снова сушат при 250 0, собирают в последовательности катод, анод в многослойную конструкцию определенной формы. Соединяют ультразвуковой сваркой отдельно катодные и анодные лепестки, выводят контакт на токосъемник. Происходит придание нужной формы и проверка элемента на КЗ.

Этап 3.

Приваривается отрицательная клемма и создается углубленный контур для последующей впайки крышки. В атмосфере инертного газа в корпус закачивается порция электролита, крышка устанавливается, центруется и сваривается, проверяется герметичность корпуса. Готовый элемент обертывается термоусадочной пленкой. На поверхности остаются только выводы полюсов. Здесь же проводится первичная зарядка батареи.

Этап 4.

На заключительном этапе производства литий-ионных батарей выполняют контроль качества, проверку емкости и замеры сопротивления. Сохранность батарей обеспечивается при температуре 0-10 градусов. За 2 года батарея без употребления может потерять 20 % от первоначальной емкости. При периодической разрядке – зарядке батарея выдерживает до 1000 циклов.

Производство литий-ионных аккумуляторов в России

Завод Лиотех

Производством, разработкой и исследованием литиевых аккумуляторов в России занимаются международные корпорации. Одна из них «НПО ССК (SSK group) создана на предприятиях «Радуга», расположенным в г, Сасово Рязанской области, на Украине и в Индии. Здесь освоена технология изготовления батарей емкостью до 1000 А-ч и напряжением до 300 В. Они могут работать в диапазоне температур -40 +90 , выдерживать до 3000 циклов разряда.

Есть Научный центр «Автономные источники тока». Располагается он в Сколково. Продукция рассчитана для систем накопления большой мощности (СНЭ), выпускается на крупногабаритный транспорт.

Крупнейшее в мире производство li-ion аккумуляторов в России построено в Новосибирске, как российско-китайское производство. Завод «Лиотех» производит изделия емкостью 200-700 А-ч, работающие при температурах от -45 до +65 градусов. Промышленное производство в 1 млн. штук в год призвано обеспечить 5 000 автобусов.

Характеристики продукции «Лиотех»

Продукция завода Лиотех

Развиваются производства, по ассортименту и количеству продукции уступающие зарубежным компаниям:

  • АК «Ригель»;
  • ОАО»Энергия»;
  • НИИХИТ-2.

Россия может производить литиевые батареи с довольно низкой себестоимостью – металл получают в Новосибирске, остальные компоненты также отечественные.

Видео

Предлагаем познакомиться с производством литиевых аккумуляторов в России на крупнейшем предприятии «Лиотех»

batts.pro

ИБП на технологии Li-Ion / Bigd.host corporate blog / Habr

Аккумуляторные батареи (АКБ) — уязвимое звено многих систем бесперебойного питания ЦОД. Проблемы — большой вес, требующий усиления несущих конструкций помещений, где размещаются такие батареи, сильная зависимость их характеристик от температуры, что вынуждает использовать средства кондиционирования, недолговечность — быстрый выход из строя ведет к частой замене с соответствующими затратами. Все это относится к традиционным, свинцово-кислотным аккумуляторам, которые на данный момент доминируют в проектах.

Специалисты возлагают надежды на новое поколение аккумуляторов, прежде всего на литий-ионные, которые лишены многих недостатков свинцово-кислотных АКБ и имеют отличные перспективы использования в самых разных областях, включая промышленность, системы связи, центры обработки данных и пр.


За последние несколько лет цены на литий-ионные аккумуляторы значительно снизились, благодаря чему они постепенно становятся целесообразным выбором для использования в качестве ИБП для ЦОД. Анализ совокупной стоимости владения за 10 лет показывает, что литий-ионные аккумуляторы имеют на 39% меньшую TCO, чем традиционные свинцово-кислотные аккумуляторы с регулирующим клапаном (VRLA), несмотря на первоначальную разницу в цене.

Li-Ion в ИБП


Литий-ионные аккумуляторы (Li-Ion) используются в различных устройствах уже более двух десятков лет, однако в качестве аккумуляторов ИБП для ЦОД их стали применять относительно недавно, когда удалось добиться сбалансированных показателей цены, удельной энергии, мощности, безопасности и надежности. Развитие литий-ионной технологии в значительной степени стимулировалось потребностями электромобилестроения.

Промышленные литий-ионные аккумуляторы отличаются от тех, что применяются в потребительских устройствах, где чаще всего используют батареи LCO (литиево-кобальтовые) c емкостью несколько ампер-часов в корпусе из фольги. В ИБП устанавливают батареи с внутренней структурой LMO (литиево-марганцевые) с емкостью одной батареи более 60 А×ч в прочном алюминиевом корпусе. Батареи именно этого типа давно и успешно используются в электромобилях.

В такой батарее предусмотрено несколько ступеней защиты от неблагоприятных ситуаций. На разработку и обкатку подобных технологий уходит несколько лет, тогда как аккумуляторы для потребительских устройств выводятся на рынок за несколько месяцев.

Для устройств ИБП необходимы аккумуляторы, способные обеспечить большую мощность в течение 5-10 минут, то есть подачу большого тока в течение короткого промежутка времени, поддерживая при этом безопасную температуру каждого элемента. Литий-ионные аккумуляторы характеризует большая мощность на единицу веса — удельная энергия (Вт-ч/кг) и удельная мощность (Вт/кг).


Рост спроса на центральное резервирование электропитания ЦОД в Северной Америке и Европе в 2016-2025 гг., по данным отчета Bloomberg New Energy Financе. Ожидается, что к 2025 году в крупнейших центрах обработки данных (hyperscale) будет сосредоточено около 55% резервируемых мощностей.

В настоящее время литий-ионные аккумуляторы имеют, пожалуй, лишь один серьезный недостаток по сравнению со свинцово-кислотными аккумуляторами с регулирующим клапаном: капитальные затраты на одинаковое количество энергии в два-три раза больше из-за более высокой стоимости изготовления и стоимости системы управления аккумулятором. Зато достоинств у них немало.

Преимущества литий-ионных батарей


Перечислим преимущества литий-ионных батарей перед традиционными свинцово-кислотными батареями с регулируемым клапаном (Valve-Regulated Lead-Acid, VRLA) с точки зрения применения в ИБП:
  • В три раза меньший вес при аналогичной запасаемой энергии. Система литий-ионных аккумуляторов для ИБП весит на 60–80% меньше сопоставимой свинцово-кислотной системы.
  • Компактность, свойственная литий-ионным аккумуляторам. Они занимают до 50-80% меньше площади.
  • Высокая удельная энергия. Конкретные энергетические показатели для литиевых аккумуляторов, доступных на сегодняшний день, — от 70 кВт*ч/кг до 260 кВт*ч/кг. Типовые показатели свинцово-кислотных аккумуляторов находятся в диапазоне 30-50 кВт*ч/кг.
  • Приблизительно в четыре раза меньший саморазряд (т. е. медленный разряд аккумулятора, когда он не используется) — 1-2% в месяц.
  • Значительно более быстрый заряд — в четыре и более раз, а это ключевое преимущество в случае многочисленных перебоев подачи энергии (от 30 минут до одного часа).
  • Продолжительный срок службы. До десяти раз больше циклов заряда-разряда, в зависимости от химии, технологии, температуры и глубины разряда. Некоторые современные литий-ионные аккумуляторы способны выдержать до 5000 циклов.
  • Меньшее число (или полное отсутствие) замен аккумулятора, необходимое в течение срока службы ИБП, что устраняет риск простоя из-за замены аккумулятора.
  • Литий-ионные аккумуляторы не требуют технического обслуживания.
  • Экономия на TCO за 10 лет составляет 10-40%.

Однако говорить о переходе с традиционных свинцово-кислотных батарей на литий-ионные как о тенденции в области систем бесперебойного электропитания пока что, пожалуй, рано. Это лишь одна из альтернатив, но она быстро набирает популярность.

По данным IMS Research, уже в 2016 году на долю систем, использующих литий-ионные элементы питания, пришлось чуть менее 10% продаж. По оценке экспертов, в ближайшие несколько лет уже порядка 30% всех ИБП будут комплектоваться литий-ионными батареями.


По данным отчета Bloomberg New Energy Finance, в 2025 году на литий-ионные аккумуляторы будет приходиться 5,6 ГВт*ч резервируемых мощностей центров обработки данных по сравнению с 8,3 ГВт*ч у традиционной технологии VRLA. Это означает, что литий-ионная технология завоюет 40% рынка всего за 8 лет.

В числе первых такие решения для своих ИБП предложила компания Schneider Electric, сотрудничающая с Samsung. Литий-ионные батареи применяются в ее ИБП Galaxy 7000, VM, VX и Symmetra MW. С 2016 года она запустила такие решения в серию.


Литий-ионные аккумуляторы Samsung. Компания Samsung SDI, лидирующая на мировом рынке аккумуляторных батарей, используемых в источниках бесперебойного питания, (ИБП) сделала ставку именно на литий-ионные решения.

Системы Schneider Electric уже установлены на более чем 20 объектах общей мощностью свыше 10 МВт*ч. Интересно, что литий-ионные ИБП применяются в проектах разного масштаба — от крупных компаний, в том числе провайдеров услуг колокации/хостинга и компаний из сегмента финансовых услуг с дата-центрами корпоративного уровня, до промышленных приложений и серверных помещений. Очевидно, что технология применима к широкому спектру сценариев.


Сравнение ИБП Galaxy 7000 с аккумуляторами Li-Ion и VRLA (данные Schneider Electric).

Новое решение Schneider Electric отвечает таким требованиям к батареям для ИБП как безопасность (полный мониторинг), высокая плотность мощности (до 35 кВтч*ч и до 230 кВТ на стойку), длительная автономная работа (в течение 5-30 минут) и большой срок службы (15 лет). В ИБП Schneider Electric используется трехуровневая система мониторинга: на уровне отдельного модуля, шкафа и системы.


Li-ion батареи в модульном решении от Schneider Electric.

В настоящее время 30% поставок аккумуляторов для ИБП обеспечивает Samsung. Литий-ионные батареи она поставляет трем крупнейшим производителям ИБП: Schneider Electric, Vertiv и Eaton, которые контролируют больше половины мирового рынка ИБП.


Новый ИБП Eaton 1500VA удваивает время автономной работы по сравнению с обычным ИБП. Благодаря новой технологии Li-Ion клиенты могут ожидать значительного снижения общей стоимости владения энергетической инфраструктурой, считают разработчики.

Свинцово-кислотные аккумуляторы против литий-ионных


Итак, благодаря более высокой энергоемкости, литий-ионные аккумуляторы не только занимают меньше площади, но и имеют более низкую массу по сравнению со свинцово-кислотным — снижается стоимость транспортировки. Однако регламентные требования транспортировки литий-ионных аккумуляторов более жесткие из-за высокой энергоемкости и активности некоторых химических составляющих.

Ресурс свинцово-кислотных аккумуляторов с регулирующим клапаном — 3–6 лет, в то время как ресурс литий-ионных может составлять более 10 лет. Замена батарей — серьезные дополнительные расходы и даже остановка дата-центра, если в его схеме энергоснабжения не предусмотрено резервирование, либо дополнительные работы, во время которых надежность питания дата-центра снижается. Устаревшие батареи необходимо вывозить и утилизировать, а на смену им устанавливать новые. Все это требует времени и средств. Использование литий-ионных батарей избавляет подобных проблем и затрат.

Быстрая скорость перезарядки и больший срок службы литий-ионного аккумулятора обусловлены как его технологией, так и наличием в его составе обязательной системы мониторинга. Она следит за состоянием каждой аккумуляторной ячейки (температура, напряжение, ток) и всего шкафа. Системой контроля литий-ионные аккумуляторы оснащены по умолчанию, так как для них необходим полный контроль зарядки и разрядки, предотвращающий превышение температуры в литий-ионных элементах.


Литий-ионные аккумуляторы и свинцово-кислотные аккумуляторы: некоторые ключевые отличия.

Поскольку литий-ионные аккумуляторы предлагают улучшенные возможности управления, включая встроенное управление на уровне ячеек, модулей и шкафов, это приводит к предсказуемой, стабильной производительности и безопасности батарей. Снижаются требования к охлаждению в центре обработки данных: литий-ионные батареи занимают меньше места и, в отличие от традиционных батарей VLRA, могут работать при более высоких температурах, не жертвуя временем автономной работы.

Все эти преимущества помогают сократить затраты, что приводит к снижению общей стоимости владения литиево-ионными ИБП с течением времени по сравнению с VLRA. Именно поэтому владельцы центров обработки данных обращают внимание на литий-ионную технологию.

Для литий-ионных аккумуляторов определенные химические решения и технологии силовых элементов обеспечивают привлекательную совокупную стоимость владения на период более 10-15 лет — типового срока службы ИБП. По данным Schneider Electric, совокупная стоимость владения за 10 лет для решения с литий-ионным аккумулятором почти на 40% ниже, чем для решения со свинцово-кислотным аккумулятором с регулирующим клапаном. Его окупаемость составляет 3,4 года, несмотря на более высокие капитальные затраты на литий-ионные аккумуляторы.

TradeOff Tool, калькулятор для сравнения литий-ионных аккумуляторов со свинцово-кислотными, позволяет изменять различные исходные данные и смотреть, какой эффект они оказывают на совокупную стоимость владения двух типов аккумуляторов.

Менять или нет?


При выборе литий-ионных аккумуляторов для устройства ИБП важно учесть несколько факторов в зависимости от того, переоснащаете вы имеющийся ИБП или покупаете новый. Предполагается, что ожидаемый срок службы ИБП составляет около 10–15 лет, ресурс свинцово-кислотного аккумулятора с регулирующим клапаном — около 3–6 лет, а ресурс литий-ионного аккумулятора — 10 лет и более. Есть три возможных сценария переоснащения свинцово-кислотных аккумуляторов ИБП: начало, середина или конец срока эксплуатации ИБП. Вот какие рекомендации дает Schneider Electric.

В начале срока эксплуатации ИБП (обычно — менее 5 лет) может иметь смысл замена свинцово-кислотных аккумуляторов на литий-ионные, так как они с большой вероятностью достигнут окончания срока эксплуатации одновременно с ИБП.

В середине срока эксплуатации замена аккумуляторов на литий-ионные может не иметь смысла с экономической точки зрения, т.к. срок эксплуатации литий-ионных аккумуляторов превысит оставшийся срок эксплуатации ИБП более чем на 5 лет. Однако, учитывая снижение цен на литий-ионные аккумуляторы, экономические факторы могут все-таки сыграть в пользу замены.

При приближении конца срока эксплуатации ИБП (более 10 лет) может иметь смысл полностью заменить ИБП на новый, использующий литий-ионные аккумуляторы. Это решение зависит от соотношения затрат на сохранение и техническое обслуживание старого ИБП (т.е. контракты на обслуживание, запчасти, т. д.) и затрат на новую систему.

Даже если литий-ионный аккумулятор будет иметь такое же номинальное напряжение, как существующий свинцово-кислотный, может потребоваться обновление программного обеспечения и аппаратной части ИБП. Это, помимо прочего, обусловлено тем, что характеристики зарядки аккумулятора могут измениться, формула продолжительности работы может отличаться, и оценка времени работы может оказаться некорректной. Кроме того, поставщику может потребоваться интегрировать систему контроля аккумуляторов в ИБП.

Например, можно внедрить литий-ионные батареи в уже приобретенное решение Galaxy 7000. Потребуются обновление прошивки модуля управления в ИБП и замена некоторых плат.

Покупка нового ИБП является самым простым сценарием при условии, что поставщик эффективно интегрировал литий-ионную технологию в ИБП. Интеграция ИБП и системы управления литий-ионными аккумуляторами значительно зависит от работы этой системы.


ИБП Galaxy VM компании Schneider Electric, укомплектованные литий-ионными батареями. Такие батареи позволяют минимизировать операционные расходы за счет большого количества (до 5000) циклов заряда-разряда и увеличенного до 15 лет срока службы. Их можно использовать и с другими ИБП Schneider Electric, в том числе с Galaxy VX мощностью от 500 до 1500 кВт.

Использование литий-ионных аккумуляторов будет очень хорошим подспорьем в снижении операционных расходов на системы бесперебойного питания. Между тем, остается значительная часть рынка, которая по-прежнему будет продолжать использовать технологию VRLA, да и технология свинцово-кислотных аккумуляторов также совершенствуется.


Vertiv, ранее Emerson Network Power, объявила о пополнении линейки систем бесперебойного питания, совместимых с литиево-ионными АКБ. ИБП Liebert EXM 480V (50-250 кВт/кВА) с литиево-ионными батареями расширяют возможности хранения энергии в ЦОД среднего размера.

Однако литий-ионные системы станут еще шире применяться в крупных центрах обработки данных, подобных тем которые принадлежат интернет-гигантам, таким как Amazon, Facebook и Google, где даже незначительный выигрыш в потреблении энергии и эффективности использования пространства означает огромную экономию.

Выводы


Тем, кто хочет минимизировать капитальные расходы, литий-ионные аккумуляторы не подойдут, поскольку они дороже свинцово-кислотных батарей примерно на 15% (для типового ИБП). Но можно с уверенностью сказать, что цены на литий-ионные аккумуляторы продолжат снижаться, на рынке появятся новые химические решения и технологии, а уже существующие будут улучшены. Несмотря на то, что цены на некоторые литий-ионные решения пока еще слишком высоки для перехода на них со свинцово-кислотных аккумуляторов с регулирующим клапаном, они имеют привлекательную совокупную стоимость владения за 10 лет с окупаемостью менее чем за 4 года. Если принимать во внимание операционные расходы, то их выбор может быть вполне оправдан.

habr.com

китайские технологии и упущенное время / Offсянка

В минувшем году Россия и Китай подписали договор о создании в Новосибирской области первого в России производства литий-ионных батарей для электромобилей. Участниками проекта стали госкорпорация «Роснано» и китайская компания Thunder Sky Group Limited, считающаяся одним из лидеров в серийном производстве батарей для электротранспорта и накопителей энергии. В Новосибирске уже начали строить завод, который будет оснащен четырьмя автоматизированными производственными линиями с более чем пятью сотнями рабочих мест.

Предполагается, что в дальнейшем китайские компоненты для производства батарей будут заменены российскими, и для реализации этого предположения стартовал второй проект «Роснано» — совместно с Институтом химии твердого тела и механохимии СО РАН и Новосибирским заводом химконцентратов. Нина Косова, научный руководитель этого проекта, кандидат химических наук, старший научный сотрудник Института химии твердого тела и механохимии, рассказала нам о российских разработках и о том, почему пришлось приобретать китайские технологии.

Алла Аршинова: Нина Васильевна, давайте начнем с начала. Расскажите, пожалуйста, об эволюции литий-ионных аккумуляторов.

Нина Косова: Первые перезаряжаемые аккумуляторы с литием были просто «литиевые». В качестве катода в них использовался кобальтат лития, а в качестве анода — металлический литий. Между катодом и анодом находится сепаратор, он не дает контактировать двум электродам. Сепаратор смачивается литий-ионным электролитом, и, когда мы подключаем это устройство к электрической сети, ионы лития переносятся от катода к аноду через электролит, а электроны — через внешнюю цепь. Когда начинается заряд, литий выходит из структуры кобальтата лития и встраивается в литиевый анод. Когда же положительный ион лития уходит, ионы кобальта окисляются и становятся четырехвалентными. Этот процесс называется деинтеркаляцией (или, проще говоря, экстракцией) лития. Когда мы зарядили аккумулятор и начали им пользоваться, стартует процесс разряда, и в этом случае реакция идет в обратную сторону: происходит встраивание лития в катодный материал, и это называется интеркаляцией (внедрением).

Сначала в литиевых аккумуляторах использовался литиевый анод, и это было не очень хорошо. Ведь литий — очень активный металл, и, если нарушается целостность такого аккумулятора, может случиться возгорание. К тому жеутилизация таких аккумуляторов достаточно сложна.

Поэтому несколькими годами позже от литиевого анода перешли к углеродному, на основе графита. Выбор в его пользу был сделан потому, что структура графита способна к внедрению и извлечению ионов лития.

Когда стали использовать углеродный анод, поменялось и название — от «литиевого» перешли к «литий-ионному» аккумулятору. Современные же устройства — это «литий-ион-полимерные». Откуда взялись «полимерные»? Использовать жидкие электролиты, содержащие соли лития, не очень удобно — так же, как и металлический литий. Вы, наверное, сами видели, как аккумуляторы иногда «протекали» и из них просачивался жидкий электролит? Так вот, чтобы этого не было, последний стали делать гелеобразным, полимерным. Поэтому сегодня вы чаще всего имеете дело именно с «литий-ион-полимерными» аккумуляторами, если, конечно, речь не идет о чем-то совсем дешевом и безымянном.

Алла Аршинова: Литий и его соединения — это дорогие материалы?

Нина Косова: В природе литий находится в виде солей. Самый крупный поставщик карбоната лития — Чили, но встречается он и в других странах Южной Америки. Второй источник сырья — озера, где концентрация ионов лития очень высока. Например, наш институт недавно нашел такие в Монголии. Также мы разработали процесс переработки литийсодержащих вод. Тем не менее все исходное сырье для литий-ионных аккумуляторов находится в дефиците. Люди быстро поняли, что за этим будущее и деньги. И те, кто сейчас имеет доступ к сырью, диктуют на него мировые цены.

Литий

Алла Аршинова: Автолюбители со стажем помнят, что аккумулятор — штука довольно капризная, и даже за ним приходится следить в оба. А насколько просты в обслуживании современные Li-ion аккумуляторы для электромобилей?

Нина Косова: Чем отличаются литий-ионные аккумуляторы от остальных? Тем, что вы можете начать заряд и разряд в любой момент, тогда как другой тип батарей это вывело бы из строя. А еще литий-ионные аккумуляторы выдерживают большое количество циклов заряда-разряда и напряжение их гораздо выше.

Для электромобилей очень важно иметь высокомощные источники энергии, поэтому должны быть материалы, которые могли бы работать при больших напряжениях и при больших токах. Для того чтобы получить такие вещества, нужны материалы с высокой электронной и ионной проводимостью. И получать их нужно в наноразмерном состоянии.

Алла Аршинова: Если говорить об электромобилях, какая «химия» должна быть у таких аккумуляторов?

Нина Косова: Аккумулятор аккумулятору рознь. В батарее для телефонов и других небольших устройств можно использовать кобальтат лития. У него много плюсов, но он дороговат.

Электромобиль Dodge ZEO. От одной заряда батареи он сможет проехать чуть больше 400 километров

А есть аккумуляторы для более крупных беспроводных устройств. Здесь, конечно, выгодно использовать литий-железо-фосфат, ведь железо — самый распространенный в природе материал. Литий-железо-фосфат хорош всем, но его очень сложно синтезировать и сделать высокопроводящим. Если в случае с литий-кобальтовыми аккумуляторами от идеи до серийных образцов прошло пять лет, то в случае с литий-железо-фосфатом времени пришлось потратить почти в два раза больше.

Но во всем мире стоит вопрос перехода от транспорта на бензине к электротранспорту. Поскольку для электротранспорта нужны крупногабаритные аккумуляторы, то и материалы для него должны быть дешевле. Так что для транспорта батареи будут делать на основе литий-железо-фосфата.

Первый завод по выпуску таких аккумуляторов был построен в Монреале, в канадском Квебеке. Нас возили туда на экскурсию и показали цех, где как раз испытывают готовые продукты. Их бросают, прокалывают, разогревают и смотрят, как они себя ведут. Ведут хорошо, за безопасность можно не переживать.

Алла Аршинова: Но ведь даже телефоны иногда взрываются…

Нина Косова: Это связано со структурной неустойчивостью кобальтата лития к высоким напряжениям. За счет структурной неустойчивости происходит выделение кислорода, поэтому его нельзя заряжать выше 4,2 вольт. По этой причине в аккумулятор встраивают ограничители по напряжению. А литий-железо-фосфат более устойчив.

Алла Аршинова: Извините за несколько наивный вопрос, но технологии в области литий-железа-фосфата сложные? Нам по силам?

Нина Косова: Сложные, но многие компании их уже освоили. Цена на материал пока, правда, высокая, сравнимая с кобальтатом лития, но она будет падать. Для больших аккумуляторов важно еще и чтобы при нагревании не было побочных реакций с электролитом, приводящих к возгоранию. Литий-железо-фосфат — самый химически и структурно устойчивый катодный материал, он может выдерживать максимальное число циклов заряда-разряда. Когда научились получать это соединение в электрохимически-активном состоянии, забыли обо всем другом — настолько хорошо оно подходит для решения поставленных задач.

Алла Аршинова: Вообще, насколько сложны и затратны исследования в данной сфере?

Нина Косова: Они, скажем так, дорогостоящие. Нужно очень много приборов, методов, это крайне наукоемкая область. Каждый материал может быть получен разными методами, причем каждый метод, в свою очередь, может оказывать влияние на свойства полученного материала.

Концепт Jeep Renegade оснащен литий-ионной батареей, питающей два электромотора мощностью 268 лошадиных сил. Правда, на одном заряде батареи автомобиль может проехать всего 64 километра, поэтому ему помогает 1,5-литровый дизельный двигатель Bluetec

Можно назвать три основные проблемы в работе с кобальтатом лития. Во-первых, этот материал, использующийся практически во всех мобильных телефонах, сам по себе довольно дорог. Просто потому, что кобальтовое сырье де-факто находится в руках одной компании (наша собеседница не стала уточнять ее название, но, по некоторым данным, речь идет о The Umicore Group. — прим. редакции). Во-вторых, он еще и крайне ядовит, что вызывает сложности при переработке. Третий большой недостаток в том, что при заряде-разряде аккумулятора мы получаем в свое распоряжение лишь половину теоретической емкости, а вторая половина этого дорогого материала не работает, лежит в качестве балласта. Вот эти ограничения мы и стараемся обойти.

Алла Аршинова: А реально ли увеличить практическую емкость?

Нина Косова: Да, реально — например, путем поверхностного модифицирования. Но прирост будет невелик, процентов тридцать от силы. Поэтому сейчас ведутся исследования новых катодных материалов. Последние различаются, прежде всего, по структуре. Для процессов интеркаляции (мы уже упоминали этот термин), когда имеем дело с диффузией ионов лития, очень важно — по каким каналам эта диффузия происходит, какая кристаллическая структура у соединений?

Например, структура может быть слоистой. Она состоит из слоев, располагающихся друг под другом, и литий двигается в двумерных каналах. Это хороший вариант, но в нем есть неудобства: если в канале возникает дефект, то литий, дойдя до него, не может никуда повернуть. В результате емкость теряется.

Есть другие структуры. Например, шпинельные 3D-структуры, когда может осуществляться трехмерная диффузия лития. Один из представителей таких катодных материалов — литий-марганцевая шпинель. И здесь диффузия может осуществляться уже в трех направлениях. Плюс еще и в том, что соединения марганца дешевле, а шпинель термически более устойчива.

Одно из основных требований к катодным материалам — хорошая электронно-ионная проводимость. Однако в последние годы также стали интенсивно изучать соединения, которые являются диэлектриками: у них удельная электронная и ионная проводимость ниже, чем 10-9 См/см.

Алла Аршинова: И как же они тогда работают?

Нина Косова: Оказалось, что получение таких материалов в наноразмерном состоянии и создание поверхностного высокопроводящего углеродного покрытия делает их вполне конкурентоспособными. Это стало громадным рывком в области литий-ионных аккумуляторов. Сейчас одним из наиболее перспективных материалов является литий- железо-фосфат, обладающий каркасной структурой. Именно отсюда, кстати, и появилось слово «нано» в этой области. В результате создали композиционные материалы, где ядро — это литий-железо-фосфат, а оболочка — высокопроводящий углерод. Оказалось, когда размер частиц меньше ста нанометров, можно получить хорошее сцепление с поверхностью этих частиц, и материал, который вообще-то очень плохой проводник, начинает работать просто блестяще.

Алла Аршинова: А когда было открыто это свойство?

Нина Косова: В данной сфере все происходит очень быстро, и шаги от научной мысли до внедрения довольно короткие. Так, Джон Гудэнаф (John B. Goodenough) изобрел кобальтат лития в 1986 году, а уже в начале 90-х Sony начала производить аккумуляторы на его основе. Он же в 96 году получил литий-железо-фосфат, предложив использовать его в качестве катодного материала, и серийное производство началось в 2008-м. Получается, что за свои 12 лет исследований в этой области я пережила значительную часть истории развития литий-ионных аккумуляторов.

Джон Гудэнаф — человек, во многом определивший историю мобильных устройств, и сейчас, несмотря на преклонный возраст, творящий историю электромобилей

Алла Аршинова: Но вы же, наверное, не только следили за ходом истории, но и вносили свой вклад?

Нина Косова: Мы называемся Институт химии твердого тела и механохимии. Основное направление деятельности — материаловедение с применением метода механической активации. Институт много лет конструирует высоконапряженные планетарные мельницы для обработки материалов. Понимаю, что это звучит устрашающе, поэтому постараюсь объяснить попроще.

Обычная шаровая мельница — это барабан, в котором находятся шары. Внутрь загружают материал, и, когда мельница начинает работать, он измельчается при помощи ударов шаров, но измельчение никогда не происходит до наноразмеров. Без которых, как мы уже знаем, не обойтись.

Наши мельницы устроены немного по-другому. Если в шаровых мельницах используется только одно механическое воздействие — удар, то в других конструкциях может действовать сдвиг. В планетарных мельницах одновременно осуществляются два воздействия: удар и сдвиг. Планетарными они называются потому, что барабаны вращаются как вокруг собственной оси, так и вокруг общей, подобно планетам в Солнечной системе. За счет этого достигаются большие энергии и реализуется более тонкое измельчение.

Мы наблюдаем два основных эффекта: измельчение и дефектообразование. Кристаллические соединения превращаются в аморфные, становятся наноразмерными и высокореакционными. Мы даже наблюдаем протекание процессов синтеза. В результате такой обработки иногда реализуются реакции, которые могут происходить только при нагревании, а мы их наблюдаем при комнатной температуре: пять минут проактивировали смесь реагентов и получили литий-марганцевую шпинель.

Алла Аршинова: Тут самое время спросить — как вам помогает «Роснано»?

Нина Косова: Сейчас «Роснано» реализует в Новосибирске два проекта, связанных с литий-ионными аккумуляторами. Первый — это строительство завода, которое заключается в копировании китайского аналога. Согласно договору, планируется выпуск аккумуляторов для электроавтобусов по китайской технологии и из китайских материалов, но только на территории Новосибирской области.

Гибридный автобус Foton Euro V hybrid, подарок Пекина Москве как городу-побратиму

Второй проект связан с производством литий-железа-фосфата по нашей механохимической технологии, и я его научный руководитель. В нем есть три участника: ОАО «Новосибирский завод химконцентратов» (НЗХК), ОАО «ТВЭЛ» и наш институт. НЗХК входит в состав ТВЭЛ, они делают оборудование для ядерных станций. Цель проекта заключается в создании технологии производства катодного материала, а затем использовании данного продукта вместо китайского по программе импортозамещения. Потому что планируется, что однажды аккумуляторный завод будет работать только на российских материалах.

Алла Аршинова: А свои инженерные решения у нас есть?

Нина Косова: Они-то есть. Но нет крупного производства литий-ионных аккумуляторов, только предприятия, пытающиеся его наладить.

Алла Аршинова: Какая «химия» будет применяться у нас?

Нина Косова: Это пока вопрос открытый. Китайские производители заявили, что используют в своих аккумуляторах железо-фосфат лития. Но до сих пор не предоставляют нам ни материалы, ни их состав. Если с китайцами у нас что-то не сложится, то, в конце концов, Прохоров начал делать свой Ё-мобиль. Промышленники, выпускающие аккумуляторы, испытывают острую необходимость в новых материалах, а то, что они могут купить за рубежом, им продают дорого и плохого качества. Поэтому потребность в материалах для литий-ионных аккумуляторов в России громадная.

Батареи с литий-железо-фосфатом применяются даже в детских игрушках. Появятся ли аналоги с надписью «Сделано в России»?

Алла Аршинова: А есть ли альтернативы этому более-менее устоявшемуся типу батарей?

Нина Косова: Конечно. Сейчас разрабатываются новые виды аккумуляторов. Например, литий-серные и литий-воздушные аккумуляторы. В Америке они начали изучаться только в последние годы, но у них тратят на такие исследования миллиарды долларов.

Алла Аршинова: А сфера применения у них будет такая же?

Нина Косова: Предположительно, да.

Алла Аршинова: В целом как вы оцениваете идею производства литий-ионных аккумуляторов в нашей стране?

Нина Косова: Все страны работают в области литий-ионных аккумуляторов, кроме России. Я уже лет двенадцать езжу на международные конференции, и, как правило, если в ней участвует 700 человек со всего мира, нашу страну представляю я одна. Поэтому, это большое и важное дело для России. Получится, не получится — другой вопрос, но главное, что на международной арене уже прозвучало: Россия начала двигаться в этом направлении. Также это хорошо с точки зрения развития города, потому что появляются новые рабочие места и связанные с ними доходы. Это важно и для развития страны в целом, ведь посмотрите — наши военные, например, до сих пор используют устаревшие типы аккумуляторов на подводных лодках, в системах наведения, в космической отрасли.

Алла Аршинова: А с чем связано наше отставание? С банальной нехваткой средств?

Нина Косова: В эту область нужны серьезные вложения. Хорошо, если бы у нас в Академгородке была создана лаборатория по литий-ионным аккумуляторам, оснащенная современным оборудованием. Нет, конечно, можно работать и без денег. На голом энтузиазме. Мы начали исследования с пустой комнаты и стула, а требовались очень дорогие исходные материалы, нужно было приобрести установки по циклированию, выпускающиеся только за рубежом… Никаких денег на это нам никто не давал, приходилось заключать хоздоговора по другой тематике и зарабатывать деньги, чтобы купить хоть что-то. Например, установки по циклированию нам сделали в качестве курсовых работ студенты НГТУ. Они хорошо потрудились, и установки получились мирового уровня. Но было потеряно время.

Та самая планетарная мельница из Института химии твердого тела и механохимии СО РАН

Теперь мы догоняем мир. Когда в 1998 году на международной конференции по ионике твердого тела я впервые рассказала, что мы синтезируем наноразмерные катодные материалы, это было новым и необычным — до того момента все синтезировали только материалы микронных размеров. Считалось, что если уйти в нано, будут нежелательные эффекты, связанные с побочными реакциями с электролитом. Но оказалось, что это не совсем так. Сейчас большинство докладов на конференциях по литий-ионным аккумуляторам посвящено наноматериалам. Мы действительно были пионерами в этой области. И если бы в тот момент получили финансовую поддержку, то и завод был бы построен на 10 лет раньше, и уж, наверное, Россия обошлась бы без китайских технологий…

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Промышленные литиевые аккумуляторы в Санкт-Петербурге (183 товара) 🥇

Литиевый тяговый аккумулятор RuTrike (18650 MnCoNi) 60V32A/H

Доставка: Санкт-Петербург

В МАГАЗИН Онлайн консультант Бесплатный номер 8 800… Заказ в один клик

spb.regmarkets.ru

Промышленные литиевые аккумуляторы в Новосибирске (178 товаров) 🥇

Зарядное устройство интелектуальное для Li литиевых аккумуляторов 48V24AH

Доставка: Новосибирск

В МАГАЗИН Онлайн консультант Бесплатный номер 8 800… Заказ в один клик

novosibirsk.regmarkets.ru

Промышленные литиевые аккумуляторы в Самаре (178 товаров) 🥇

Литиевый тяговый аккумулятор RuTrike (18650 MnCoNi) 60V52A/H 21667

Доставка: Самара

В МАГАЗИН Онлайн консультант Бесплатный номер 8 800… Заказ в один клик

samara.regmarkets.ru

Промышленные литиевые аккумуляторы в Краснодаре (181 товар) 🥇

Литиевый тяговый аккумулятор RuTrike (18650 MnCoNi) 60V32A/H

Доставка: Краснодар

В МАГАЗИН Онлайн консультант Бесплатный номер 8 800… Заказ в один клик

krasnodar.regmarkets.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *