Из чего состоит аккумуляторная батарея: Из чего состоит аккумулятор автомобиля, Принцип работы? – Из чего состоит аккумулятор

Автомобильный аккумулятор — Википедия

Автомобильная свинцово-кислотная аккумуляторная батарея номинальной ёмкостью 40 А·ч, электрическое напряжение 12 В, «обратной» или «L» полярности, стандартные клеммы Свинцово-кислотная аккумуляторная батарея трактора Устройство автомобильной свинцово-кислотной аккумуляторной батареи на 12 В в разрезе. Батарея состоит из 6 аккумуляторов конструктивно объединённых в один общий корпус, каждый аккумулятор расположен в изолированной отдельной «банке» Схематичное изображение свинцово-кислотной 12 вольтовой аккумуляторной батареи
Расположение электродов в «банке» свинцово-кислотного аккумулятора в составе аккумуляторной батареи

Автомоби́льный аккумуля́тор (точнее — автомобильная аккумуляторная кислотная[источник не указан 396 дней] батарея [сокр. автомобильная АКБ] ) — тип электрической аккумуляторной батареи, применяемый на автомобильном или мототранспорте. Используется в качестве вспомогательного источника электроэнергии в бортовой сети при неработающем двигателе и для запуска двигателя.

На электротранспорте является не вспомогательным источником энергии, а основным. Такие аккумуляторы принято называть тяговыми.

Далее по тексту рассмотрена исключительно свинцово-кислотная аккумуляторная батарея, поскольку, если аккумулятор не тяговый, то как «автомобильный (стартёрный) аккумулятор», будет чаще использоваться такая. Замена пользователем на иной тип (к примеру, на литиевый блок) обычно невозможна[источник не указан 396 дней], даже при подходящем напряжении, в силу совершенно разных характеристик: прежде всего, свинцово-кислотные АКБ обладают уникальным свойством автоматической остановки заряда и резком росте напряжения, как и резком падении зарядного тока, при полном заряде. При этом, использование тех же литий-ионных или литий-железо-фосфатных аккумуляторов тоже возможно, но в силу того, что они требуют дополнительной электронной схемы для контроля за их состоянием, высокой стоимости, применяются реже
[1]
[2][3].

На малотоннажных грузовиках, микроавтобусах и легковых автомобилях с дизельными двигателями используются аккумуляторы с электрическим напряжением 12 вольт.

Напряжение без нагрузки (напряжение при снятых клеммах) аккумулятора можно связать с примерным уровнем заряда. Если аккумулятор находится на транспортном средстве, «напряжение без нагрузки» измеряется, когда двигатель остановлен, а нагрузка полностью отключена (сняты клеммы).

Степень заряженности оценивают на отключенном от нагрузки аккумуляторе, не менее, чем через 6 часов покоя, и при комнатной температуре. В случае температуры, отличной от комнатной, вносится температурная поправка. В среднем считается, что падение температуры на 1 °C от комнатной снижает ёмкость примерно на 1 %, таким образом при −30 °C ёмкость автомобильной АКБ будет равна примерно половине от ёмкости при +20 °C.

Напряжение без нагрузки
при T = 26,7 °C
Примерный
заряд
Плотность электролита
при T = 26,7 °C
12 В6 В
12,70 В6,32 В100 %1,265 г/см³
12,35 В6,22 В75 %1,225 г/см³
12,10 В6,12 В50 %1,190 г/см³
11,95 В6,03 В25 %1,155 г/см³
11,70 В6,00 В0 %1,120 г/см³
Напряжение без нагрузки также зависит от температуры и от плотности электролита при полном заряде. Следует заметить, что плотность электролита при одном и том же уровне заряда в свою очередь также зависит от температуры (обратная зависимость).
  • Ёмкость аккумулятора, измеряющаяся в ампер-часах. Применительно к маркировке аккумулятора, значение ёмкости показывает, каким током будет равномерно разряжаться автомобильная АКБ до конечного напряжения при 20-часовом цикле разряда. Например, обозначение 6СТ-60 означает, что батарея в течение 20 часов будет отдавать ток 3 А, при этом в конце напряжение на клеммах не упадет до 10,5 В. Однако, это вовсе не означает линейную зависимость времени разряда от разрядного тока. Целый час стабильно отдавать 60 А наша батарея не сможет.

Особенностью аккумуляторов является уменьшение времени разряда с повышением разрядных токов. Зависимость времени разряда от тока разряда близка к степенной. Распространена, в частности, формула немецкого ученого Пейкерта (англ.), который установил, что: Cp=Ikt,{\displaystyle C_{p}=I^{k}t,}. Здесь Cp{\displaystyle C_{p}} — ёмкость аккумулятора, а k{\displaystyle k} — число Пейкерта — показатель степени, постоянный для данного аккумулятора или типа аккумуляторов. Для свинцовых кислотных аккумуляторов число Пейкерта обычно изменяется от 1,15 до 1,35. Величину константы в левой части уравнения можно определить по номинальной ёмкости аккумулятора. Тогда, после нескольких преобразований, получим формулу для реальной ёмкости аккумулятора E{\displaystyle E} при произвольном токе разряда I{\displaystyle I}:

E=En(InI)p−1{\displaystyle E=E_{n}\left({\frac {I_{n}}{I}}\right)^{p-1}}.

Здесь En{\displaystyle E_{n}} — номинальная ёмкость аккумулятора, а In{\displaystyle I_{n}} — номинальный ток разряда, при котором задана номинальная ёмкость (обычно ток 20-часового или 10-часового цикла разряда).

Ёмкость аккумулятора, как правило, выбирается исходя из рабочего объёма двигателя (больший объём — бо́льшая мощность стартёра — бо́льшая ёмкость АКБ), его типа (для дизельных ёмкость автомобильной АКБ должна быть больше, чем для бензиновых при равном объёме цилиндров) и условий эксплуатации (для районов с холодным климатом ёмкость увеличивают, по причине снижения ёмкости АКБ при отрицательных температурах и затруднения пуска двигателя стартёром из-за загустения масла).

  • Резервная ёмкость. В отличие от номинальной ёмкости, которая определяется разрядом относительно малым током, резервная ёмкость показывает, сколько времени способен проехать автомобиль зимней ночью при неисправности генератора. Ток разряда принимается равным 25 А, поскольку зимней ночью очень много энергии уходит на освещение и обогрев салона. При этом нельзя просто разделить номинальную ёмкость автомобильной АКБ на 25 А. При таком токе резервная ёмкость составит примерно 2/3 от номинальной. Как правило, значение резервной ёмкости указывается на маркировке автомобильной АКБ в минутах.
  • Пусковой ток. Или ток холодной прокрутки (cold cranking amps CCA). Максимальный ток, который способен отдавать аккумулятор без посадки напряжения на клеммах ниже 9В в течение 30 секунд при −18 °C по ГОСТ 53165-2008.
  • При температуре окружающего воздуха –10 °C зарядные характеристики аккумулятора, не имеющего обогрева, из-за охлаждения ухудшаются, а при температуре ниже –30 °C заряд от штатного генератора автомобиля практически отсутствует[4]. Температура электролита в аккумуляторе, установленном на автомобиле, на 5—7 °C выше температуры окружающей среды и изменяется вслед за ней с запаздыванием на 4—5 часа. В режиме длительного движения за 10—12 часов температура электролита в не обогреваемых аккумуляторных батареях повышается на 2—3 °C, а при наличии обогреваемого отсека для аккумуляторных батарей на 5—7 °C. Поэтому, для надёжной эксплуатации в условиях низких температур применяются конструкции аккумулятора с внутренним электроподогревом[5][6].

Аккумулятор автомобиля содержит химические вещества, которые при взаимодействии производят электрический ток. Два разнородных металла помещаются в кислотную среду, которая называется электролитом. Возникает поток электронов и электроны из одной группы пластин переходят в другую.

Батарея заряжена

Полностью заряженная батарея содержит отрицательную пластину губчатого свинца (Pb) — катод, положительную пластину диоксида свинца (PbO2) – анод, и электролит из раствора серной кислоты (H2SO4) и воды (H2O).

Батарея разряжается

Когда аккумулятор разряжается, диоксид свинца на катоде восстанавливается, на аноде свинец окисляется. Металлы обоих пластин вступают в реакцию с SO4, в результате образуется сульфат свинца (PbSO4). Водород (H2) из серной кислоты вступает в реакцию с кислородом (O2) из положительной пластины и образуется вода (H2O). При этом расходуется серная кислота и образуется вода. Правильная зарядка во многом определяет ресурс службы батареи.[7]

Батарея разряжена

В полностью разряженном аккумуляторе обе пластины покрыты сульфатом свинца (PbSO4), а электролит разбавлен до большей степени водой (H2O).

Батарея заряжается

I_{n} Автомобильный аккумулятор после взрыва

Процесс противоположен разрядке.

Сульфат (SO4) покидает пластины и объединяется с водородом (H2), превращаясь в серную кислоту (H2SO4). Свободный кислород (O2) объединяется со свинцом (Pb) на положительной пластине с образованием диоксида свинца (PbO2). Когда батарея приближается к полной зарядке, водород образуется на отрицательных пластинах, а кислород — на положительных, происходит газообразование. Выделяющийся газ взрывоопасен.

Тип батареи

В основном используется свинцово-кислотный тип. Собственно батарея состоит из 6 аккумуляторов (банок), каждая номинальным напряжением около 2,2 вольта, соединённых последовательно в батарею. Обычный электролит представляет собой смесь дистиллированной воды и серной кислоты с плотностью в пределах 1,23-1,31 г/см³ (чем больше плотность электролита, тем более морозостойкая батарея), но сейчас появились автомобильные АКБ построенные на базе технологии AGM (Absorbent Glass Mat), электролит в которых абсорбирован в стеклянном волокне[уточнить], а также т. н. гелевые аккумуляторы, где электролит загущается до гелеобразного состояния силикагелем (технология носит название GEL).

Размеры

Так сложилось, что при разработке нового типа или даже марки автотехники нередко приходилось разрабатывать под неё новую автомобильную АКБ. В дальнейшем производители разработали большую номенклатуру различных аккумуляторов, существенно различающихся типоразмерами и электрическими характеристиками. Для тяжёлых грузовиков и спецмашин, имеющих бортовую сеть 24 вольта, применяются две одинаковые 12-вольтовые батареи, соединённые последовательно или одна 24-вольтовая батарея (редко).

В настоящее время существует несколько форм-факторов батарей. Аккумуляторы для японского и европейских рынков могут иметь разные размеры.

Полярность
I_{n} Варианты расположения контактов автомобильных аккумуляторов: 0 — Азия, 1 — Европа, 3 — требующие последовательного соединения 2 АКБ по 12 В для получения суммарного напряжения 24 В (обычно для дизельных грузовых автомобилей и тяжёлой техники)

«Обратная» или «прямая». Определяет расположение электродов на корпусе автомобильной АКБ. Для автомобилей отечественного выпуска характерна прямая полярность, при которой плюсовая клемма находится слева, а минусовая — справа, при положении аккумулятора «клеммы ближе к вам». Установить чужую батарею, например «европейскую» на японский автомобиль, зачастую бывает невозможно. Может потребоваться удлинение проводов.

Диаметр контактных клемм

В типе Euro — type 1 — 19,5 мм «плюсовая» клемма и 17,9 мм «минусовая» клемма. Тип Asia — Type 3 — 12,7 мм у «плюсовой» клеммы, — и 11,1 мм у клеммы «минус»[8]. Выпускаются «колпачки» — переходники с тонких клемм на толстые.

Тип крепления

В конкретном транспортном средстве может быть реализован один из типов крепления автомобильной АКБ — верхнее или нижнее. В ряде автомобилей конструкции для закрепления батареи может быть не предусмотрено. Обозначения типов нижнего крепления следующие: B00, B01, B03, B13.

Необходимость обслуживания

По этому принципу автомобильные АКБ классифицируют на два типа: обслуживаемые (и как их подкатегория — малообслуживаемые) и необслуживаемые (в тексте ГОСТа обозначенные как безуходные). В простых по конструкции аккумуляторах необходим регулярный контроль состояния электролита и регулярная подзарядка по специальной технологии с помощью стационарного зарядного устройства. На промышленных предприятиях для ухода за автомобильными аккумуляторами есть специально обученные люди (аккумуляторщики) а также зарядные станции.

Однако «необслуживаемые» автомобильные АКБ — это не значит, что за такой батареей совсем не нужен уход. Как правило, необслуживаемая батарея имеет встроенный индикатор-ареометр, по цвету которого определяется плотность электролита — зелёный поясок при нормальной плотности, красный или белый — при низкой (батарея подлежит замене). Также необходимо периодически контролировать уровень электролита по меткам на корпусе. На всех автомобильных АКБ во избежание повреждения аккумуляторного отсека кислотой необходимо контролировать герметичность корпуса, заливных пробок и чистоту дренажных отверстий, а при появлении признаков электролита устранить течь и тщательно промыть корпус и отсек автомобильной АКБ нейтрализующим щелочным составом. Также необходимо периодически тщательно очищать и смазывать клеммы литиевой смазкой, во избежание их электрокорозийного разрушения.

  • Различные типы аккумуляторов обладают разными особенностями, которые не позволяют однозначно назвать «лучший» тип аккумулятора. Можно говорить только о лучшей применимости различных типов аккумуляторов в разных условиях. Так, например, современные «кальциевые» аккумуляторы обладают низким саморазрядом, не требуют обслуживания, однако не терпят глубоких разрядов, например, при коротких поездках в зимние морозы, или длительной стоянке автомобиля. В то же время, для «обслуживаемых» (практически не производятся) и «малообслуживаемых» аккумуляторов глубокий разряд не столь губителен, зато такие типы аккумуляторов требуют доливки дистиллированной воды (при исправном электрооборудовании и среднем пробеге — примерно 1 раз в 4—7 месяцев).
  • С понижением температуры падает способность аккумулятора «принимать заряд». Поэтому короткие поездки в зимние морозы, особенно с включёнными фарами, могут довольно быстро привести к полному разряду даже абсолютно исправного аккумулятора. Это приводит не только к невозможности запуска мотора, но и к сокращению срока службы аккумулятора, особенно «кальциевого».
  • Зимой аккумулятор рекомендуется периодически снимать с автомобиля и заряжать зарядным устройством после согревания на воздухе до положительной температуры. Согревать холодный аккумулятор в горячей воде нежелательно по причине возможного частичного осыпания активной массы пластин из-за быстрых температурных деформаций.
  • Существует мнение[где?] о недопустимости установки на автомобиль аккумулятора с повышенной ёмкостью, так как при большей ёмкости автомобильная АКБ якобы не будет успевать заряжаться. Однако, энергия, потраченная на пуск двигателя, не зависит от ёмкости, поэтому при исправном генераторе будет восполнена в автомобильной АКБ за одно и то же время. Также опасение у некоторых вызывает возможность сгорания стартера, однако потреблённый стартером ток зависит не от ёмкости автомобильной АКБ, а только от его внутреннего сопротивления и условий пуска. Для районов с суровыми зимами рекомендуется установка автомобильной АКБ повышенной ёмкости. При этом аккумулятор способен будет отдать больший ток при пуске, увеличивается количество попыток пуска, уменьшается относительный разряд батареи, что увеличивает надёжность и продлевает срок службы
    [9]
    . Однако, у менее ёмкого аккумулятора скорее всего просадка напряжения в момент пуска двигателя больше, чем у более ёмкого, а значит и возможный максимальный ток тоже меньше, чем у более ёмкого, так что, возможно, доля правды в этом мифе всё-таки присутствует. Однако, следует иметь в виду, что аккумулятор большей ёмкости (нежели штатный) требует одинакового времени для полной зарядки, если он сильно разряжен,т. к. заряжается более высокими токами. А это случается зимой довольно часто, так как такой аккумулятор позволяет долго крутить стартер.. Особенностью свинцово-кислотных аккумуляторов является то, что они сильно снижают свой ресурс, если заряжены не на 100 %, вследствие возникающей необратимой сульфатации. Также следует учитывать, что аккумулятор существенно бо́льшей ёмкости будет иметь бо́льшие габаритные размеры и может не поместиться в отсеке для аккумуляторной батареи. В интернете можно встретить утверждение, что в условиях низких температур зимой процесс сульфатации пластин происходит крайне медленно в силу особенностей прохождения химической реакции.
  • Крайне нежелательно заменять аккумулятор при работающем двигателе, поскольку связанные с отключением и подключением аккумулятора скачки напряжения могут вывести из строя электрооборудование автомобиля. При необходимости замены аккумулятора при работающем двигателе, для минимизации скачка напряжения необходимо перед отключением аккумулятора включить в автомобиле максимальное количество электроприборов (фары, мотор «печки», магнитолу, обогрев заднего стекла и т. д.). Подключение каждой клеммы должно производиться быстро, без многократного касания клеммой вывода аккумулятора. Обороты двигателя не должны превышать холостых. В идеале отключаемый/подключаемый аккумуляторы и клеммы автомобиля необходимо временно соединить параллельно проводами, после чего отсоединить все провода от отключаемого аккумулятора, установить подключаемый, надеть на него клеммы, и в самом конце отсоединить временные провода от клемм автомобиля и от подключённого аккумулятора. Таким образом достигается заведомо постоянное соединение какого-либо из аккумуляторов, и практически нивелируются нежелательные скачки напряжения.
  • При севшем аккумуляторе, т. н. «прикуривание» от другой автомашины необходимо осуществлять с тщательным соблюдением определённого набора правил, определяемых производителем автомобиля. Нарушение этих правил может оказаться причиной выхода из строя оборудования автомобиля.
  • Каштанов В. П., Титов В. В., Усков А. Ф. и др. Свинцовые стартерные аккумуляторные батареи. Руководство.. — М.: Воениздат, 1983. — С. 21—23, 176. — 148 с.

Стандарты в Российской Федерации[править | править код]

В России к автомобильным аккумуляторным батареям и аккумуляторам предъявляются ряд нормативных требований, в частности действует ряд ГОСТов:

Общие
  • ГОСТ Р 58092.1-2018 «Системы накопления электрической энергии (СНЭЭ). Термины и определения»
  • ГОСТ 15596-82 «Источники тока химические. Термины и определения» / Сборник стандартов «Электротехника. Термины и определения». Часть 2 // М.: Стандартинформ, 2005. Текст документа на сайте «Техэксперт».
  • ГОСТ 33667-2015 «Автомобильные транспортные средства. Наконечники проводов к выводам аккумуляторных батарей и стартеров. Технические требования и методы испытаний»
  • ГОСТ Р ИСО 6469-1-2016 «Транспорт дорожный на электрической тяге. Требования безопасности. Часть 1. Системы хранения энергии аккумуляторные бортовые»
  • ГОСТ Р МЭК 62485-3-2013 «Батареи аккумуляторные и аккумуляторные установки. Требования безопасности. Часть 3. Тяговые батареи»
  • ГОСТ Р МЭК 61982-1-2011 «Батареи аккумуляторные для использования на электрических дорожных транспортных средствах. Часть 1. Параметры испытаний»
  • ГОСТ Р МЭК 61982-2018 «Батареи аккумуляторные для использования на электрических дорожных транспортных средствах, за исключением литиевых батарей. Методы испытаний для определения рабочих характеристик и выносливости»
  • ГОСТ 8771-76 «Битум нефтяной для заливочных аккумуляторных мастик. Технические условия» (с изменениями №№ 1, 2, 3)
  • ГОСТ 10273-79 «Графит для изготовления активных масс щелочных аккумуляторов. Технические условия» (с изменениями №№ 1, 2, 3)
По свинцово-кислотным
  • ГОСТ Р 53165-2008 (МЭК 60095-1:2006) «Батареи аккумуляторные свинцовые стартерные для автотракторной техники. Общие технические условия» // М.: Стандартинформ, 2009. Текст документа на сайте «Техэксперт».
  • ГОСТ 6851-2003 «Батареи аккумуляторные свинцовые стартерные и нестартерные для мотоциклетной техники. Общие технические условия»
  • ГОСТ Р МЭК 61430-2004 «Аккумуляторы и аккумуляторные батареи. Методы испытаний функционирования устройств, предназначенных для уменьшения взрывоопасности. Свинцово-кислотные стартерные батареи»
  • ГОСТ Р МЭК 60254-2-2009 «Батареи аккумуляторные свинцово-кислотные тяговые. Часть 2. Размеры аккумуляторов и выводов и маркировка полярности аккумуляторов»
  • ГОСТ 6980-76 «Моноблоки эбонитовые аккумуляторные для автомобилей, автобусов и тракторов. Технические условия» (с изменениями №№ 1, 2, 3, 4)
  • ГОСТ 667-73 «Кислота серная аккумуляторная. Технические условия» (с изменениями №№ 1, 2, 3)
  • ГОСТ 11380-74 «Барий сернокислый аккумуляторный. Технические условия» (с изменениями №№ 1, 2)
По никель-металлгидридным
  • ГОСТ Р МЭК 62675-2017 «Аккумуляторы и аккумуляторные батареи, содержащие щелочной и другие некислотные электролиты. Герметичные призматические никель-металлгидридные аккумуляторы»
  • ГОСТ Р МЭК 61436-2004 «Аккумуляторы и аккумуляторные батареи, содержащие щелочной и другие некислотные электролиты. Аккумуляторы никель-металл-гидридные герметичные»
По никель-кадмиевым
  • ГОСТ Р МЭК 60623-2008 «Аккумуляторы и аккумуляторные батареи, содержащие щелочной и другие некислотные электролиты. Аккумуляторы никель-кадмиевые открытые призматические»
  • ГОСТ 27174-86 (МЭК 623-83) «Аккумуляторы и батареи аккумуляторные щелочные никель-кадмиевые негерметичные емкостью до 150 А·ч. Общие технические условия» (с изменениями №№ 1, 2, 3, 4, 5)
  • ГОСТ Р МЭК 60622-2010 «Аккумуляторы и аккумуляторные батареи, содержащие щелочной и другие некислотные электролиты. Герметичные никель-кадмиевые призматические аккумуляторы»
  • ГОСТ Р МЭК 62259-2007 «Аккумуляторы и аккумуляторные батареи, содержащие щелочной и другие некислотные электролиты. Аккумуляторы никель-кадмиевые призматические с газовой рекомбинацией»
По литий-ионным
  • ГОСТ Р 56229-2014/ISO/IEC PAS 16898:2012 «Транспорт дорожный на электрической тяге. Аккумуляторы литий-ионные. Обозначение и размеры»
  • ГОСТ Р МЭК 62660-1-2014 «Аккумуляторы литий-ионные для электрических дорожных транспортных средств. Часть 1. Определение рабочих характеристик»
  • ГОСТ Р МЭК 62660-2-2014 «Аккумуляторы литий-ионные для электрических дорожных транспортных средств. Часть 2. Испытания на надежность и эксплуатацию с нарушением режимов»
  • ГОСТ Р 58152-2018 (МЭК 62660-3:2016) «Аккумуляторы литий-ионные для электрических дорожных транспортных средств. Часть 3. Требования безопасности»
  • ГОСТ Р ИСО 12405-1-2013 «Транспорт дорожный на электрической тяге. Методы испытаний тяговых литий-ионных батарейных блоков и систем. Часть 1. Высокомощные применения»
  • ГОСТ Р ИСО 12405-2-2014 «Транспорт дорожный на электрической тяге. Технические требования к испытаниям модулей и систем тяговых литий-ионных батарей. Часть 2. Высокоэнергетическое применение»
  • ГОСТ Р МЭК 62620-2016 «Аккумуляторы и аккумуляторные батареи, содержащие щелочной или другие некислотные электролиты. Аккумуляторы и батареи литиевые для промышленных применений» (распространяется в том числе на аккумуляторы и аккумуляторные батареи для вилочных погрузчиков, гольф-каров, автоматизированных транспортных средств для контейнеров, железнодорожный, морской транспорт)

Строение аккумуляторов электромобилей внутри, основа движения двигателя

Работа электромобиля основана на электрическом токе. Внешне такие машины трудно отличить от авто с бензиновым двигателем. Единственная заметна разница в шуме при движении: электромобиль передвигается практически бесшумно. По типу организации работы эти виды машин существенно отличаются.

В электроавтомобиле установлен двигатель, функционирующий от электрического тока и получающий энергию от аккумуляторов.

Основные виды аккумуляторных батарей

В основе работы электромотора лежит принцип индукции электромагнитной природы. Данный тип двигателя преобразовывает энергию электриеской природы в механическую. Этот двигатель имеет высокий показатель КПД (коэффициента полезного действия). Он может достигать 95%.

Главный источник энергии электромотора – батареи аккумуляторной природы. Такие источники питания довольно дорогостоящие, что является главной причиной недостаточной распространенности электромобилей.

Наиболее популярный и доступный вид аккумуляторов – источники питания со свинцово-кислотным наполнителем. Также эти батареи почти полностью перерабатываются, что уменьшает их отрицательное влияние на экологию. Следующий вид аккумуляторов – никель-металлогибридные. Они дороже, чем представленные ранее, но имеют более высокие показатели производительности. Литий-ионные источники питания – идеальные для автомобилей с электрическим двигателем. Они наименее распространены среди автовладельцев из-за своей высокой стоимости.

Зачастую в электромобилях, кроме батарей, питающих двигатель, устанавливают дополнительный источник питания, обеспечивающий функционирование фар, магнитолы, стеклоочистителей и других аксессуаров вашего транспортного средства.

Особенности и строение аккумулятора с литий-ионным наполнителем

Источник питания с литий-ионным наполнителем очень распространен сегодня в бытовой электронике и широко применяется в автомобилях с электрическими двигателями и энергетических системах (мобильные телефоны, ноутбуки, цифровые фотоаппараты и т.д.).

Литий-ионный аккумулятор является наилучшим вариантом для питания электромобилей. Его составляющие:

  • Электроды, разделенные между собой сепараторами, которые пропитаны электролитом.
  • Герметичный корпус, в котором размещены электроды.
  • Катоды и аноды, прикрепленные к токосъемникам-клеммам.

Корпус оснащен предохранительным клапаном, главная функция которого – сбрасывать внутреннее давление при авариях и нарушении условий использования двигателя. Литий-ионные аккумуляторы различаются в зависимости от характера материала на катоде. «Транспортером» заряда в этом источнике питания есть ион лития с положительным зарядом, который может вклиниваться в кристаллическую структуру таких материалов, как графит и различные соли, с созданием связи химической природы.

Сегодня при обширном производстве описанного вида аккумулятора используют такие три вида сырья катодной природы:

  • Кобальт литий и производные от никелата лития твердые растворы.
  • Шпинель из лития и марганца.
  • Феррофосфат лития.

Аккумуляторы с литий-ионным наполнителем имеют существенные преимущества в сравении с их сородичами. Это низкие показатели

TeslaModel S: взгляд изнутри

Компания «Тесла Моторс» создает популярные «экологичные» электромобили, которым присущи специфические свойства, делающие машины популярнее с каждым днем. Одной из составляющих успеха продуктов компании являются батареи литий-ионной природы, размещенные в электроавто.

Каково же строение источника питания Тесла?

Для начала стоит отметить, что вся сборка аккумулятора характеризуется повышенной плотностью и точностью сочетания составляющих. Батарея имеет 16 составляющих – блоков параллельного соединения, огражденных пластинами из металла и пластиковой защитой батареи от воды. Каждый блок аккумулятора имеет разделенные на шесть групп 74 составляющих компонента, похожих на привычные пальчиковые батарейки. Схема их размещения и принцип работы держатся в строжайшем секрете!

Электрод с положительным зарядом – это графит, а с отрицательным – никель, кобальт и оксидный алюминий.

Наимощнейший из подобных аккумуляторов сложен из 7104 похожих батарей. Имеет вес 540 кг, длину – 2м 10см, ширину – 1м 50см и 15 см толщину. Энергия, вырабатываемая одним из 16 блоком, равна продуцируемой сотней аккумуляторов портативных компьютеров.

При производстве аккумуляторов Тесла используют детали, созданные в Мексике, Китайской народной республике и Индии. Конечная работа производится в США. Гарантия, предоставляемая компанией, значительна: до 8 лет.

В статье описан состав наиболее распространенных источников питания для двигателей электромобилей. Надеемся, информация будет полезной для Вас!

Принцип работы и устройство батарейки

Батарейки являются незаменимыми источниками электроэнергии. Благодаря ним человек не зависит от проводов и становится более мобильным. В этой статье будет рассказано о том, из чего состоит элемент питания и в чем заключается принцип работы батареек.

Из чего состоит

Батарейка состоит из картонного, пластмассового или металлического корпуса. В портативных источниках напряжение внешняя оболочка, как правило, не участвует в электрохимической реакции.

Внутри батареи находится положительный стержень и электролит, который также принимает участие в передаче электрического тока. Конструкция элемента питания может быть различной, но практически у всех типов источников тока присутствуют перечисленные детали.

При необходимости, можно достать такие элементы, аккуратно разобрав батарейку и достав содержимое из её корпуса для изучения.

Устройство батарейки

Конструкционные особенности батареек связаны, прежде всего, с их размерами и формой.

Цилиндрической

Цилиндрическая батарейка имеет вытянутый корпус. Оболочка в таких элементах чаще состоит из металла. Эта часть надёжно изолирована от внутренних деталей.

Сразу после диэлектрической оболочки следует тонкий стакан из токопроводящего металла (цинка в солевых батареях). Этот элемент соединяется с отрицательным выводом батарейки.

В середине цилиндрического элемента питания располагается графитовый стрежень, который является положительным выводом. В контактной части на эту деталь надевается металлический колпачок для защиты от механических повреждений.

В пространстве между центральным стержнем и отрицательной оболочкой находится электролит и деполяризующая смесь.

Круглой (миниатюрной)

Кнопочная батарея является незаменимым элементом питания в наручных часах и других миниатюрных электрических устройствах. Срок службы таких батареек, как правило, выше чем у пальчиковых, но причина длительной работы связана, прежде всего, с небольшим электропотреблением устройств, в которые устанавливается данный элемент.

Состоит такая батарейка из положительного и отрицательного полюсов, между которыми находятся вещества, вступающие в химическую реакцию при подключении к источнику тока потребителей.

Разноимённые контакты в таких изделиях надёжно изолированы друг от друга диэлектрическим материалом. Наиболее часто кнопочные батареи производят по воздушно-цинковой технологии.

Крона

Крона отличается от других батареек тем, что внутри элемента находится 6 небольших источников питания по 1,5 Вольт. Принцип работы каждого отдельного изделия не отличается от пальчиковых или кнопочных батарей.

Корпус батарейки «Крона» изготавливается из металла, но также может использоваться прочный пластик. Отдельные элементы располагаются сверху вниз и подключаются последовательно. Положительный и отрицательный выводы  находятся на одной из плоскостей, которая изготавливается из диэлектрика.

Особенности химического состава

В зависимости от веществ, которые используют внутри батареи, такие изделия могут быть солевыми, щелочными или литиевыми. Каждая группа имеет свои особенности химического состава.

Солевой

В качестве катода в солевой батарее используется цинк, а анод представляет собой стержень, изготовленный из графита и MnO2. Электролит в элементе этого типа – это хлорид аммония или калия. Для придания необходимой консистенции в него также добавляют специальный загуститель.

устройство плоской батарейки

Элементы питания этого типа, в которых в качестве анода используются серебро, обладают значительно большим сроком годности. Называются такие элементы серебряно-цинковыми и стоят значительно дороже простых солевых батареек.

Щелочной

Строение алкалиновой батарейки практически не отличается от солевой. Разница заключается только в том, что в щелочном элементе серединный стержень устанавливается на отрицательный вывод, а не на положительный.

Химический состав изделия этого типа следующий:

  • Катод – диоксид марганца.
  • Анод – порошкообразный цинк.
  • Электролит – гидрооксид калия.

Основное преимущество марганцево-щелочных элементов перед солевыми батареями заключается в большей ёмкости.

Литиевой

Литиевые неперезаряжаемые элементы имеют следующий химический состав:

  • Анод – литий или литиевые соединения.
  • Катод – диоксид марганца, пирит и другие.
  • Электролит – перхлорат лития, тионилхлорид.

Литиевые элементы питания работает в различных устройствах значительно дольше щелочных и солевых изделий, но и стоимость их на порядок выше.

устройство плоской батарейки

Откуда берётся ток

В отличие от аккумуляторов, батарея сделана таким образом, что её невозможно перезарядить. Тем не менее, этот источник тока имеет на контактах необходимый ток для питания различных устройств. Физика такого явления очень проста:

  • Металлический элемент помещается в окислитель, в который и переходят положительно заряженные частицы.
  • При этом в металле будут накапливаться отрицательные ионы.

При подключении потребителя механизм этот будет поддерживаться до тех пор, пока металл практически полностью не расходуется.

Принцип работы батарейки

Принцип работы батареи довольно прост для понимания. Схема образования электричества выглядит следующим образом:

  • Цинковый стакан элемента питания в результате химической реакции приобретает отрицательный заряд.
  • Графитовый стержень становится положительно заряженным.

Отрицательные ионы, которые поступают на соответствующий вывод, потекут к положительному полюсу при подключении какой-либо нагрузки, например, лампочки или моторчика.

В общем, устройство батарейки представляет собой очень простую схему, которую, при желании, можно повторить самостоятельно в домашних условиях, используя при этом вполне доступные химикаты и металлические изделия.

Остались вопросы или есть что добавить? Тогда напишите нам об этом в комментариях, это позволит сделает материал более полезным, полным и точным.

Устройство н принцип действия простейшего аккумулятора.

Простейший аккумулятор состоит из емкости с помещенными в нее двумя свинцовыми пластинами, не соприкасающимися друг с другом. В сосуд заливается электролит, состоящий из дистиллированной воды с добавлением химически чистой серной кислоты в определенной про-порции. Уровень электролита должен превышать высоту пластин, что обеспечивает полное использование их поверхности. Подготовленный таким образом аккумулятор заряжается от источника постоянного тока генератора путем соединения одной пластины с положительным, а другой с отрицательным полюсом .

При прохождении тока через пластины и электролит (заряд) в аккумуляторе происходит процесс преобразования электрической энергии в химическую, что выражается в образовании налета активной массы на поверхности пластин. На положительной пластине образуется перекись свинца коричневого цвета, а на отрицательной губчатый свинец серого цвета.

При включении в цепь аккумулятора какого-либо потребителя (лампы) происходит обратный процесс превращения химической энергии в электрическую, и аккумулятор постепенно разряжается. При этом активная масса на той и другой пластинах превращается в сернокислый свинец (рис. 2.1 б), а плотность электролита уменьшается. После полного разряда аккумулятор снова заряжается и работоспособность его восстанавливается.

Для увеличения емкости аккумулятора (запаса электроэнергии) в нем устанавливают большое количество решетчатых пластин, заполненных активной массой и составляющих два полублока . При этом для изоляции между положительными и отрицательными пластинами устанавливаются сепараторы.

Аккумуляторная батарея состоит из шести свинцово-кислотных двух вольтовых аккумуляторов, соединенных между собой последовательно, что обеспечивает получение в электрической цепи рабочего напряжения 12 В, необходимого для питания всех потребителей на автомобиле.

Устройство аккумуляторной батареи (рис. 2.2). Аккумуляторная батарея имеет полипропиленовый полупрозрачный корпус, разделенный перегородками на шесть отсеков, представляющих собой отдельные аккумуляторы. Сверху аккумуляторы закрыты общей полипропиленовой крышкой, приваренной к корпусу ультразвуковой сваркой. В крышке имеются отверстия для заливки электролита в каждый аккумулятор и для прохода двух полюсных выводов батареи (плюсового и минусового).

Каждый аккумулятор состоит из двух полу блоков чередующихся пластин: положительных и отрицательных. Пластины одинаковой полярности приварены к меж элементным соединениям (борнам), которые служат для крепления пластин и выводов тока и соединяют аккумуляторы батареи между собой. Решетки пластин отлиты из сплава свинца с добавлением кальция и сурьмы, что замедляет процесс разложения электролита и саморазряд аккумуляторов.

Для увеличения емкости в решетку пластин впрессовывают активную массу, приготовленную на водном растворе серной кислоты из окислов свинца — свинцового сурика (РЬ304) и свинцового глета (РЬО) — для положительных пластин и свинцового порошка для отрицательных пластин. Одноименные пластины соединяются в полу блоки, заканчивающиеся выводными полюсными штырями. Полу блоки с положительными и отрицательными пластинами собирают в блок таким образом, что положительные пластины располагаются между отрицательными, поэтому последних обычно на одну больше. Это позволяет лучше использовать двустороннюю активную массу крайних положительных пластин и предохраняет их от коробления и разрушения.

Положительные пластины аккумулятора помещаются в сепараторы, изготовленные в виде конвертов из тонкого пластикового микропористого материала. Это исключает их короткое замыкание отрицательными пластинами, а малая толщина и большая пористость сепараторов облегчают прохождение через них электролита, снижают внутреннее сопротивление и обеспечивают получение разрядного тока большой силы. Кроме того, это исключает короткое замыкание пластин выпадающей активной массой, позволяет устанавливать блоки пластин непосредственно на днище бака без ребер и значительно увеличить объем электролита над пластинами и тем самым увеличить срок доливки дистиллированной воды при эксплуатации автомобиля.

Для облегчения проверки уровня электролита в каждом аккумуляторе у заливных отверстий снизу имеются трубчатые индикаторы (тубусы). Нижний срез индикатора находится на требуемой высоте от уровня пластин. При нормальном уровне поверхность электролита образует четко видимый через наливное отверстие мениск (эллипс). Кроме того, на полупрозрачном пластмассовом корпусе аккумуляторной батареи могут быть метки «MIN» и «МАХ», между которыми должен находиться уровень электролита.

Полу блоки положительных и отрицательных пластин отдельных аккумуляторов соединены между собой меж- элементными соединениями, проходящими через пластмассовые перегородки. И соединяются соответственно с положительным и отрицательным выводами батареи.

Выводы большинства отечественных и импортных аккумуляторных батарей имеют конусную форму, обеспечивающую сохранение надежного контакта с клеммами проводов при износе их в процессе эксплуатации, и имеют стандартные размеры. Причем положительный вывод батареи по диаметру больше отрицательного, что исключает возможность нарушения полярности при установке батарей на автомобиль.

На верхней поверхности батареи расположены отверстия для заливки электролита в каждый аккумулятор батареи, закрываемые пробками. Пробки имеют вентиляционные отверстия для выхода газов, образующихся в процессе работы батареи. У новых незалитых батарей вентиляционные отверстия закрыты специальными герметизирующими приливами, которые при заливке в батарею электролита удаляются (срезаются).

 

Технические характеристики аккумуляторной батареи (АКБ). Емкость — это количество электричества в ампер- часах (А-ч), которое способна отдать полностью заряженная батарея при непрерывном 20-часовом разряде с постоянной силой тока, численно равной 0,05 емкости батареи, до напряжения на выводных клеммах АКБ 10,5 В.

Во время пользования АКБ нельзя допускать снижения напряжения ниже 10,2 Б, так как это приведет к ее порче.

Чем больше сила разрядного тока, тем меньше становится емкость АКБ. Емкость зависит также от размера пластин аккумулятора и их числа, от количества активной массы, а также от температуры электролита.

ЭДС батареи — это разность потенциалов на ее выводных клеммах без нагрузки (при разомкнутой внешней цепи). Данная характеристика взаимосвязана со степенью заряженности батареи и по ее величине можно оценивать состояние батареи и необходимость ее заряда.

Напряжение АКБ — это разность потенциалов на ее выводных клеммах в процессе заряда или разряда (при наличии тока во внешней цепи). Данная характеристика используется при оценке пусковых качеств батареи.

Пусковые качества АКБ оцениваются по следующим параметрам стартерного разряда, измеряемым при температуре электролита 18°С:

— сила разрядного тока, А;

— напряжение в начале разряда (для АКБ с пластмассовым корпусом — на 30-й секунде стартерного разряда), Б;

— время разряда до момента установления напряжения 10,2 В, мин.

Саморазряд АКБ необходимо учитывать для правильной эксплуатации батареи и продления срока ее службы. Саморазрядом называют самопроизвольное снижение емкости АКБ при отключенных от нее потребителях. При значениях саморазряда более 1 % в сутки он считается ускоренным и свидетельствует о неисправности батареи. При отрицательных температурах саморазряд аккумуляторных батарей резко уменьшается, поэтому хранить их лучше при низких температурах в заряженном состоянии.

Маркировка аккумуляторн ых батарей состоит из цифр и букв:

— первая цифра обозначает число аккумуляторов в батарее;

— буквы СТ — свинцовая стартерная батарея, т.е. обеспечивающая получение высокого пускового тока;

— число, отделенное от предыдущей части обозначения черточкой, указывает номинальную емкость АКБ в ампер-часах;

— последние буквы обозначают материал и конструктивное исполнение корпуса батареи: Э — эбонит, Т — полиэтилен, П — асфальтопековая пластмасса, А — пластмассовый с общей крышкой; материал сепараторов: М — мипласт, Р — мипор, С — стекловолокно; потребительские характеристики: 3 — залитая и заряженная, Н — не сухозаряженная, JI — необслуживаемая. Термин «необслуживаемая» является условным, так как

обслуживать такие батареи все же нужно, хотя и в значительно меньшем объеме.

После буквенных обозначений АКБ указывается соответствующий Государственный стандарт.

Для определения полярности на выводных клеммах проставляют знаки «+» и «-». Кроме того, отрицательную клемму делают меньшего диаметра. Если нет опознавательных знаков и выводные клеммы АКБ по диаметру различить трудно, то необходимо установить батарею на автомобиль и, подключив клеммы, включить фары. Если стрелка амперметра или лампочка световой сигнализации при неработающем двигателе покажут разряд АКБ, то батарея включена правильно.

Аккумуляторные батареи устанавливаются на специальной площадке в моторном отсеке, либо крепятся за выступы в нижней части корпуса с помощью кронштейнов.

Электролит

Объемы серной кислоты н дистиллированной воды для приготовления 1 литра электролита при 15°С, см3

Электролит — это раствор серной кислоты в дистиллированной воде. Раствор приготавливается только в кислотоупорной посуде (эбонитовой, керамической). Электролит нужной плотности получают медленным добавлением серной кислоты к дистиллированной воде. Вливать воду в кислоту категорически запрещено .

По мере уменьшения плотности электролита понижается температура замерзания электролита. Например, при плотности электролита 1,23 г/см3 его температура замерзания составит минус 36 °С. В полностью разряженной батарее плотность электролита понижается до 1,11 г/см3, а температура замерзания — до -7°С. Поэтому в зимнее время разряженные аккумуляторные батареи нельзя оставлять вне отапливаемого помещения.

Для предотвращения замерзания электролита при эксплуатации аккумуляторной батареи в зимних условиях плотность регламентируется в зависимости от климатических условий эксплуатации .

Так же необходимо знать, чему должно быть равно напряжение заряженного аккумулятора, ведь достаточные уровень и плотность электролита еще не говорят о степени зарядки АКБ. Чтобы измерить напряжение батареи, нужно воспользоваться вольтметром или мультиметром, при этом перед процедурой необходимо снять «минусовой» провод с клеммы.

Напряжение на клеммах АКБ

Напряжение на выводах, В Уровень зарядки акк. %
12,6-12,9
12,3-12,6
12,1-12,3
11,8-12,1
11,5-11,8

 

Довольно часто автолюбители сталкиваются с такой проблемой, как отсутствие достаточного уровня электролита в банках автомобильного аккумулятора. В большинстве случаев это решается простым добавлением дистиллированной воды до нужного уровня. Но если такое происходит довольно часто или же пришлось добавить довольно большое количество воды, то плотность электролита становится гораздо меньше, чем положено и такая батарея либо плохо держит зарядку, либо совсем выходит из строя.

Для того чтобы поддерживать плотность электролита в аккумуляторе на должном уровне необходимо иметь в своем арсенале автомобильный ареометр или же обратиться в сервисный центр к профессионалам.

Ареометр автомобильный бывает как для электролита, так и для тосола, чаще они совмещены в одном приборе. Ареометр для электролита представляет собой прозрачную стеклянную колбу с длинным наконечником на одном ее конце и резиновым шаром на другом. Внутри данной колбы расположен обычный стеклянный ареометр для измерения плотности электролита

Как правильно зарядить аккумулятор автомобиля

Итак, если у вас есть зарядное устройство (ЗУ) и вам нужно зарядить «севший» аккум-р, нужно сделать следующее:

В целях безопасности извлекаем батарею из автомобиля (выполняем по инструкции к своему авто) и устанавливаем на ровное место, например на стол, где будет производиться дальнейшая ее зарядка. Все это нужно делать в хорошо проветриваемом помещении и вдали от огня, так как при зарядке выделяется большое количество вредных и легковоспламеняющихся газов.

Если аккум-р обслуживаемый, необходимо проверить плотность электролита в банках а так же убедиться, что его уровень соответствует норме. Посмотрите на клеммы АКБ, если они окислены или загрязнены, то необходимо их зачистить напильником или шкуркой для улучшения контакта и затем слегка смазать графитовой смазкой или литолом.

Помните, касаться одновременно обеих клемм напильником нельзя, это может привести к порче АКБ или ее возгоранию

Отверните все пробки с банок АКБ и положите их на отверстия, нужно это для того чтобы в конце процесса зарядки выделяемые газы (кислород и водород) не скапливались внутри а выходили наружу. Просто иногда отверстия в пробках оказываются засоренными и не пропускают их, что может привести к поломке АКБ.

После того как первые шаги сделаны можно приступать к самому процессу зарядки. Согласно инструкции к ЗУ, выполняем его подключение к соответствующим клеммам АКБ: «плюсовой» провод к «плюсу» батареи, обычно он красного цвета, а «минусовой» провод к «минусовой» клемме аккумулятора, обычно он черного цвета.
Если по инструкции к зарядному устройству оно должно быть отключено от сети в момент подключения к батарее, то теперь самое время его включить в сеть, и опять же следуя инструкции настроить необходимый режим зарядки.


Читайте также:


Рекомендуемые страницы:

Поиск по сайту

История аккумулятора

Открытие аккумулирующего эффекта относится к числу важнейших и значительнейших изобретений в области электротехники.

Еще в 1800 году Алесандро Вольта (Alessandro Giuseppe Antonio Anastasio Volta) (1745–1827) — итальянский физик и физиолог, один из основоположников учения об электричестве поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток. Вольта назвал свое изобретение «электрический орган». Это был первый химический источник тока на медно-цинковой паре электродов («вольтов столб» или «батарея Вольта»). В 1802 г. немецкий физик Джоан Вильгельм Риттер (Johann Wilhelm Ritter) (1776–1810) изобрел сухой гальванический элемент, а в 1803 электрическую аккумуляторную батарею.

В 1854 году немецкий военный врач Вильгельм Зинстеден наблюдал следующий эффект: при пропускании тока через свинцовые электроды, погруженные в разведенную серную кислоту, положительный электрод покрывался двуокисью свинца PbO2, в то время как отрицательный электрод не подвергался никаким изменениям. Если такой элемент замыкали потом накоротко, прекратив пропускание через него тока от постоянного источника, то в нем появлялся постоянный ток, который обнаруживался до тех пор, пока вся двуокись свинца не растворялась в кислоте. Таким образом, Зинстеден вплотную приблизился к созданию аккумулятора, однако он не сделал никаких практических выводов из своего наблюдения.

Только пять лет спустя, в 1859 году, французский инженер Гастон Планте случайно сделал то же самое открытие и построил первый в истории свинцовый аккумулятор. Этим было положено начало аккумуляторной техники.

Аккумулятор Планте состоял из двух одинаковых свинцовых пластин, навитых на деревянный цилиндр. Друг от друга они отделялись тканевой прокладкой. Устроенный таким образом прибор помещали в сосуд с подкисленной водой и соединяли с электрической батареей. Спустя несколько часов, отключив батарею, можно было снимать с аккумулятора достаточно сильный ток, который сохранял в течение некоторого времени свое постоянное значение.

Существенным недостатком аккумулятора Планте была его небольшая емкость — он слишком быстро разряжался. Вскоре Планте заметил, что емкость можно увеличить специальной подготовкой поверхности свинцовых пластин, которые должны быть по возможности более пористыми. Чтобы добиться этого, Планте разряжал заряженный аккумулятор, а затем опять пропускал через него ток, но в противоположном направлении. Этот процесс формовки пластин повторялся многократно в течение приблизительно 500 часов и имел целью увеличить на обоих пластинках слой окиси свинца.

До тех пор, пока не была изобретена динамо-машина, аккумуляторы представляли для электротехников мало интереса, но когда появилась возможность легко и быстро заряжать их с помощью генератора, аккумуляторы получили широчайшее распространение.

В 1882 году Камилл Фор значительно усовершенствовал технику изготовления аккумуляторных пластин. В аккумуляторе Фора формирование пластин происходило гораздо быстрее. Суть усовершенствования Фора заключалась в том, что он придумал покрывать каждую пластинку суриком или другим окислом свинца. При заряжении слой этого вещества на одной из пластин превращался в перекись, тогда как на другой пластинке вследствие реакции получалась низкая степень окисла. Во время этих процессов на обеих пластинах образовывался слой окислов с пористым строением, что способствовало скоплению выделяющихся газов на электродах.

В начале XX века усовершенствованием аккумулятора занялся Томас Эдисон, который хотел сделать его более приспособленным для нужд транспорта. В результате были созданы железно-никелевые аккумуляторы с электролитом в виде едкого калия. В 1903 году начинается производство новых портативных аккумуляторов, которые получили широкое распространение в транспорте, на электростанциях и в небольших судах.

Сначала корпуса аккумуляторов были деревянными, потом эбонитовыми. Аккумуляторные батареи формировались из нескольких элементов, каждый из которых имел рабочее напряжение около 2,2 вольт. Для шестивольтовых аккумуляторов в одном корпусе последовательно соединялись три элемента, для 12-вольтовых — шесть, для 24-вольтовых — двенадцать.

Для легковых автомобилей 6-вольтовая электросистема была общепринятой почти полвека, и только в 50-х годах произошел массовый переход на 12 вольт. Эбонитовые корпуса батарей с торчащими наружу или залитыми мастикой перемычками между элементами постепенно уступили место более легким и прочным полипропиленовым. Пионером в применении синтетических материалов для корпусов аккумуляторов выступила в 1941 году австрийская фирма Baren, а полипропилен начала использовать американская фирма Johnson Controls в середине 60-х. Произошли в конструкции свинцово-кислотных аккумуляторов и другие изменения, повлиявшие на их параметры и срок службы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *