Характеристика зарядного устройства: Как выбрать зарядное устройство для смартфона и не ошибиться

Содержание

Как выбрать зарядное устройство для смартфона и не ошибиться

На сегодняшний день все больше и больше производителей смартфонов громогласно вещают: «Наше устройство поддерживает быструю зарядку 60 Вт», «Мы представили новый стандарт зарядки – 80 Вт!». Vivo пошла еще дальше, выпустив Super FlashCharge с ее 120 Вт. Стандарты выходят за рамки должной «стандартности». Это безусловно хорошо, как двигатель прогресса, но вносит путаницу для пользователей. Давайте во всем разберемся.

Школьный курс физики или Что такое «небыстрая» зарядка

Основной показатель зарядного устройства – выдаваемая им мощность. На минуту вернемся в пятый класс. Произведение силы тока (амперы, А) на напряжение (вольты, В) является мощностью (ватты, Вт), по формуле W=I·U. Все, вернемся из школы в реальную жизнь, и что мы видим? Видим грустную картину – подавляющее большинство пользователей смартфонов в этом не разбирается. Редко кто знает характеристики зарядки своего гаджета. Будем это исправлять.

Прежде чем углубляться в разнообразие быстрых зарядок, разберемся что же подразумевает зарядка стандартная, «медленная». Ответ прост – а все, что угодно. Описания технических стандартов «медленности» зарядки не существует. До 2013 года, когда Qualcomm вывела в массы технологию Quick Charge, зарядные были просто зарядными, а после разделились на быстрые и не очень.

И все же стандартными значениями принято считать зарядку устройств 5 В, с силой тока 1,0, 1,5, 2,0 и 2,2 А, то есть от 5 до 11 Вт. Все, что выше, классифицируется как быстрая зарядка.

Как научиться понимать свое ЗУ

Будем развивать свою техническую грамотность – учиться понимать информацию, которую указывает производитель зарядных устройств. Итак, шильдик на зарядке может рассказать нам, какие режимы эта самая зарядка поддерживает. Конечно же, если она не сделана в темном китайском подвале. Возьмем два зарядных, которые попались под руку, и рассмотрим их возможности.

Зарядка №1 (от Lenovo VIBE P1 Pro)

Первым делом найдем слово «Output», все что идет за ним – параметры тока и напряжения, выдаваемых устройством. Смотрим: 5.2V-2A, 7V-2A, 9V-2A, 12V-2A. Перемножив вольты и амперы, мы узнаем четыре поддерживаемых режима работы – 10,4 Вт, 14 Вт, 18 Вт и 24 Вт. Т.е. ЗУ умеет работать медленно, для поддержки устаревших смартфонов без быстрой зарядки, и имеет три быстрых режима.

Три варианта мощности предназначено не для трех разных смартфонов, а для одного. Дело в том, что на максимальном значении в 24 Вт смартфон заряжается не все время, а примерно до 60% емкости батареи. После он переходит на 18 Вт и так далее в сторону уменьшения. Смысл – не допустить перегрева аккумулятора. Ведь чем больше мощности – тем больше тепла.

Зарядка №2 (от Xiaomi Mi 9)

Находим шильдик и видим: 5V-2.5A, 9V-2A, 12V-1.5A. Узнаем мощность – 12,5 Вт, 18 Вт и… 18 Вт. Данная зарядка нам предлагает стандартный режим, и два одинаково быстрых режима на 18 Вт. Зачем? Ну это Xiaomi, а восток дело тонкое. Как видно, это зарядное более простое, и имеет всего два режима быстрой зарядки (а, по сути, всего лишь один).

Приступаем к выбору

Моделируем ситуацию – зарядное благополучно посеяно, и вы стоите: а) на вокзале, б) в аэропорту, в) посреди комнаты, с растерянным видом. Берем себя в руки, открываем сайт производителя вашего смартфона, вбиваем свою модель и смотрим характеристики зарядки. Нашли? Должно быть что-то наподобие: «Поддержка быстрой зарядки 40 Вт». Также важно узнать применяемую технологию быстрой зарядки. К примеру – Quick Charge 3.0. Теперь можно приступить к выбору ЗУ.

Итак, мы знаем, что смартфон поддерживает максимальную мощность заряда в 40 Вт. И знаем, что промежуточные значения тоже важны – перегрев батареи, помните? Отсеиваем все зарядные устройства, не относящиеся к QC 3.0. Даже если среди другой технологии быстрой зарядки (например, Pump Express) нам попадется устройство с необходимыми характеристиками, не факт, что они подружатся с нашим смартфоном.

Имеем оставшиеся зарядки с нужной нам технологией. Выбираем. Допустим, первая, привлекшая наше внимание, имеет максимальную мощность 12V-2. 5A. А это 30 Вт, маловато. Смотрим дальше – 20V-2A, это 40 Вт, то что нужно! Смотрим на промежуточные значения и, если нас все устраивает, покупаем. Если мощность зарядного оказалась выше поддерживаемой смартфоном, ничего страшного, он не сгорит, просто зарядное будет работать не в полную силу.

О недобросовестных производителях и беспроводных зарядках

Бывает, что жадные производители, комплектуют свои смартфоны стоковыми зарядными устройствами. То есть сам смартфон поддерживает 25-ваттную зарядку, а в комплекте с ним идут адаптеры всего лишь на 15 Вт или даже меньше.

В случае со смартфоном мы можем доукомплектовать его «правильным» зарядным устройством. Как и ранее, узнаем технологию, по которой он заряжается, и выбираем наиболее подходящее устройство. К примеру, некий смартфон Motorola поставляется с зарядным устройством 5V-5A, это 25 Вт мощности. Сам же смартфон может заряжаться от 35 Вт. Узнаем технологию, для Moto это – TurboPower 30. Ок, среди этой технологии есть зарядные с характеристиками 5V-7A, это и есть 35 Вт.

Подберем зарядное и для беспроводного дока. К примеру, имеем беспроводной «блинчик» от Xiaomi. Характеристики на нем следующие: 5V-2A, 9V-1.6A, то есть 10 и 14,4 Вт. По наименованию находим его на сайте, и проверяем используемую технологию – Quick Charge 2.0. Остается найти зарядное 9V-1.6A. Хотя в технологии Quick Charge 2.0 предусмотрены устройства до 12V–2A, переплачивать за них нет смысла, сама беспроводная станция более чем 14,4 Вт не выдаст.

Выводы

Как видно, разобравшись в пересчете вольтов и ампер в ватты, можно без труда определять выходные мощности зарядных устройств. При выборе ЗУ ориентируйтесь в первую очередь на используемую в нем технологию быстрой зарядки. Предпочтительно использовать такую же, как в смартфоне.

После нужно обращать внимание на поддерживаемую смартфоном мощность. Достаточно просто сопоставлять характеристики смартфона и зарядного устройства, и тогда выбор последнего не будет проблемой.

Характеристики зарядных и пусковых устройств

Содержание:

  1. 1. Выходное напряжение
  2. 2. Тип АКБ
  3. 3. Емкость заряжаемого аккумулятора
  4. 4. Максимальный ток
  5. 5. Тип питания

Проблемы с запуском двигателя могут возникнуть по многим причинам. Одной из самых распространенных является севший аккумулятор. С вами случалось такое? Забыли выключить фары на ночь. В холодную погоду автомобиль простаивал несколько дней. Грянул сильный мороз, и аккумулятор сел. За время поездок на небольшие расстояния АКБ не успевает заряжаться. Пожалуй, это самые частые ситуации, которые заставляют задуматься о покупке вспомогательного устройства для поддержания аккумулятора в рабочем состоянии. ПУ, ЗУ или ПЗУ – что означают эти аббревиатуры? Так сокращенно называют приборы для обслуживания аккумуляторных батарей. Пусковое устройство (ПУ) используется исключительно для запуска севшей батареи непосредственно на автомобиле. Оно поможет оживить АКБ и запустить двигатель. Результат сравним с тем, как прикуривают аккумулятор с помощью другого автомобиля с рабочей батареей.

Зарядное устройство (ЗУ) необходимо для пополнения заряда АКБ, например, когда нужно подготовить его к зимней эксплуатации или периодически подзаряжать, если во время поездок работы генератора недостаточно для пополнения заряда. Пуско-зарядное устройство (ПЗУ) является универсальным приспособлением, которое пригодится во всех перечисленных ситуациях.

Какой бы вид устройств вы ни выбрали, знание технических параметров поможет безошибочно подобрать модель для вашего автомобиля. Ориентироваться нужно не только на цену, функциональность и фирму-изготовителя, в первую очередь следует задуматься о его совместимости с аккумулятором. Мы перечислим основные характеристики зарядных и пусковых устройств, которые нужно учесть при выборе.

Выходное напряжение

Должно соответствовать рабочему напряжению аккумулятора автомобиля, например, 12 или 24 В. Если вы планируете обслуживать несколько единиц техники, например, мотоцикл с аккумулятором на 6 В и легковой автомобиль с АКБ на 12 В, стоит отдать предпочтение универсальной модели, напряжение которой обозначается так: 6/12 В.

В автосервисы, где обслуживают разные автомобили, необходимо устройство с более широким диапазоном выходного напряжения, например, 6/12/24/36/48 В.

Тип АКБ

Какой аккумулятор установлен в вашем автомобиле? Если свинцовый с жидким электролитом, ищите зарядное или пусковое устройство с маркировкой WET. Для АКБ с сухим наполнителем в характеристиках модели должно быть обозначение AMG, с гелиевым наполнителем – GEL. Как и с показателем выходного напряжения, вопрос выбора зависит от того, сколько единиц техники и с какими аккумуляторами вы планируете обслуживать. Вы можете выбрать устройство исключительно для своего автомобиля для одного типа батарей либо приобрести универсальное – WET/GEL/AGM.

Емкость заряжаемого аккумулятора

Каждое зарядное или пусковое устройство рассчитано на работу с батареями определенной емкости. Обычно производители указывают диапазон, т.е. минимальную и максимальную емкость обслуживаемого аккумулятора. Например, у PATRIOT BCI-10M он составляет от 10 до 150 А*ч. В этот диапазон попадают АКБ легковых автомобилей, внедорожников и некоторых малотоннажных грузовиков. У профессионального пуско-зарядного устройства Blue Weld MAJOR 1500 допустимые значения составляют от 70 до 4000 А*ч. Оно подойдет для обслуживания пассажирского транспорта, спецтехники, грузовых транспортных средств.

Максимальный ток

Влияет на эффективность использования зарядного или пускового устройства. Например, если пытаться запустить двигатель газели, используя прибор с недостаточным током зарядки, не удастся прокрутить коленвал.

Максимальный ток запуска – характеристика для ПУ и ПЗУ, которая подбирается исходя из номинального потребления стартера автомобиля с троекратным запасом. К примеру, для легкового автомобиля мощность стартера составляет 3 – 4 кВт, а ток запуска достигает 200 – 250 А. Для грузовых авто эти показатели составляют, к примеру, 13 кВт и 550 А. У некоторых профессиональных устройств ток запуска может достигать нескольких тысяч ампер для обслуживания очень мощной спецтехники.

Максимальный ток зарядки – характеристика для ЗУ и ПЗУ, от которой зависит то, как быстро удастся восполнить заряд батареи. Значение может составлять от нескольких единиц до нескольких десятков ампер. Стоит отметить, что чаще всего небольшие показатели указываются для импульсной зарядки. Так, например, у модели Hyundai HY 200 эта характеристика составляет 2 А. Выбор следует делать исходя из типа и емкости аккумулятора. Например, для свинцового аккумулятора емкостью в 60 А*ч при обычной зарядке достаточно тока в 6 А, а при быстрой этот показатель может увеличиться до 20 – 40 А. Для частного применения бывает достаточно устройств с током зарядки до 10 – 15 А, так как емкость аккумуляторов обычно небольшая и есть возможность длительной их зарядки. Для профессионального применения в автосервисах и на СТО рекомендуется приобретать модели с током зарядки свыше 30 А.

Тип питания

Сетевые устройства обычно выбирают в гараж, где есть электричество, или в автосервисы. Это могут быть модели на 220 или 380 В – все зависит от типа сети здания. Однако если нужно запустить двигатель автомобиля в полевых условиях или во дворе, необходимо пусковое устройство со встроенным аккумулятором. Он заранее заряжается от домашней электросети либо от бортовой сети автомобиля через прикуриватель. Если требуется запустить машину, заряд устройства используется для севшего аккумулятора. Модели для частного применения уже комплектуются производителем встроенным элементом питания, мощные профессиональные устройства, как правило, поставляются без батареи – ее нужно подбирать отдельно.

Теперь вы знаете, что обозначают характеристики пусковых и зарядных устройств. Поэтому легко сможете подобрать подходящую модель для личного автомобиля или обслуживания разных транспортных средств в автосервисе. Прежде чем делать заказ, внимательно изучите описание модели, сравните ее параметры и цену с аналогичными устройствами. Принять окончательное решение вам помогут отзывы покупателей в карточках товаров. Желаем вам удачного запуска – аккумулятор не подведет!

Автомобильное зарядное устройство 2А и его характеристики

Такой тип зарядного устройства больше подходит для планшетов и смартфонов компания Wexler, Samsung, Starway, Goclever, Armix, Ritmix, Prestigio и других великолепных моделей. Большинство из этих смартфонов и планшетов в основном заряжаются через тонкие разъемы, которые просто не совместимы с отдельными стандартными форматами, такими например, как microUSB.

Поэтому перед приобретением, необходимо выяснить какими именно характеристиками обладает автомобильное зарядное устройство 2А.

Автомобильное зарядное устройство 2А и его выходные характеристики

  • Ток зарядки в амперах;
  • Напряжение в вольтах;
  • Размер штекера. То есть толщина разъема.

Если вам подходит определенное автомобильное зарядное устройство 2А по всем вышеперечисленным параметрам, такое ЗУ можно покупать. Если же существует хоть какое-то сомнение в правильности выбора, необходимо не торопиться и еще раз сверить все характеристики.

Автомобильное зарядное устройство 2А выбрать не так легко, как это может показаться. От качественного устройства может зависеть срок жизни аккумуляторных батарей на ваших гаджетах.

Ток зарядки не должен быть высоким, поскольку слишком высокий ток приводит к быстрому заряду аккумулятора, а это может вывести из строя батарею намного раньше. Если ток зарядного устройства наоборот не достаточный, то соответственно аккумуляторная батарея телефона будет заряжаться слишком долго.

Перепады напряжения для автомобиля считаются слишком частым явлением, а это, конечно же, очень плохо скажется на ваших девайсах. Поэтому использование дешевого зарядного устройства может просто убить ваш гаджет.

Ключевыми преимуществами любого автомобильного зарядного устройства для мобильной электроники должны быть, во-первых, безопасность для телефона, то есть ЗУ должно защитить мобильное устройство от скачков напряжения с помощью своего стабилизатора. Во-вторых, автомобильные зарядные устройства должны беречь контроллер аккумулятора, только так телефон сможет прослужить дольше и не сгорит. В-третьих, ЗУ должны обладать довольно высокой силой тока, для того чтобы быстро заряжать аккумуляторные батареи. И, в-четвертых, благодаря качественной сборке и используемым материалам такие зарядные устройства способны прослужить намного дольше.

Компания Vertex производитель портативных электронных устройств и аксессуаров для мобильной и цифровой техники. Производитель предлагает широчайший выбор различных зарядных устройств.

КАТАЛОГ автомобильных зарядных устройств

Технические характеристики — Зарядное устройство СОЮЗ ЗУС-1205

Емкость аккумулятора, А/ч

80

Максимальный ток зарядки, А

5

Напряжение заряжаемых аккумуляторов

12

Зарядка щелочных аккумуляторов

есть

Режим десульфатизации

нет

Напряжение питания, В

220

Min ток заряда, А

0. 1

Max ток зарядки, А

5

Max емкость аккумулятора, А/час

80

Родина бренда

Россия

Для аккумуляторов напряжением, В

12

Тип зарядки

автоматическая (WET, EFB, AGM, GEL)

Гарантия

14 месяцев

Что такое быстрое зарядное устройство (Quick Charger)?

Самая большая проблема современных мобильных девайсов — их время автономной работы. Порой заряда аккумуляторной батарее хватает максимум на 4 часа, по истечении которых придётся искать зарядку и место, где можно подзарядиться. В такие моменты хочется 24 часа в сутки не снимать смартфон с зарядки. Для решения этой проблемы есть два пути: либо использовать аккумуляторную батарею большей ёмкости, либо заряжать аккумулятор быстрее по времени.

Quick Charger (дословно «быстрый заряд») — технология, пришедшая от Qualcomm еще в июне 2012 года, которая позволяет заряжать мобильные устройства в несколько раз быстрее. Другие производители чипов также могут похвастаться подобной технологией быстрой зарядки. Так MediaTek ускоряет зарядку гаджетов с помощью технологии Pump Express Plus, которая работает с чипсетами компании, включая флагманский MT6595 и более доступный MT6732. Motorola предлагает зарядное устройство Turbo Charger, которое позволяет заряжать аккумуляторную батарею гаджета на 75 % быстрее по сравнению с обычными зарядными устройствами.

И всё же Quick Charge лидирует на рынке быстрых ЗУ, возможно благодаря тому, что Intel и Samsung имеют лицензию на технологию компании Qualcomm и не предлагают собственных разработок.

Как работает быстрая зарядка?

Многие из Вас уже давно заметили, что смартфон быстрее заряжается при подключении зарядного устройства к сетевой розетке, чем при зарядке от USB порта компьютера. Так происходит, потому что выходная мощность розетки на 220В выше, чем на выходная мощность порта USB 2.0 (5 Вольт и 1 или 2 Ампера против 5 Вольт, 0,5 Ампера). Путём несложных формул из школьного курса физики можно вычислить, что сетевая розетка зарядит ваше устройство на 100% значительно быстрее, нежели порт USB.

Кроме того, каждый смартфон имеет схему управления питанием, встроенную в его печатную плату. Эта схема определяет пределы того, на сколько потребляемая мощность батареи может принимать мощность силы тока (т. е. заряд) без негативных последствий для аккумулятора. Смартфоны без быстрой зарядки ограничены максимальным показателем до 10 Вт (т.е. 5 Вольт умножить на 2 Ампера).

Быстрая зарядка эффективно поднимает этот предел. Если адаптер питания может увеличить мощность (например до 15 Вт, т. е. 9 Вольт умножить на 1,67 Ампера), и если схема управления питанием смартфона позволяет ему взять эту дополнительную мощность, то такой адаптер питания будет заряжать аккумулятор гораздо быстрее.

Поддерживает ли мой телефон быструю зарядку?

Для поддержки технологии быстрой зарядки на смартфоне или планшете необходимо иметь три вещи:

  1. Сертифицированный телефон или планшет Quick Charge;
  2. Адаптер зарядки, поддерживающий Quick Charge;
  3. Качественный USB кабель.

Все эти пункты нужны в совокупности. Не получится зарядить смартфон или планшет, если не выполняется хотя бы один из этих пунктов. Поэтому если у Вас имеется адаптер зарядки Quick Charge и соответствующего качества провод USB, воспользоваться функцией быстрой зарядки не получится, если смартфон не сертифицирован Quick Charge.

Список девайсов, которые гарантированно поддерживают технологию Quick Charge можно найти на сайте Qualcomm здесь. Для MediaTek и её технологии Pump Express Plus в настоящее время выпущено не так много устройств, список которых можно посмотреть здесь.

Что касается USB кабелей, быстрая зарядка поддерживается стандартом micro USB, USB Type A, и новым стандартом USB Type C. Обо всех современных компьютерных разъёмах и не только можно ознакомиться в статье Типы портов компьютера: виды разъёмов и адаптеров.

Таким образом самый простой необходимый кабель — 24 AWG (American Wire Gauge). Маркировка AWG — Американский стандарт измерения проводников, который гласит следующее:

Чем толще и короче кабель, тем меньше должно быть его сопротивление, следовательно, меньше падение напряжения, следовательно, меньше вероятность, что USB-устройство будет работать нестабильно.

Число кабеля указывает на его размер: более низкое число указывает на больший размер. И это обычно записывается следующим образом : USB 28/24 AWG. Первое число (28) относится к размеру проводника, второе число (24) относится к размеру провода питания. 24 AWG является наиболее предпочтительным для быстрой зарядки, а 20 AWG USB кабель может и не подойти.

Кроме того, маркировка «правильного» USB кабеля должна содержать:

  • Shield — экранированный кабель
  • P (Pair) — жилы скручены в пару. Наличие P у одной из цифр очень желательно.
  • 2C — два проводника.

Время заряда от 0 до 60 %, время заряда от 0 до 100 %

Существует еще один важный пункт, который следует знать о быстрой зарядке. Дело в то что технология быстрой зарядки ускоряет начальный период зарядки, но она не может ускорить общий период зарядки.

Т.е. быстрая зарядка поддерживает высокую скорость зарядка относительно общего времени заряда, но примерно до 60%. Дальше скорость заряда стремительно падает до обычного уровня и от 60% до 100% телефон заряжается по времени в целом немногим быстрее обычной зарядки.

Всё дело в том, что большая отдача электроэнергии при зарядке производит больше тепла. Литиевые батареи могут быть повреждены, если они перегреются; поэтому все устройства быстрого заряда имеют датчик температуры. И если она становится слишком критичной время процесса зарядки, быстрая зарядка будет стремиться уменьшить потребляемую мощность до обычных показателей стандарта USB 2.0.

Qualcomm пытается решить эту проблему в новом Quick Charge 3.0, но пока эта технология все еще на стадии разработки.

Обратите внимание, что 60% это приблизительная цифра достижения максимального порога заряда для быстрой зарядки. Некоторые телефоны и планшеты могут выдержать и более высокие показатели вплоть до 75%.

Унификация зарядных устройств для Quick Charger

Все устройства, которые выходят за последнее время и являются сертифицированными Quick Charger, не дают пользователю беспокоиться о том, гаджеты каких компаний стоит покупать, а какие нет, чтобы сохранить функцию быстрой зарядки.

Если у вас есть Quick Charge сертифицированное зарядное устройство от Motorola, и Вы захотите подключить его к HTC One M8, быстрая зарядка будет работать как и прежде.

Отсюда следует понимать, что не нужно обращать внимание на бренды. Не имеет значения используется ли Nexus и зарядное устройство от ASUS или оно от компании третьей стороны по скорости зарядки все они будут одинаковыми.

Quick Charger

Все, что нужно знать о зарядке Tesla: характеристики, факты, видеоинструкции

Одно из неоспоримых преимуществ электромобилей, в сравнении с бензиновыми и дизельными собратьями — это простота и «интеллигентность» дозаправки. Тем не менее, большинство мнений (в частности, о Tesla) сходятся на том, что сегодня электромобиль в России зарядить негде, и если в вашем городе отсутствует специально оборудованная зарядная станция, то полноценная езда не представляется возможной. Однако, это мнение в корне не верно — зарядить электромобиль сегодня в любом городе России проще, чем заправиться на АЗС. Чтобы объяснить почему это так, мы сняли подробную видеоинструкцию, а также решили провести всесторонний ликбез на тему зарядки электромобилей Tesla.

Онлайн калькулятор зарядки

Рекомендуем использовать калькулятор зарядки сайта EV Compare. Он поможет рассчитать время, скорость и стоимость зарядки Tesla.

Пользоваться им легко:
    1. Выберите модель автомобиля, начальный и желаемый уровень заряда;
    2. Выберите розетку, к которой вы подключаете электромобиль, или вручную выставьте напряжение и силу тока.
    3. Чтобы рассчитать стоимость зарядки, укажите цену за кВт*ч (тариф за электроэнергию).

Необходимая теория и характеристики Теслы

Чтобы точно представлять себе, как и сколько заряжать Теслу, а также представлять ее «расход топлива», стоит вспомнить немного информации из школьного курса физики. Впрочем, если вы знаете разницу между амперами, вольтами и киловаттами, можете смело переходить к следующему разделу.

Итак, емкость батареи любого электромобиля измеряется в киловатт-часах (кВт·ч). Например, у Tesla Model S P85 соответствующий показатель равен 85 кВт·ч — это значит, что ее батарея способна выдавать мощность в 85 кВт в течении одного часа, или 1 кВт в течении 85 часов. А чтобы зарядить батарею, необходимо соответственно подавать в нее 85 кВт в течении часа, либо наоборот. Конечно, в реальности существуют потери из-за которых скорость зарядки может быть неравномерной, однако в целом все функционирует именно так.

Единицей мощности у электромобилей служит знакомая всем величина — ватт. Мощность определяется умножением напряжения (измеряемого в вольтах) на силу тока(измеряется в амперах). Чтобы объяснить принцип работы наглядно, приведем избитую, но тем не менее эффективную аналогию — скажем, нам необходимо перекачать определенный объем воды через трубу. Напор воды в этом примере служит аналогом напряжения, а сила тока — диаметр трубы. Легко понять, что имея трубу с широким диаметром и хороший напор воды, то один и тот же объем воды перекачается в разы быстрее, чем по тонкой трубе и при слабом напоре. Возвращаясь к электричеству — для высокого напряжения необходима хорошая изоляция проводника, а для высокой силы тока — достаточное сечение кабеля (толщина трубы).

Что все это значит на практике? Все достаточно просто: обычная европейская розетка с номинальным напряжением 220 Вольт обеспечивает силу тока в 16А или менее. Таким образом, максимальная мощность потребителя на такой розетке составляет: 220В х 16А = 3520Вт = 3,5 кВт.

Зарядка на практике — все о видах зарядных устройств, розетках и времени зарядки

Прежде, чем переходить к подробному разбору всех видов розеток, от которых можно зарядиться, стоит упомянуть зарядное устройство, спрятанное в недрах Теслы. Это устройство аналогично зарядке ваших ноутбуков или смартфонов и служит простой цели — преобразовать переменный ток, который «течет» во всех розетках, в постоянный для заряда устройства.

Стандартное зарядное устройство Теслы располагает 11 кВт мощности. Опционально доступен так называемый Dual Charger, который удваивает мощность, а соответственно, и количество получаемых километров пробега за единицу времени зарядки. Мы крайне рекомендуем устанавливать Dual Charger, если вы планируете эксплуатировать свою Tesla регулярно.

Кроме того, стоит помнить об основном различии в зарядке европейской и американской версий Model S — машины из США не имеют возможности заряжаться от трехфазной розетки, которая обычно быстрее зарядки от одной фазы.

Теперь можно приступить к обсуждению конкретных методов зарядки и их параметров. Все приведенные ниже данные актуальны для Dual Charger, так как это априори must have. Также, во избежание путаницы, мы расскажем только об актуальных в России способах зарядки Теслы.

Один из самых эффективных и актуальных для России и СНГ способов зарядки — через красную розетку стандарта IEC 60309 Red. Такая розетка красного цвета имеет 5 контактов и 16А силы тока. Однако, такая розетка поддерживает трехфазный ток, тем самым в разы увеличивая эффективность заряда — ведь напряжение каждой фазы составляет те же 220В, а межфазное — уже 380 вольт! Такая розетка встречается повсеместно, где используется мощное оборудование — на любых АЗС, автомойках, на парковках, в отелях и т.д. — обычно достаточно лишь попросить персонал соответствующей организации подключиться к ней (что мы опробовали недавно на собственном опыте в поездке Москва-Минск). Кроме того, любой электрик может создать соответствующее подключение в вашем гараже, офисе или на парковочном месте. Скорость заряда — 55 км за час (против 14 км при использовании стандартной бытовой розетки), время полной зарядки батареи посчитать несложно.

Кстати, в комплекте с Теслами для европейского рынка поставляется Mobile Connector — стандартный зарядный кабель с двумя переходниками: для обычной евророзетки и для трехфазной вышеописанного стандарта.

Следующий вариант зарядки, распространенный на территории России и СНГ — так называемый Mennekes Type 2. Именно этот стандарт используется на большинстве общественных зарядок, т.к. был принят в 2009 году как единый европейский стандарт для электромобилей (используется, к примеру, в BMW i3). Разъем на европейской версии Tesla Model S подходит под использование станций Type 2 — необходимо лишь приобрести зарядный кабель (например, в нашем магазине). Скорость заряда зависит от входных параметров электрического тока в месте установки конкретной зарядной станции, и варьируется от 18 км за час при однофазном токе в 220 В и 16А, до 110 км за час при трехфазном токе, напряжении в 400 В и с силой тока 32А. В Москве достаточно часто встречаются мощные станции стандарта Type 2 — к примеру, зарядка в ТДК «Смоленский Пассаж», где находится офис Moscow Tesla Club, заряжает Теслу с нуля до 100% всего за 4 часа.

Зарядную станцию стандарта Type 2 можно установить и у себя в гараже, на общей или офисной парковке, собственном машиноместе. Moscow Tesla Club предлагает различные конфигурации таких станций EVlink производства компании Schneider Electric (Германия) для домашнего и общественного пользования, а также полный комплекс услуг по установке.

Пока не слишком распространенный в России, однако крайне перспективный способ заряда Tesla — станции ChaDeMo. Такие станции полностью заряжают Tesla Model S за 1,5 часа, что почти также быстро, как на фирменных станциях Supercharger. ChaDeMo уже достаточно часто встречаются в Европе, а в России, Украине и Республике Беларусь постепенно появляются новые проекты по установке таких станций. Кстати, ChaDeMo-станцию Evlink тоже можно приобрести в Moscow Tesla Club.

Для того, чтобы зарядить Теслу с помощью ChaDeMo необходим специальный адаптер. Такой адаптер позволит зарядить машину на любой станции данного стандарта, что незаменимо в путешествиях по Европе. Адаптер ChaDeMo для Tesla можно также приобрести в Moscow Tesla Club.

Чтобы не запутаться среди всех видов розеток, разъемов и зарядных станций, Tesla Motors подготовили для владельцев Model S такую таблицу, демонстрирующую зависимость скорости заряда от характеристик того или иного источника питания (внимание: данные актуальны для машин, оборудованных Dual Charger):

Бесспорно, в случае с электромобилями Tesla, самый удобный вариант зарядки — это фирменные станции Supercharger. Мало того, что они обладают невероятной скоростью зарядки (270 км за 30 минут, 100% заряда батареи за 75 минут), но и расположены таким образом, чтобы пассажиры не заскучали и смогли отдохнуть от дороги — рядом с кафе, закусочными, отелями и прочими элементами дорожной инфраструктуры. В России и СНГ таких станций пока нет, однако, если верить официальному сайту Tesla Motors, уже в 2016 году появятся станции на территории России и Украины — связав наши страны с Европой. А значит, новый виток истории Tesla в наших широтах уже не за горами.

Тем не менее, уже сегодня у нас есть возможность в полной мере наслаждаться удобством зарядки вместо заправки — без запаха, грязи и прочих неудобств. Существует множество вариантов зарядить Теслу как в общественных местах, так и в собственном гараже или на парковке. Moscow Tesla Club обеспечивает своим клиентам максимальный комфорт эксплуатации электромобилей, ведь мы стремимся к тому, чтобы содержание собственного транспортного средства было столь же удобно, как владение современными гаджетами.

ЗАРЯДНЫЕ УСТРОЙСТВА — ВИДЫ И НАЗНАЧЕНИЕ

Зарядные устройства предназначены для восполнения потери электроэнергии аккумуляторами. Принцип действия аккумуляторов заключается в обратимой химической реакции.

Отдача электрической энергии аккумулятором должна затем компенсироваться зарядкой, чтобы восстановить первоначальную емкость. Функция зарядного устройства заключается именно в восстановлении емкости аккумулятора.

Существует множество методов зарядки аккумуляторов. Одни из них реализуются очень просто и имеют минимальную стоимость. Некоторые модели управляют процессом зарядки аккумулятора при помощи встроенного микроконтроллера и реализуют сложный алгоритм процесса зарядки.

В общих чертах принцип заряда заключается в подаче напряжения, которое превосходит значение ЭДС разряженного аккумулятора. В соответствии с этим можно выделить такие основные методики заряда аккумуляторов:

  • постоянным током;
  • постоянным напряжением;
  • комбинированные методы.

Вне зависимости от метода основные характеристики зарядных устройств таковы:

  • максимальный ток заряда;
  • значение выходного напряжения.

УНИВЕРСАЛЬНЫЕ ЗАРЯДНЫЕ УСТРОЙСТВА

Сразу нужно предупредить – совершенно универсальных зарядных устройств не существует и, скорее всего, не будет существовать никогда.

С определенной натяжкой некоторые типы можно отнести к универсальным, но это только в том случае, если не обращать внимание на некоторые отклонения от рекомендуемых параметров. Далее будет рассмотрена справедливость данного утверждения.

В первую очередь, нужно знать, что различные типы аккумуляторов имеют различное напряжение и емкость, а если учесть, что обычно аккумуляторы собираются в батареи, то эта разница между этими параметрами возрастает многократно.

Различные виды аккумуляторов требуют индивидуального подхода к процессу заряда.

Изначально первые типы аккумуляторов – свинцово-кислотные, требовали зарядки постоянным током в течении всего времени зарядки (примерно 8-12 часов). Щелочные заряжались таким же образом, но другими величинами тока.

Данная методика проста, но имела серьезный недостаток – в конце заряда наблюдалось интенсивное газовыделение из электролита (кипение), что требовало постоянного контроля за процессом зарядки, особенно в его конце.

Заряд постоянным напряжением свободен от указанного недостатка, но требует более длительного времени. Его применяют, в основном для восстановления аккумуляторов, потерявших начальную емкость по различным причинам.

Более совершенные модели используют комбинированную методику. В начале заряда аккумулятор заряжается номинальным током зарядки, а когда напряжение на его клеммах достигнет уровня близкого к максимальному значению, напряжения на выходе зарядного устройства понижают до такой степени, чтобы оно лишь слегка превосходило напряжение аккумулятора.

Ток заряда при этом падает и аккумулятор продолжает заряжаться при минимальном токе. Таким образом, кипения электролита не происходит, а время заряда лишь немного превосходит время при постоянном токе.

Первые два типа вполне можно назвать универсальными в отношении стартерных аккумуляторов автомобилей. Такие устройства до сих пор широко распространены, в особенности, среди любителей, благодаря простоте, надежности и минимальной стоимости.

Совершенствование технологии изготовления аккумуляторов привело, с одной стороны, к увеличению удельной емкости, а с другой, повысило требования к параметрам оборудования для их подзарядки.

Сейчас производством аккумуляторных батарей различных типов занимается огромное число производителей, но большинство из них не выкладывает в открытый доступ необходимую технологию заряда, которая является оптимальной для определенной модели батареи.

Поэтому потребителям приходится либо приобретать дорогое фирменное изделие, либо подбирать недорогое, подходящее к усредненным параметрам аккумуляторных батарей сравнимых технологий производства.

Производители мобильных телефонов и прочих малогабаритных гаджетов пошли другим путем. Контроль заряда осуществляется микроконтроллером, встроенным в «зарядку», а также непосредственно в аккумуляторную батарею.

Такой подход привел к появлению, по-настоящему универсальных зарядных устройств, которые одинаково подходят для зарядки любых аккумуляторных батарей, отвечающих единому стандарту.

Наиболее яркий пример – смартфоны, планшеты, работающие под управлением ОС Андроид. Все эти гаджеты имеют вход для подзарядки, выполненный по стандарту Micro USB.

Отдельный класс изделий для автомобильных аккумуляторов составляют пуско-зарядные устройства. Как следует из названия, они могут обеспечить пуск автомобиля, причем мощные приборы в состоянии это сделать даже без аккумулятора.

Как известно, пусковой ток стартера, особенно в зимнее время на замерзшем двигателе, достигает нескольких сотен ампер. Таким образом, выходные параметры пуско-зарядного устройства очень близки к характеристикам сварочных аппаратов.

Габариты и масса пуско-зарядного устройства с традиционным, трансформаторным питанием велики, но при использовании инверторного способа преобразования энергии снижаются во много раз.

АВТОМАТИЧЕСКОЕ ЗАРЯДНОЕ УСТРОЙСТВО

Упростить процесс заряда может применение автоматических зарядных устройств. Простейшие зарядные автоматы контролируют напряжение на клеммах аккумуляторной батареи и прекращают процесс заряда при достижении определенной величины.

Недостатком подобных устройств является то, что аккумулятор не набирает полной емкости или, наоборот, происходит его перезаряд.

И тот и другой вариант приводят к сокращению срока службы аккумуляторной батареи.

Более совершенные исполнения при достижении порогового напряжения переводят заряд аккумулятора в буферный режим, когда выходной ток лишь немного превышает ток саморазряда батареи. Такие зарядные устройства можно надолго оставлять без присмотра без риска повредить заряжаемый аккумулятор.

Определенный тип устройств позволяет не только заряжать батареи, но и, некоторым образом, производить восстановление потерянной емкости. При этом процесс заряда чередуется с промежутками нулевого зарядного тока или с небольшим разрядом.

Данная методика тренировки показывает удовлетворительные результаты при восстановлении свинцово-кислотных аккумуляторных батарей из-за снижения эффекта сульфатации пластин.

Зарядные устройства для малогабаритных аккумуляторов и батарей сегодня также в подавляющем случае работают в автоматическом режиме.

Такое стало возможным, благодаря встроенному микроконтроллеру, которые не только автоматизирует процесс зарядки, но и производит ее по специально заложенному алгоритму. Такие изделия обычно выпускают производители аккумуляторов, поэтому они оптимальны для определенного типа батарей.

БЕСПРОВОДНЫЕ ЗАРЯДКИ

Беспроводные зарядные устройства мобильных телефонов рекламируются многими именитыми и не очень, производителями смартфонов. Принцип их действия очень простой и основан на явлении электромагнитной индукции. Тот же принцип используют индукционные кухонные плиты.

В основе беспроводной зарядки лежит мощный передатчик электромагнитных волн. В корпусе смартфона, поддерживающего такой принцип заряда, смонтирована приемная катушка, выпрямитель и преобразователь.

Маркетинговая политика производителей беспроводных моделей базируется на рекламе удобства пользования и, как сейчас модно говорить, на использовании инновационных решений. На самом деле, ничего нового здесь нет.

Новизна только в миниатюризации радиоэлементов устройств. И такое достоинство, как удобство, довольно спорно, поскольку шнур питания нужен для включения в сеть самого беспроводного адаптера.

Недостатки беспроводных устройств:

  • большее время зарядки, по сравнению с традиционными;
  • меньший кпд;
  • высокий уровень электромагнитного излучения;
  • необходимость строгого позиционирования заряжаемого девайса на адаптере.

Исходя из перечисленного, можно сделать вывод, что на самом деле из плюсов данной технологии только отсутствие разъема на корпуса смартфона. На самом деле, телефон выходит из употребления или меняет хозяина еще до того, как возникнет необходимость в замене разъема питания.

Один из самых бесспорных недостатков – увеличение времени заряда, которое увеличивается при малейшем увеличении расстояния до плоскости адаптера.

А ведь не секрет, что время порой играет решающую роль. А если обычно электроприборы ставят на подзаряд на ночь, то какое преимущество играет беспроводной способ передачи энергии?

Другой фактор, менее явный, но имеющий весомое влияние – уровень электромагнитных помех.

Все до единого производителя проводят исследования и заявляют, что уровень излучения их изделия ничтожен и не оказывает влияние на здоровье человека. Это справедливо только на большом удалении, а вблизи излучение в любом случае превышает естественный фон и определенным образом влияет на состояние организма.

Учитывая большое количество источников постороннего излучения в жилищах (индукционные печи, микроволновые духовки, мобильные телефоны и т.д.), каждое новое устройство привносит, хоть и небольшой, но вклад. И это стоит учитывать.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Зарядные устройства и методы зарядки

Схемы зарядки

Зарядное устройство имеет три основные функции

  • Получение заряда в АКБ (Зарядка)
  • Оптимизация скорости зарядки (стабилизация)
  • Знание, когда остановиться (Завершение)

Схема тарификации представляет собой комбинацию методов тарификации и завершения.

Прекращение начисления

Когда аккумулятор полностью заряжен, зарядный ток должен каким-то образом рассеиваться. В результате выделяется тепло и газы, которые вредны для аккумуляторов. Суть хорошей зарядки состоит в том, чтобы иметь возможность определять, когда восстановление активных химикатов завершено, и останавливать процесс зарядки до того, как будет нанесен какой-либо ущерб, при постоянном поддержании температуры элемента в безопасных пределах.Обнаружение этой точки отключения и прекращение заряда имеет решающее значение для продления срока службы батареи. В простейших зарядных устройствах это происходит при достижении заранее определенного верхнего предела напряжения, часто называемого напряжением завершения . Это особенно важно для устройств быстрой зарядки, где опасность перезарядки выше.

Безопасная зарядка

Если по какой-либо причине существует риск чрезмерной зарядки аккумулятора из-за ошибок в определении точки отключения или неправильного обращения, это обычно сопровождается повышением температуры. Условия внутренней неисправности в батарее или высокие температуры окружающей среды также могут вывести батарею за пределы безопасных рабочих температур. Повышенные температуры ускоряют выход батарей из строя, а мониторинг температуры элементов — хороший способ обнаружить признаки неисправности по разным причинам. Температурный сигнал или сбрасываемый предохранитель можно использовать для выключения или отсоединения зарядного устройства при появлении знаков опасности, чтобы избежать повреждения аккумулятора. Эта простая дополнительная мера предосторожности особенно важна для аккумуляторов большой мощности, где последствия отказа могут быть как серьезными, так и дорогостоящими.

Время зарядки

Во время быстрой зарядки можно перекачивать электрическую энергию в аккумулятор быстрее, чем химический процесс может на нее отреагировать, что приведет к разрушительным результатам.

Химическое воздействие не может происходить мгновенно, и будет происходить градиент реакции в объеме электролита между электродами с электролитом, ближайшим к преобразуемым или «заряжаемым» электродам, до того, как электролит находится дальше. Это особенно заметно в элементах большой емкости, содержащих большой объем электролита.

Фактически, в химических превращениях клетки участвуют по крайней мере три ключевых процесса.

  • Один из них — «перенос заряда», который представляет собой фактическую химическую реакцию, происходящую на границе раздела электрода с электролитом, и она протекает относительно быстро.
  • Второй — это процесс «массопереноса» или «диффузии», в котором материалы, трансформированные в процессе переноса заряда, перемещаются с поверхности электрода, давая возможность другим материалам достичь электрода и принять участие в процессе трансформации.Это относительно медленный процесс, который продолжается до тех пор, пока все материалы не будут преобразованы.
  • Процесс зарядки может также подвергаться другим значительным эффектам, время реакции которых также следует принимать во внимание, например, «процессу интеркаляции», в ходе которого литиевые элементы заряжаются, когда ионы лития вставляются в кристаллическую решетку основного электрода. См. Также Литиевое покрытие из-за чрезмерной скорости зарядки или зарядки при низких температурах.

Все эти процессы также зависят от температуры.

Кроме того, могут быть другие паразитические или побочные эффекты, такие как пассивация электродов, образование кристаллов и скопление газа, которые влияют на время зарядки и эффективность, но они могут быть относительно незначительными или нечастыми, или могут возникать только в условиях неправильного обращения. . Поэтому они здесь не рассматриваются.

Таким образом, процесс зарядки аккумулятора имеет по меньшей мере три характерные постоянные времени, связанные с достижением полного преобразования активных химикатов, которые зависят как от используемых химикатов, так и от конструкции элемента.Постоянная времени, связанная с переносом заряда, может составлять одну минуту или меньше, тогда как постоянная времени массопереноса может достигать нескольких часов или более в большой ячейке с большой емкостью. Это одна из причин, почему элементы могут передавать или принимать очень высокие импульсные токи, но гораздо более низкие постоянные токи (еще один важный фактор — это рассеиваемое тепло). Эти явления нелинейны и относятся как к процессу разрядки, так и к зарядке. Таким образом, существует предел скорости приема заряда элемента.Продолжение перекачки энергии в элемент быстрее, чем химические вещества могут реагировать на заряд, может вызвать локальные условия перезаряда, включая поляризацию, перегрев, а также нежелательные химические реакции рядом с электродами, что приведет к повреждению элемента. Быстрая зарядка увеличивает скорость химической реакции в элементе (как и быстрая разрядка), и может потребоваться предоставить «периоды покоя» во время процесса зарядки, чтобы химические воздействия распространялись через основную массу химической массы в элементе и для стабилизации на прогрессивном уровне заряда.

Узнайте больше о периодах отдыха и о том, как их можно использовать для увеличения срока службы батареи и повышения точности измерений SOC на странице «Программно конфигурируемая батарея».

См. Также влияние химических изменений и скорости зарядки в разделе Срок службы батареи.

Запоминающееся, хотя и не совсем эквивалентное явление — налив пива в стакан.Очень быстрое наливание приводит к образованию большого количества пены и небольшого количества пива на дне стакана. Медленно наливая бокал по стенке или давая пиву отстояться до тех пор, пока пена не рассеется, а затем доливание позволяет полностью заполнить стакан.

Гистерезис

Постоянные времени и упомянутые выше явления вызывают гистерезис в батарее.Во время зарядки химическая реакция отстает от приложения зарядного напряжения, и аналогично, когда к аккумулятору прикладывается нагрузка для его разрядки, происходит задержка до того, как полный ток может пройти через нагрузку. Как и в случае с магнитным гистерезисом, энергия теряется во время цикла заряда-разряда из-за эффекта химического гистерезиса.

На приведенной ниже диаграмме показан эффект гистерезиса в литиевой батарее.

Допущение коротких периодов стабилизации или отдыха во время процессов заряда-разряда для учета времени химической реакции будет иметь тенденцию к уменьшению, но не устранению разницы напряжений из-за гистерезиса.

Истинное напряжение батареи в любом состоянии заряда (SOC), когда батарея находится в состоянии покоя или в спокойном состоянии, будет где-то между кривыми заряда и разряда.Во время зарядки измеренное напряжение элемента во время периода покоя будет медленно перемещаться вниз к состоянию покоя, поскольку химическое преобразование в элементе стабилизируется. Точно так же во время разряда измеренное напряжение элемента во время периода покоя будет перемещаться вверх в направлении состояния покоя.

Быстрая зарядка также вызывает повышенный джоулев нагрев элемента из-за задействованных более высоких токов, а более высокая температура, в свою очередь, вызывает увеличение скорости процессов химического преобразования.

В разделе «Скорость разряда» показано, как скорость разряда влияет на эффективную емкость элемента.

В разделе «Конструкция ячеек» описывается, как можно оптимизировать конструкции ячеек для быстрой зарядки.

Эффективность заряда

Это относится к свойствам самого аккумулятора и не зависит от зарядного устройства.Это соотношение (выраженное в процентах) между энергией, удаленной из аккумулятора во время разряда, по сравнению с энергией, используемой во время зарядки для восстановления исходной емкости. Также называется Coulombic Efficiency или Charge Acceptance .

Прием заряда и время заряда в значительной степени зависят от температуры, как указано выше. Более низкая температура увеличивает время зарядки и снижает прием заряда.

Обратите внимание, , что при низких температурах аккумулятор не обязательно получит полный заряд, даже если напряжение на клеммах может указывать на полный заряд. См. Факторы, влияющие на состояние заряда.

Основные методы зарядки

  • Постоянное напряжение Зарядное устройство постоянного напряжения — это, по сути, источник питания постоянного тока, который в своей простейшей форме может состоять из понижающего трансформатора от сети с выпрямителем для обеспечения постоянного напряжения для зарядки аккумулятора.Такие простые конструкции часто встречаются в дешевых зарядных устройствах для автомобильных аккумуляторов. В свинцово-кислотных элементах, используемых для автомобилей и систем резервного питания, обычно используются зарядные устройства постоянного напряжения. Кроме того, в литий-ионных элементах часто используются системы постоянного напряжения, хотя они обычно более сложные с добавленной схемой для защиты как батарей, так и безопасности пользователя.
  • Зарядные устройства постоянного тока Зарядные устройства постоянного тока изменяют напряжение, подаваемое на батарею, для поддержания постоянного тока и выключаются, когда напряжение достигает уровня полной зарядки.Эта конструкция обычно используется для никель-кадмиевых и никель-металлогидридных элементов или батарей.
  • Конусный ток Заряжается от грубого нерегулируемого источника постоянного напряжения. Это не контролируемый заряд, как в V Taper выше. Ток уменьшается по мере нарастания напряжения элемента (противо-ЭДС). Существует серьезная опасность повредить элементы из-за перезарядки. Чтобы избежать этого, следует ограничить скорость и продолжительность зарядки.Подходит только для батарей SLA.
  • Импульсный заряд Импульсные зарядные устройства подают зарядный ток в аккумулятор импульсами. Скорость зарядки (на основе среднего тока) можно точно контролировать, изменяя ширину импульсов, обычно около одной секунды. Во время процесса зарядки короткие периоды покоя от 20 до 30 миллисекунд между импульсами позволяют стабилизировать химическое воздействие в батарее за счет выравнивания реакции по всему объему электрода перед возобновлением заряда.Это позволяет химической реакции идти в ногу со скоростью поступления электрической энергии. Также утверждается, что этот метод может уменьшить нежелательные химические реакции на поверхности электрода, такие как газообразование, рост кристаллов и пассивация. (См. Также Импульсное зарядное устройство ниже). При необходимости можно также измерить напряжение холостого хода батареи во время периода покоя.

Оптимальный профиль тока зависит от химического состава и конструкции клетки.

  • Взрывная зарядка Также называется Reflex или Зарядка с отрицательным импульсом Используется вместе с импульсной зарядкой, подает очень короткий импульс разрядки, обычно в 2–3 раза превышающий зарядный ток в течение 5 миллисекунд, во время периода покоя зарядки. деполяризовать клетку. Эти импульсы вытесняют любые пузырьки газа, которые образовались на электродах во время быстрой зарядки, ускоряя процесс стабилизации и, следовательно, общий процесс зарядки.Высвобождение и распространение пузырьков газа известно как «отрыжка». Были сделаны противоречивые заявления об улучшении скорости заряда и срока службы батареи, а также об удалении дендритов, которое стало возможным с помощью этого метода. Самое меньшее, что можно сказать, это то, что «не повреждает аккумулятор».
  • IUI Charging Это недавно разработанный профиль зарядки, используемый для быстрой зарядки стандартных свинцово-кислотных аккумуляторов от определенных производителей.Он подходит не для всех свинцово-кислотных аккумуляторов. Первоначально батарея заряжается с постоянной (I) скоростью, пока напряжение элемента не достигнет заданного значения — обычно напряжения, близкого к тому, при котором происходит выделение газа. Эта первая часть цикла зарядки известна как фаза объемной зарядки. Когда заданное напряжение достигнуто, зарядное устройство переключается в фазу постоянного напряжения (U), и ток, потребляемый батареей, будет постепенно падать, пока не достигнет другого заданного уровня. Эта вторая часть цикла завершает нормальную зарядку аккумулятора с медленно убывающей скоростью.Наконец, зарядное устройство снова переключается в режим постоянного тока (I), и при выключении зарядного устройства напряжение продолжает повышаться до нового более высокого предварительно заданного предела. Эта последняя фаза используется для выравнивания заряда отдельных ячеек в батарее, чтобы максимально продлить срок ее службы. См. Балансировка ячеек.
  • Капельная зарядка Капельная зарядка предназначена для компенсации саморазряда аккумулятора. Непрерывный заряд. Долговременная зарядка постоянным током для использования в режиме ожидания.Скорость заряда зависит от частоты разряда. Не подходит для некоторых типов батарей, например NiMH и литий, которые могут выйти из строя из-за перезарядки. В некоторых приложениях зарядное устройство предназначено для переключения на непрерывную зарядку, когда аккумулятор полностью заряжен.
  • Плавающий заряд . Аккумулятор и нагрузка постоянно подключены параллельно к источнику заряда постоянного тока и имеют постоянное напряжение ниже верхнего предела напряжения аккумулятора.Используется для систем резервного питания аварийного питания. В основном используется со свинцово-кислотными аккумуляторами.
  • Случайная зарядка Все вышеперечисленные приложения включают контролируемую зарядку аккумулятора, однако есть много приложений, в которых энергия для зарядки аккумулятора доступна только или доставляется случайным, неконтролируемым образом. Это относится к автомобильным приложениям, где энергия зависит от частоты вращения двигателя, которая постоянно меняется. Проблема стоит более остро в приложениях EV и HEV, в которых используется рекуперативное торможение, поскольку при торможении возникают большие всплески мощности, которые должна поглощать аккумулятор.Более щадящие применения — солнечные панели, которые можно заряжать только при ярком солнце. Все это требует специальных методов для ограничения зарядного тока или напряжения до уровней, которые может выдержать аккумулятор.

Тарифы на оплату

Батареи можно заряжать с разной скоростью в зависимости от требований. Ниже приведены типичные ставки:

  • Slow Charge = Ночь или 14-16 часов зарядки при 0.1С рейтинг
  • Быстрая зарядка = от 3 до 6 часов зарядки при скорости 0,3 ° C
  • Быстрая зарядка = менее 1 часа зарядки при скорости 1.0C

Медленная зарядка

Медленная зарядка может выполняться в относительно простых зарядных устройствах и не должна приводить к перегреву аккумулятора. По окончании зарядки аккумуляторы следует вынуть из зарядного устройства.

  • Никады, как правило, наиболее устойчивы к перезарядке, и их можно оставить на непрерывной подзарядке в течение очень длительных периодов времени, поскольку процесс их рекомбинации имеет тенденцию поддерживать напряжение на безопасном уровне. Постоянная рекомбинация поддерживает высокое внутреннее давление в ячейке, поэтому уплотнения постепенно протекают. Он также поддерживает температуру ячейки выше окружающей среды, а более высокие температуры сокращают срок службы.Так что жизнь все равно лучше если снять с зарядного устройства.
  • Свинцово-кислотные батареи немного менее надежны, но могут выдерживать кратковременный непрерывный заряд. Затопленные батареи, как правило, расходуют воду, а SLA рано умирают из-за коррозии сети. Свинцово-кислотные вещества следует либо оставить в неподвижном состоянии, либо подзаряжать (поддерживать постоянное напряжение значительно ниже точки выделения газа).
  • С другой стороны, никель-металлгидридные элементы
  • будут повреждены при длительной подзарядке.
  • Однако литий-ионные элементы
  • не допускают перезарядки или перенапряжения, и заряд должен быть немедленно прекращен при достижении верхнего предела напряжения.

Быстрая / быстрая зарядка

По мере увеличения скорости зарядки возрастает опасность перезарядки или перегрева аккумулятора. Предотвращение перегрева батареи и прекращение заряда, когда батарея полностью заряжена, становятся гораздо более важными.Химический состав каждого элемента имеет свою характеристическую кривую зарядки, и зарядные устройства для аккумуляторов должны быть спроектированы так, чтобы определять условия окончания заряда для конкретного химического состава. Кроме того, должна быть предусмотрена некоторая форма отключения по температуре (TCO) или термический предохранитель, чтобы предотвратить перегрев аккумулятора во время процесса зарядки.

Для быстрой зарядки и быстрой зарядки требуются более сложные зарядные устройства. Поскольку эти зарядные устройства должны быть разработаны для определенного химического состава элементов, обычно невозможно зарядить один тип элементов в зарядном устройстве, которое было разработано для другого химического состава элементов, и вероятно повреждение.Универсальные зарядные устройства, способные заряжать все типы элементов, должны иметь сенсорные устройства для определения типа элемента и применения соответствующего профиля зарядки.

Примечание , что для автомобильных аккумуляторов время зарядки может быть ограничено доступной мощностью, а не характеристиками аккумулятора. Внутренние кольцевые силовые цепи на 13 А могут выдавать только 3 кВт. Таким образом, при условии отсутствия потери эффективности в зарядном устройстве, десятичасовая зарядка потребляет максимум 30 кВт · ч энергии.На 100 миль хватит. Сравните это с заправкой автомобиля бензином.

Требуется около 3 минут, чтобы поместить в бак достаточно химической энергии, чтобы обеспечить 90 кВт / ч механической энергии, достаточной для проезда автомобиля на 300 миль. Подача 90 кВт / ч электроэнергии в батарею за 3 минуты было бы эквивалентно скорости зарядки 1,8 мегаватт !!

Способы прекращения начисления

В следующей таблице приведены методы прекращения заряда для популярных аккумуляторов. Это объясняется в разделе ниже.

Способы прекращения начисления

SLA

Никад

NiMH

Литий-ионный

Медленная зарядка

Таймер

Предел напряжения

Быстрая зарядка 1

Имин

НДВ

дТ / дт

Imin при пределе напряжения

Быстрая зарядка 2

Delta TCO

дТ / дт

dV / dt = 0

Прекращение резервного копирования 1

Таймер

ТШО

ТШО

ТШО

Завершение резервного копирования 2

DeltaTCO

Таймер

Таймер

Таймер

TCO = отключение по температуре

Delta TCO = Превышение температуры окружающей среды

I min = минимальный ток

Методы контроля заряда

Было разработано множество различных схем зарядки и завершения для разных химикатов и различных приложений. Ниже приведены наиболее распространенные из них.

Управляемая зарядка

Обычная (медленная) зарядка

  • Полупостоянный ток Простой и экономичный. Самый популярный. Таким образом, при слабом токе тепло не выделяется, а происходит медленно, обычно от 5 до 15 часов. Скорость заряда 0,1C. Подходит для Nicads
  • Управляемая таймером система заряда Просто и экономично.Надежнее, чем полупостоянный ток. Использует таймер IC. Зарядки со скоростью 0,2 ° C в течение заданного периода времени с последующей подзарядкой 0,05 ° C. Избегайте постоянного перезапуска таймера, вставляя и вынимая аккумулятор из зарядного устройства, поскольку это снизит его эффективность. Рекомендуется установка абсолютного отсечки температуры. Подходит для аккумуляторов Nicad и NiMH.

Быстрая зарядка (1-2 часа)

  • Отрицательный треугольник V (NDV) Система отсечки заряда
  • Это самый популярный способ быстрой зарядки для Nicads.

    Батареи заряжаются постоянным током со скоростью от 0,5 до 1,0 С. Напряжение батареи повышается по мере того, как зарядка достигает пика при полной зарядке, а затем падает. Это падение напряжения, -delta V, связано с поляризацией или накоплением кислорода внутри элемента, которое начинает происходить после полной зарядки элемента. В этот момент элемент попадает в зону опасности перезаряда, и температура начинает быстро расти, так как химические изменения завершены, а избыточная электрическая энергия преобразуется в тепло.Падение напряжения происходит независимо от уровня разряда или температуры окружающей среды, и поэтому его можно обнаружить и использовать для определения пика и, следовательно, для отключения зарядного устройства, когда аккумулятор полностью заряжен, или переключения на непрерывный заряд.

    Этот метод не подходит для зарядных токов менее 0,5 C, так как дельта V становится трудно обнаружить. Ложная дельта V может возникнуть в начале заряда при чрезмерно разряженных элементах. Это преодолевается с помощью таймера, который задерживает обнаружение дельты V в достаточной степени, чтобы избежать проблемы.Свинцово-кислотные аккумуляторы не демонстрируют падения напряжения после завершения зарядки, поэтому этот метод зарядки не подходит для аккумуляторов SLA.

  • dT / dt Система зарядки Никель-металл-гидридные батареи не демонстрируют такого выраженного падения напряжения NDV, когда они достигают конца цикла зарядки, как это видно на графике выше, поэтому метод отключения NDV не является надежным для завершения NiMH обвинять.Вместо этого зарядное устройство определяет скорость увеличения температуры элемента в единицу времени. Когда достигается заданная скорость, быстрая зарядка останавливается, и метод зарядки переключается на непрерывную зарядку. Этот метод более дорогой, но позволяет избежать перезарядки и продлевает срок службы. Поскольку длительная непрерывная зарядка может повредить NiMH аккумулятор, рекомендуется использовать таймер для регулирования общего времени зарядки.
  • Постоянный ток Система заряда с постоянным напряжением (CC / CV). .Используется для зарядки литиевых и некоторых других батарей, которые могут быть повреждены при превышении верхнего предела напряжения. Указанная производителем скорость зарядки при постоянном токе — это максимальная скорость зарядки, которую аккумулятор может выдержать без повреждения аккумулятора. Необходимы особые меры предосторожности, чтобы максимально увеличить скорость зарядки и гарантировать, что аккумулятор полностью заряжен, и в то же время избежать перезарядки. По этой причине рекомендуется переключать метод зарядки на постоянное напряжение до того, как напряжение элемента достигнет своего верхнего предела.Обратите внимание, что это означает, что зарядные устройства для литий-ионных элементов должны быть способны контролировать как зарядный ток, так и напряжение аккумулятора.
  • Чтобы поддерживать заданную скорость зарядки постоянного тока, напряжение зарядки должно увеличиваться синхронно с напряжением элемента, чтобы преодолеть обратную ЭДС элемента по мере его зарядки. Это происходит довольно быстро в режиме постоянного тока до тех пор, пока не будет достигнут верхний предел напряжения элемента, после чего напряжение заряда поддерживается на этом уровне, известном как плавающий уровень, во время режима постоянного напряжения.В течение этого периода постоянного напряжения ток уменьшается до тонкой струйки по мере того, как заряд приближается к завершению. Отключение происходит при достижении заданной минимальной точки тока, которая указывает на полный заряд. См. Также Литиевые батареи — Зарядка и производство батарей — Формирование.

    Примечание 1 : Когда указаны скорости быстрой зарядки , они обычно относятся к режиму постоянного тока. В зависимости от химического состава ячейки этот период может составлять от 60% до 80% времени до полной зарядки. Эти значения не следует экстраполировать для оценки времени полной зарядки аккумулятора, поскольку скорость зарядки быстро снижается в течение периода постоянного напряжения.

    Примечание 2: Поскольку литиевые батареи нельзя заряжать со скоростью зарядки C, указанной производителями, в течение всего времени зарядки, также невозможно оценить время зарядки полностью разряженной батареи простым разделением Емкость аккумулятора в ампер-часах с указанной скоростью зарядки C, так как скорость изменяется в процессе зарядки.Следующее уравнение, однако, дает разумное приближение времени для полной зарядки разряженной батареи при использовании стандартного метода зарядки CC / CV:

    Время зарядки (час) = 1,3 * (емкость аккумулятора в Ач) / (ток зарядки в режиме CC)

  • Управляемая напряжением система заряда. Быстрая зарядка со скоростью от 0,5 до 1,0 С. Зарядное устройство выключилось или переключилось на непрерывный заряд при достижении заданного напряжения.Следует комбинировать с датчиками температуры в батарее, чтобы избежать перезарядки или теплового разгона.
  • В — Система заряда с конусным управлением Аналогична системе с контролем напряжения. Как только заданное напряжение достигнуто, ток быстрой зарядки постепенно уменьшается за счет уменьшения напряжения питания, а затем переключается на непрерывный заряд. Подходит для батарей SLA и позволяет безопасно достичь более высокого уровня заряда. (См. Также ток конуса ниже)
  • Таймер отказоустойчивости

    Ограничивает ток заряда, который может протекать, чтобы удвоить емкость элемента.Например, для элемента емкостью 600 мАч ограничьте заряд до 1200 мАч. В крайнем случае, если отключение не достигнуто другими способами.

  • Предварительная зарядка
  • В качестве меры предосторожности для аккумуляторов большой емкости часто используется этап предварительной зарядки. Цикл зарядки инициируется низким током. Если соответствующего повышения напряжения батареи нет, это указывает на возможное короткое замыкание в батарее.

  • Интеллектуальная система зарядки
    Интеллектуальные системы зарядки объединяют системы управления в зарядном устройстве с электроникой в ​​аккумуляторе, что позволяет более точно контролировать процесс зарядки. Преимущества — более быстрая и безопасная зарядка и более длительный срок службы аккумулятора. Такая система описана в разделе «Системы управления батареями».

Примечание

Большинство зарядных устройств, поставляемых с устройствами бытовой электроники, такими как мобильные телефоны и портативные компьютеры, просто обеспечивают постоянный источник напряжения. Требуемый профиль напряжения и тока для зарядки аккумулятора обеспечивается (или должен предоставляться) от электронных схем, либо внутри самого устройства, либо внутри аккумуляторной батареи, а не от зарядного устройства. Это обеспечивает гибкость при выборе зарядных устройств, а также служит для защиты устройства от потенциального повреждения из-за использования неподходящих зарядных устройств.

Измерение напряжения

Во время зарядки для простоты напряжение аккумулятора обычно измеряется на проводах зарядного устройства.Однако для сильноточных зарядных устройств может наблюдаться значительное падение напряжения на проводах зарядного устройства, что приводит к недооценке истинного напряжения аккумулятора и, как следствие, к недозаряду аккумулятора, если напряжение аккумулятора используется в качестве триггера отключения. Решение состоит в том, чтобы измерить напряжение с помощью отдельной пары проводов, подключенных непосредственно к клеммам аккумулятора. Поскольку вольтметр имеет высокий внутренний импеданс, падение напряжения на выводах вольтметра будет минимальным, и показания будут более точными.Этот метод называется соединением Кельвина. См. Также DC Testing.

Типы зарядных устройств

Зарядные устройства

обычно включают некоторую форму регулирования напряжения для управления зарядным напряжением, подаваемым на аккумулятор. Выбор схемы зарядного устройства обычно зависит от цены и качества. Ниже приведены некоторые примеры:

  • Регулятор режима переключения (Switcher) — Использует широтно-импульсную модуляцию для управления напряжением.Низкое рассеивание мощности при больших колебаниях входного напряжения и напряжения батареи. Более эффективен, чем линейные регуляторы, но более сложен.
    Требуется большой пассивный выходной фильтр LC (катушка индуктивности и конденсатор) для сглаживания импульсной формы волны. Размер компонента зависит от текущей пропускной способности, но может быть уменьшен путем использования более высокой частоты переключения, обычно от 50 кГц до 500 кГц., Поскольку размер требуемых трансформаторов, катушек индуктивности и конденсаторов обратно пропорционален рабочей частоте.
    Коммутация сильных токов вызывает электромагнитные помехи и электрические помехи.
  • Регулятор серии (линейный) — Менее сложный, но с большими потерями — требуется радиатор для рассеивания тепла в последовательном транзисторе с понижением напряжения, который компенсирует разницу между питающим и выходным напряжением. Весь ток нагрузки проходит через регулирующий транзистор, который, следовательно, должен быть устройством большой мощности. Поскольку нет переключения, он обеспечивает чистый постоянный ток и не требует выходного фильтра.По той же причине конструкция не страдает проблемой излучаемых и кондуктивных выбросов и электрических шумов. Это делает его подходящим для малошумных беспроводных и радиоприложений.
    С меньшим количеством компонентов они также меньше.
  • Шунтирующий регулятор — Шунтирующие регуляторы широко используются в фотоэлектрических (PV) системах, поскольку они относительно дешевы в сборке и просты в конструкции. Зарядный ток регулируется переключателем или транзистором, подключенным параллельно фотоэлектрической панели и аккумуляторной батарее.Перезаряд батареи предотвращается за счет короткого замыкания (шунтирования) выхода PV через транзистор, когда напряжение достигает заданного предела. Если напряжение батареи превышает напряжение питания фотоэлектрических модулей, шунт также защитит фотоэлектрическую панель от повреждения из-за обратного напряжения путем разряда батареи через шунт. Регуляторы серии обычно обладают лучшими характеристиками контроля и заряда.
  • Понижающий регулятор Импульсный регулятор, который включает понижающий преобразователь постоянного тока в постоянный. У них высокий КПД и низкие тепловые потери. Они могут справляться с высокими выходными токами и генерировать меньше радиопомех, чем обычный импульсный стабилизатор. Простая бестрансформаторная конструкция с низким коммутационным напряжением и небольшим выходным фильтром.
  • Импульсное зарядное устройство . Использует последовательный транзистор, который также можно переключать. При низком напряжении батареи транзистор остается включенным и проводит ток источника непосредственно к батарее. Когда напряжение батареи приближается к желаемому регулирующему напряжению, последовательный транзистор подает импульс входного тока для поддержания желаемого напряжения.Поскольку он действует как импульсный источник питания в течение части цикла, он рассеивает меньше тепла, а поскольку он действует как часть линейного источника питания, выходные фильтры могут быть меньше. Импульсный режим позволяет аккумулятору стабилизироваться (восстанавливаться) с небольшими приращениями заряда при прогрессивно высоких уровнях заряда во время зарядки. В периоды покоя поляризация клетки снижается. Этот процесс обеспечивает более быструю зарядку, чем это возможно при одной продолжительной зарядке высокого уровня, которая может повредить аккумулятор, поскольку не позволяет постепенно стабилизировать активные химические вещества во время зарядки.Импульсные зарядные устройства обычно нуждаются в ограничении тока на входе источника по соображениям безопасности, что увеличивает стоимость.
  • Зарядное устройство для универсальной последовательной шины (USB)
  • Спецификация USB была разработана группой производителей компьютеров и периферийных устройств, чтобы заменить множество патентованных стандартов механического и электрического взаимодействия для передачи данных между компьютерами и внешними устройствами. Он включал двухпроводное соединение для передачи данных, линию заземления и линию электропередачи на 5 В, обеспечиваемую главным устройством (компьютером), которая была доступна для питания внешних устройств. Неправильное использование порта USB заключалось в обеспечении источника 5 В не только для непосредственного питания периферийных устройств, но и для зарядки любых батарей, установленных в этих внешних устройствах. В этом случае само периферийное устройство должно включать в себя необходимую схему управления зарядом для защиты аккумулятора. Исходный стандарт USB определял скорость передачи данных 1,5 Мбит / с и максимальный ток зарядки 500 мА.

    Питание всегда передается от хоста к устройству, но данные могут передаваться в обоих направлениях.По этой причине разъем USB-хоста механически отличается от разъема устройства USB, и поэтому кабели USB имеют разные разъемы на каждом конце. Это предотвращает подключение любого 5-вольтового соединения от внешнего источника USB к главному компьютеру и, таким образом, возможное повреждение главной машины.

    Последующие обновления увеличили стандартные скорости передачи данных до 5 Гбит / с, а доступный ток до 900 мА. Однако популярность USB-соединения привела к появлению множества нестандартных вариантов, в частности, к использованию USB-разъема для обеспечения чистого источника питания без соответствующего подключения для передачи данных.В таких случаях порт USB может просто включать в себя регулятор напряжения для подачи 5 В от автомобильной шины питания 12 В или выпрямитель и регулятор для подачи 5 В постоянного тока от сети переменного тока 110 или 240 В с выходными токами до 2100 мА. В обоих случаях устройство, принимающее питание, должно обеспечивать необходимый контроль заряда. Источники питания USB с питанием от сети, часто известные как «глупые» зарядные устройства USB, могут быть встроены в корпус сетевых вилок или в отдельные розетки USB в настенных розетках переменного тока.

    Подробнее о USB-соединениях см. В разделе, посвященном шинам передачи данных от аккумулятора.

  • Индуктивная зарядка
  • Индуктивная зарядка не относится к процессу зарядки самого аккумулятора. Имеется в виду конструкция зарядного устройства. По сути, входная сторона зарядного устройства, часть, подключенная к сети переменного тока, состоит из трансформатора, который разделен на две части. Первичная обмотка трансформатора размещена в блоке, подключенном к сети переменного тока, а вторичная обмотка трансформатора размещена в том же герметичном блоке, который содержит аккумулятор вместе с остальной частью обычной электроники зарядного устройства.Это позволяет заряжать аккумулятор без физического подключения к сети и без обнажения каких-либо контактов, которые могут привести к поражению электрическим током пользователя.

    Примером малой мощности является электрическая зубная щетка. Зубная щетка и зарядное основание образуют трансформатор, состоящий из двух частей: первичная индукционная катушка находится в основании, а вторичная индукционная катушка и электроника содержатся в зубной щетке.Когда зубная щетка помещается в основание, создается полный трансформатор, и индуцированный ток во вторичной катушке заряжает аккумулятор. При использовании прибор полностью отключен от электросети, а поскольку аккумуляторный блок находится в герметичном отсеке, зубную щетку можно безопасно погружать в воду.

    Техника также используется для зарядки имплантатов медицинских батарей.

    Примером высокой мощности является система зарядки, используемая для электромобилей.Принципиально подобная зубной щетке, но в большем масштабе, это также бесконтактная система. Индукционная катушка в электромобиле принимает ток от индукционной катушки в полу гаража и заряжает автомобиль в течение ночи. Чтобы оптимизировать эффективность системы, воздушный зазор между статической катушкой и съемной катушкой можно уменьшить, опустив приемную катушку во время зарядки, и транспортное средство должно быть точно размещено над зарядным устройством.

    Аналогичная система использовалась для электрических автобусов, которые принимают ток от индукционных катушек, встроенных под каждой автобусной остановкой, что позволяет увеличить дальность действия автобуса или, наоборот, для одного и того же маршрута можно указать батареи меньшего размера. Еще одно преимущество этой системы состоит в том, что если заряд аккумулятора постоянно пополняется, глубина разряда может быть минимизирована, а это приводит к увеличению срока службы. Как показано в разделе «Срок службы батареи», время цикла увеличивается экспоненциально по мере уменьшения глубины разряда.

    Более простая и менее дорогая альтернатива этой возможной зарядке состоит в том, что транспортное средство создает токопроводящую связь с электрическими контактами на подвесном портале на каждой автобусной остановке.

    Также были сделаны предложения по установке сетки индуктивных зарядных катушек под поверхностью вдоль дорог общего пользования, чтобы позволить транспортным средствам собирать заряд во время движения, однако никаких практических примеров пока не установлено.

  • Зарядные станции для электромобилей
  • Подробнее о специализированных зарядных устройствах высокой мощности, используемых для электромобилей, см. В разделе «Инфраструктура для зарядки электромобилей».

Зарядное устройство Источники питания

При указании зарядного устройства также необходимо указать источник, от которого зарядное устройство получает свою мощность, его доступность, а также его напряжение и диапазон мощности. Следует также учитывать потери эффективности в зарядном устройстве, особенно для зарядных устройств большой мощности, где величина потерь может быть значительной. Ниже приведены некоторые примеры.

Управляемая зарядка

Простота установки и управления.

  • Сеть переменного тока
  • Многие портативные зарядные устройства малой мощности для небольших электроприборов, таких как компьютеры и мобильные телефоны, должны работать на международных рынках. Поэтому они имеют автоматическое определение напряжения сети и, в особых случаях, частоты сети с автоматическим переключением на соответствующую входную цепь.

    Для приложений с более высокой мощностью могут потребоваться специальные меры. Мощность однофазной сети обычно ограничивается примерно 3 кВт. Трехфазное питание может потребоваться для зарядки аккумуляторов большой емкости (более 20 кВтч), например, используемых в электромобилях, для которых может потребоваться скорость зарядки более 3 кВт для достижения разумного времени зарядки.

  • Регулируемый источник питания постоянного тока
  • Может поставляться установками специального назначения, такими как передвижное генерирующее оборудование для специальных приложений.

  • Специальные зарядные устройства
  • Переносные источники, например солнечные батареи.

Возможность зарядки

Зарядка с возможностью подзарядки — это зарядка аккумулятора при наличии питания или между частичными разрядами, а не ожидание полной разрядки аккумулятора. Он используется с батареями в циклическом режиме и в приложениях, когда энергия доступна только с перерывами.

Доступность энергии и уровни мощности могут сильно различаться. Для защиты аккумулятора от перенапряжения требуется специальная управляющая электроника. Избегая полной разрядки аккумулятора, можно увеличить срок службы.

Доступность влияет на спецификацию аккумулятора, а также на зарядное устройство.

Типичные области применения: —

  • Бортовые автомобильные зарядные устройства (Генераторы, рекуперативное торможение)
  • Зарядные устройства индукционные (в местах остановки транспортных средств)

Механическая зарядка

Это применимо только к определенному химическому составу клеток. Это не зарядное устройство в обычном понимании этого слова. Механическая зарядка используется в некоторых батареях большой мощности, таких как батареи Flow и воздушно-цинковые батареи. Цинково-воздушные батареи заряжаются путем замены цинковых электродов. Аккумуляторы Flow можно перезарядить, заменив электролит.

Механическая зарядка осуществляется за считанные минуты. Это намного быстрее, чем длительное время зарядки, связанное с традиционной электрохимией обратимых ячеек, которое может занять несколько часов.Поэтому воздушно-цинковые батареи использовались для питания электрических автобусов, чтобы решить проблему чрезмерного времени зарядки.

Производительность зарядного устройства

Тип батареи и область применения, в которой она используется, устанавливают требования к характеристикам, которым должно соответствовать зарядное устройство.

  • Чистота выходного напряжения
  • Зарядное устройство должно обеспечивать чистое регулируемое выходное напряжение с жесткими ограничениями на выбросы, пульсации, шум и радиочастотные помехи (RFI), которые могут вызвать проблемы для аккумулятора или цепей, в которых оно используется.

Для приложений с высокой мощностью производительность зарядки может быть ограничена конструкцией зарядного устройства.

  • КПД
  • При зарядке аккумуляторов большой мощности потери энергии в зарядном устройстве могут значительно увеличить время зарядки и эксплуатационные расходы приложения. Типичный КПД зарядного устройства составляет около 90%, отсюда и необходимость в эффективных конструкциях.

  • Пусковой ток
  • При первоначальном включении зарядного устройства на разряженную батарею пусковой ток может быть значительно выше максимального указанного зарядного тока. Следовательно, зарядное устройство должно быть рассчитано на передачу или ограничение этого импульса тока.

  • Коэффициент мощности
  • Это также может быть важным соображением для зарядных устройств большой мощности.

См. Также «Контрольный список зарядного устройства»

Особенности хорошего мобильного зарядного устройства

Характеристики хорошего мобильного зарядного устройства

Размещено Обновлено

Если вы много путешествуете, то портативное зарядное устройство всегда должно быть под рукой. Вы же не хотите, чтобы ваш смартфон отключился, особенно когда вы полагаетесь на него во многих делах. Когда ваш телефон выключится, людям будет сложно связаться с вами. Таким образом, везде необходимо иметь мобильное зарядное устройство.

Характеристики

Уровни мощности

Одной из особенностей мобильного зарядного устройства является высокий уровень емкости. Мобильные зарядные устройства имеют разные уровни емкости. Вы можете купить 6600 мАч, 2200 мАч или 4400 мАч в зависимости от ваших потребностей.Учитывая высокий уровень емкости, вам гарантирована более быстрая зарядка. Кроме того, покупка мобильного зарядного устройства с большой емкостью помогает сократить время зарядки. Вы также можете использовать свой смартфон уже через несколько минут после его зарядки. Таким образом, вы не будете испытывать неудобств, если захотите сразу же воспользоваться телефоном. Вы можете спокойно отдыхать, используя мобильное зарядное устройство.

Несколько портов для зарядки

Большинство дорожных зарядных устройств имеют несколько портов для зарядки, совместимых с различными устройствами. Если вы покупаете мобильное зарядное устройство с этой функцией, вы можете заряжать не только свой мобильный телефон, но и цифровую камеру, КПК и любое другое электронное устройство. Все, что вам нужно, это просто подходящий адаптер и подключение его к концентратору зарядного устройства. Функции нескольких портов дают вам гибкость, так как вы можете заряжать разные устройства. Кроме того, эта функция позволяет сэкономить время и деньги. Вы экономите время, потому что можете заряжать все свои устройства одновременно.

USB-соединение

Большинство мобильных зарядных устройств оснащены функцией USB-подключения.Устройства, использующие USB-соединение, такие как сотовые телефоны и камеры, могут быть подключены через USB-порт. USB-соединение является привлекательной функцией для большинства пользователей, так как позволяет легко заряжать мобильный телефон. Таким образом, USB-соединение упрощает вашу работу.

Состояние зарядки

Состояние зарядки — это функция, позволяющая контролировать свой смартфон. Эта функция защитит ваш мобильный телефон от перезарядки. Таким образом, вам не о чем беспокоиться, когда вы подключаете мобильный телефон к зарядному устройству.Ваш мобильный телефон будет заряжаться быстро.

Эта запись была размещена в Tech и помечена как Charger, Features, good, mobile.

32. ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИ ЗАРЯДКЕ

Если у вас есть мобильное устройство и вам нужно его зарядить, первое, что вам нужно сделать, это найти (или свой) адаптер переменного тока с USB-кабелем, а затем подключить его к соответствующему USB-порту для зарядки на вашем устройстве… и вуаля! Вернитесь через несколько часов, и ваша батарея должна быть полностью заряжена.

Просто, как и должно быть.Но вы когда-нибудь задумывались, что происходит за занавесками? Я расскажу о некоторых из этих подробностей в этой и последующих публикациях.

Итак, прежде чем мы углубимся в электронную схему, отвечающую за зарядку батареи, давайте рассмотрим электрические характеристики литий-ионной батареи во время зарядки. Батарея представляет собой сложное химическое устройство, но электрически его можно упростить до двухконтактного компонента; Другими словами, для нас важны два электрических значения: i) напряжение на клеммах батареи и ii) ток, протекающий через (i.е. во время зарядки) или вне (то есть во время разрядки) аккумулятора.

Напряжение на клеммах батареи напрямую связано с состоянием заряда (SoC) батареи — если вы помните из этой предыдущей публикации, это доля заряда батареи относительно полного.

Во время фазы зарядки можно ожидать, что напряжение на клеммах аккумулятора возрастет от «пустого» уровня (обычно около 3,3 В) до «полного» уровня (обычно около 4.2 В или 4,35 В в зависимости от типа аккумулятора). Это именно то, что показано на следующем графике для литий-ионного аккумулятора с номинальной емкостью заряда 720 мАч.

Эта диаграмма характеристик зарядки аккумулятора выглядит довольно загруженной, но мы можем легко проанализировать ее, чтобы получить ценную информацию. Каждая литий-ионная батарея без исключения имеет аналогичную диаграмму, часто включаемую в ее технические данные.

Правая вертикальная ось показывает емкость заряда (или SoC) как функцию времени зарядки.Это показано длинной штриховой кривой. Ноль равен нулю, а 100% достигается примерно через 2,5 часа зарядки. Сам ток зарядки представлен пунктирной линией, а его значения находятся на крайней левой вертикальной оси.

Можно сделать несколько важных наблюдений. Сначала зарядный ток имеет постоянное значение приблизительно 720 мА, а затем начинает спадать менее чем через час зарядки. Эта первая фаза называется фазой постоянного тока (CC); Вторая фаза, в которой ток неуклонно спадает, называется фазой постоянного напряжения (CV).В некоторых публикациях и блогах они ошибочно обозначаются как фаза «быстрой зарядки» и «фаза постоянной зарядки»… это абсолютный бред и демонстрирует полное невежество со стороны автора. Я вернусь к этому типу зарядки CCCV позже — он лежит в основе многих болезней, от которых страдают современные литий-ионные батареи.

Второе наблюдение, которое мы делаем, заключается в том, что напряжение батареи действительно составляет от 3,3 В до 4,2 В, но где-то около 50 минут напряжение остается стабильным на уровне 4.2 В и остается там. Именно это и делает фаза постоянного напряжения; внутренняя схема зарядки фактически устанавливает напряжение зарядки на значение 4,2 В и удерживает его там до завершения зарядки.

Это максимальное значение напряжения взято прямо из химии. При более высоких значениях электролит внутри батареи начинает окисляться и разлагаться, что создает серьезную угрозу безопасности. Это одна из нескольких причин, по которым конечный пользователь не может и не должен смешивать зарядные устройства (адаптеры переменного тока), используемые для NiMH аккумуляторов и литий-ионных аккумуляторов.Напряжения для каждого типа батарей сильно различаются.

Наконец, возникает вопрос, в какой момент процесс зарядки считается завершенным? Естественно, вы скажете «100%», но как определить 100%? Во время процесса зарядки принято прекращать зарядку, когда затухающий ток достигает 1/20 емкости ячейки. В этом конкретном аккумуляторе это соответствует уменьшению тока до 720/20 = 36 мА. На графике выше это достигается через 2,5 часа. Но производители мобильных устройств торопятся и часто обманывают свои цифры, поэтому вы увидите, что зеленый свет загорается намного раньше, сокращая время зарядки на 30 или 45 минут.

Dodge Charger Особенности и характеристики

Передние сиденья с поясничной опорой с приводом в 4 направлениях

12-позиционное сиденье водителя с электроприводом, регулировка угла наклона, регулировка высоты, перемещение вперед / назад, наклон подушки и усиленная 4-позиционная поясничная поддержка

Пассажирское сиденье с четырьмя направлениями движения: наклон вручную и движение вперед / назад

60-40 Складывающаяся скамья Передняя часть сиденья Сложенная вперед ткань спинки заднего сиденья

Рулевая колонка с ручным регулированием наклона / выдвижения

Датчики -inc: спидометр, одометр, давление масла, температура охлаждающей жидкости двигателя, тахометр, температура масла, температура трансмиссионной жидкости, счетчик моточасов двигателя, одометр и бортовой компьютер

Электрические задние окна

Диктофон

4G LTE Wi-Fi Hot Spot Мобильная точка доступа в Интернет

Спортивное рулевое колесо с кожаной / металлической отделкой с подогревом

Передний подстаканник с подсветкой

Задний подстаканник

Компас

Бесконтактный ключ для дверей и кнопочный пуск

Услуги камердинера

Тип блокировки топливной заслонки

Дистанционный вход без ключа со встроенным передатчиком ключа, бордюр для 4 дверей, вход с подсветкой и тревожная кнопка

Дистанционные релизы -Inc: доступ к силовому грузу и энергетическое топливо

Передатчик для гаражных ворот HomeLink

Круиз-контроль с элементами управления на рулевом колесе

HVAC -inc: воздуховоды под сиденьями и воздуховоды консоли

Двухзонный передний автоматический кондиционер

Запирающийся перчаточный ящик с подсветкой

Подставка для ног водителя

Внутренняя отделка — цинк: алюминиевая вставка в приборной панели, алюминиевая вставка в консоль и элементы интерьера под металл

Полный тканевый хедлайнер

Виниловая вставка для отделки двери

Кожаный материал переключателя передач

Тканевые сиденья с логотипом Bee

Косметические зеркала заднего вида водителя и пассажира с подсветкой для водителя и пассажира, дополнительное зеркало водителя и пассажира

Зеркало заднего вида с автоматическим затемнением «день-ночь»

Полноценная напольная консоль с крытым хранилищем, мини-потолочная консоль с хранилищем и 2 розетки постоянного тока 12 В

Передние и задние фонари карты

Внутреннее освещение Fade-To-Off

Полное ковровое покрытие-inc: коврики спереди и сзади

Облицовка коврового покрытия и ковровое покрытие крышки багажника / обшивка задней грузовой двери

Cargo Features -inc: Комплект для передвижения запасных шин

Огни грузового пространства

FOB Controls -inc: доступ к грузу и удаленный запуск двигателя

Интеграция смарт-устройств

Удаленный запуск двигателя смарт-устройства

Система отслеживания SiriusXM Guardian

Ящик в приборной панели, ящики для водителя / пассажира и задней двери

Windows Power 1-го ряда с водителем и пассажиром одним касанием вверх / вниз

Задержка питания аксессуаров

Электрические дверные замки с функцией автоблокировки

Системный монитор

Резервный цифровой спидометр

Бортовой компьютер

Наружный датчик температуры

Цифровой / аналоговый дисплей

Регулируемые передние подголовники и фиксированные задние подголовники с ручной защитой от хлыста

2 кармана для хранения на спинке сиденья

Подушка с подогревом водителя и пассажира, подогрев спинки сиденья водителя и пассажира

Передний средний подлокотник и задний средний подлокотник

Иммобилайзер двигателя Sentry Key

Сигнализация по периметру

2 розетки постоянного тока 12 В

Фильтрация воздуха

Статья о зарядном устройстве по The Free Dictionary

(1) Электротехническое устройство для зарядки аккумуляторных и конденсаторных батарей (в основном первого типа). Он состоит из зарядного генератора или трансформатора с выпрямителем тока, а также силового распределительного щита, который содержит регуляторы напряжения и автоматические выключатели. Мощность зарядного устройства зависит от емкости заряжаемых аккумуляторов и номинальной продолжительности заряда.

Зарядные устройства аккумуляторных батарей используются для периодической зарядки, компенсирующей и прерывистой подзарядки, а также выравнивающей зарядки аккумуляторных батарей, которые, как правило, сначала группируются по их емкости и силе зарядного тока.Аккумуляторы для периодической зарядки делятся на две группы. Зарядное устройство заряжает одну из двух групп за раз. Для компенсационной перезарядки зарядное устройство питает цепь нагрузки и одновременно заряжает аккумуляторные батареи. При прерывистой подзарядке питает нагрузочную часть времени и заряжает аккумуляторную батарею; в остальное время он работает в режиме ожидания при низкой нагрузке. Цепь нагрузки питается от аккумуляторной батареи. Зарядные устройства для конденсаторов используются для зарядки конденсаторов в нормальном режиме, то есть непрерывно до номинального напряжения.

Маломощные однофазные зарядные устройства для выпрямителей имеют резко падающую внешнюю характеристику, подходящую для условий зарядки аккумуляторных батарей. Напряжение регулируется с помощью вторичной обмотки трансформатора с ответвлениями.

(2) При проведении взрывных работ зарядное устройство представляет собой механизм или машину для заполнения зарядного отверстия взрывчаткой. Зарядные устройства делятся на две группы: установки для зарядки порошка, не содержащего нитроэфиров и циклонита, и установки для зарядки гранулированных взрывчатых веществ.Установки первой группы не получили широкого распространения из-за их низкой эффективности, недостаточной плотности заряда и дороговизны подходящих взрывчатых веществ. Зарядные устройства для гранулированных взрывчатых веществ предназначены для зарядки нисходящих взрывных скважин в ямах самотеком насыпных или жидких взрывчатых веществ (переносное смесительное и заряжающее оборудование, которое производит смесь компонентов взрывчатого вещества, например игданит или гранулированный гранулит , в процессе зарядки транспортирующие и заряжающие машины для заводских взрывчатых веществ) и заряжать взрывные скважины и скважины в любом направлении с помощью пневматического оборудования. Пневматическое оборудование является предпочтительным для шахт и подразделяется по принципу действия на эжекторные типы, в которых взрывчатое вещество всасывается из открытого контейнера за счет вакуума в эжекторной головке и переносится потоком сжатого воздуха в зарядную трубу. , и типы давления, которые вытесняют взрывчатое вещество из герметичного контейнера сжатым воздухом. Напорные устройства транспортируют взрывчатое вещество по трубам или шлангам на 200–300 м (в том числе 80 м по вертикали) и забивают его в скважину с необходимой скоростью.Зарядные устройства для жидких взрывчатых веществ, содержащих воду, делятся на две группы: мобильные машины для увлажнения сухих заводских смесей типа и акватол и мобильные теплоизолированные машины для транспортировки сыпучих компонентов и горячего раствора аммиачной селитры (наполнитель) и смешивая их непосредственно во время зарядки. Жидкое взрывчатое вещество нагнетается в скважину сжатым воздухом или насосом.

СПРАВОЧНАЯ ИНФОРМАЦИЯ

Механизация з. ряжания В.В. .2-е изд. М., 1969.

Г. П. Д ЭМИДЮК и В. М. К ОМИР

Большая Советская Энциклопедия, 3-е издание (1970-1979). © 2010 The Gale Group, Inc. Все права защищены.

Введение в беспроводную зарядку аккумулятора

Беспроводная зарядка устраняет необходимость в кабеле, который обычно требуется для зарядки мобильных телефонов, беспроводных устройств и т. Д. С помощью беспроводного зарядного устройства аккумулятор в любом приборе с батарейным питанием можно зарядить, просто поместив прибор рядом с беспроводным передатчиком энергии или специальной зарядной станцией.В результате корпус прибора можно сделать полностью герметичным, даже водонепроницаемым. Помимо присущего ей удобства, беспроводная зарядка также может значительно повысить надежность, поскольку штекер для зарядки на боковой стороне устройства может легко получить механическое повреждение или просто из-за того, что кто-то случайно подключил не тот адаптер. В основе беспроводной зарядки лежит хорошо известный закон индуцированного напряжения Фарадея, обычно используемый в двигателях и трансформаторах.

Приложения беспроводной зарядки аккумуляторов

  • Смартфоны, портативные медиаплееры, цифровые камеры, планшеты и носимые устройства: Потребители ищут простые в использовании решения, большую свободу позиционирования и более короткое время зарядки.Эти приложения обычно требуют мощности от 2 Вт до 15 Вт. Предпочтительна мультистандартная совместимость. Беспроводная зарядка может сосуществовать с NFC (Near Field Communication) и Bluetooth, что позволяет создавать очень креативные решения. Например, сопряженные телефоны могут заряжать друг друга, когда они размещены вплотную, после того, как они согласовывают соответствующий хост и клиента.
  • Аксессуары: Гарнитуры, беспроводные динамики, мыши, клавиатуры и многие другие приложения могут получить выгоду от беспроводной передачи энергии. Подключение зарядных кабелей к крошечным разъемам постоянно сжимающихся устройств является препятствием для создания прочной конструкции. Например, гарнитуры Bluetooth должны быть защищены от пота, чтобы выжить в тренажерном зале. Только беспроводная зарядка может позволить такую ​​возможность.
  • Зарядный терминал общего доступа: Размещение зарядных устройств (передатчиков) в общественных местах требует, чтобы системы были безопасными и надежными. Но интеллектуальные системы зарядки могут выходить далеко за рамки автономных решений для зарядки.Они могут обеспечить быстрое подключение к сети и при желании создать платные зарядные станции. Многие кафе, киоски в аэропортах и ​​отели поддерживают эти сценарии. Производители мебели также встраивают незаметные беспроводные передатчики мощности в свои торцевые и боковые столики.
  • Компьютерные системы: Ноутбуки, ноутбуки, ультрабуки и планшетные ПК — все кандидаты для беспроводной зарядки в качестве хостов или клиентов. Возможности безграничны.
  • Применение в салоне автомобиля: Беспроводное зарядное устройство идеально подходит для зарядки мобильных телефонов и брелоков, размещая их либо на приборной панели, либо на центральной консоли автомобиля, без неудобных проводов, идущих к гнезду прикуривателя.Более того, поскольку Bluetooth и Wi-Fi требуют аутентификации для подключения телефонов к автомобильной электронике, объединение NFC с беспроводной зарядкой может позволить пользователю не только заряжать телефон, но и автоматически подключать его к автомобильным сетям Wi-Fi и Bluetooth без прохождения через них. любой конкретный процесс настройки.
  • Электромобили: Умные зарядные станции для электромобилей также появляются, но требуют гораздо большей мощности. Стандарты находятся в стадии разработки.
  • Разное: Беспроводные зарядные устройства находят применение во всем, где есть аккумулятор. Сюда входят игровые и телевизионные пульты, беспроводные электроинструменты, беспроводные пылесосы, дозаторы мыла, слуховые аппараты и даже кардиостимуляторы. Беспроводные зарядные устройства также могут заряжать суперконденсаторы (суперконденсаторы) или любые устройства, которые традиционно питаются от низковольтного кабеля питания.

Стандарты беспроводной зарядки для совместимой беспроводной передачи энергии

За последние несколько лет появилось три основных конкурирующих стандарта беспроводной зарядки, в том числе Qi, PMA и Airfuel ™, как описано ниже.Все три по существу основаны на законе индуцированного напряжения Фарадея и используют индуктивные катушки для беспроводной передачи энергии, но определены для работы на разных частотах с разными схемами управления. Таким образом, каждый стандарт беспроводного питания предлагает уникальные технологические преимущества с разными уровнями поддержки в отрасли и долей рынка.

В традиционной китайской культуре Ци (произносится как «чи») часто переводится как «естественная энергия», «жизненная сила» или «поток энергии». Это также название отраслевого стандарта, созданного консорциумом Wireless Power Consortium (WPC). Qi в настоящее время поддерживает беспроводную передачу мощности до 5 Вт на расстояние до 5 мм, но быстро расширяется до 15 Вт, а затем до 120 Вт на гораздо большие расстояния.

Основная цель создания любого отраслевого стандарта — совместимость. Например, любой приемник с логотипом Qi можно разместить на любой панели передатчика, на которой отображается логотип Qi. Возможно, даже на планшете, основанном на другом стандарте, при условии, что микросхема беспроводного приемника поддерживает мультистандартную совместимость.Скоро отпадет необходимость носить с собой фирменные зарядные устройства в дальних поездках.

В то время как стандарт Qi работает в приблизительном диапазоне частот 100-200 кГц, стандарт PMA (Power Matters Alliance) обеспечивает мощность до 5 Вт при почти вдвое большей частоте. Стандарты PMA и Qi на самом деле очень похожи, поскольку основаны на принципах «магнитной индукции» («MI»). Они действительно используют совершенно разные методы связи между беспроводным приемником энергии и передатчиком.

Недавно PMA достигла соглашения с A4WP о создании объединенного стандарта (теперь Airfuel Alliance).Это основано на несколько ином принципе под названием «MR», что означает магнитный резонанс. Ранние версии стандарта позволяли подавать мощность 3,5 Вт и 6,5 Вт, но недавно она была увеличена до 50 Вт. Хотя MR также основан на основном законе индукции, он состоит из гораздо более слабосвязанного, но более плотно настроенного приемника. и катушки передатчика с очень высокой добротностью (добротность) для обеспечения резонансной передачи на частоте около 7 МГц. Таким образом, Airfuel предлагает большую пространственную гибкость в отношении физического размещения передатчика и приемника.

Основные компоненты беспроводной системы зарядки аккумуляторов

  1. Зарядный передатчик для беспроводной зарядки питается от входной шины постоянного тока напряжением от 5 В до 19 В, обычно получаемой от порта USB или адаптера питания переменного / постоянного тока.
  2. Переключаемый транзисторный мост с использованием двух или четырех полевых транзисторов управляет катушкой и последовательным конденсатором. Резонансная частота устанавливается внутри с помощью последовательного конденсатора.
  3. Передатчик имеет катушку для передачи энергии за счет электромагнитной индукции.Некоторые передатчики поддерживают массивы из нескольких катушек, управляемые отдельными мостами, которые автоматически выбираются для передачи максимальной связанной мощности в беспроводной приемник энергии.
  4. Индуцированная мощность передается на беспроводной приемник энергии, который имеет аналогичную катушку для сбора входящей мощности.
  5. Приемник выпрямляет мощность с помощью диодных выпрямителей, обычно сделанных из полевых транзисторов для повышения эффективности. Он также фильтрует мощность с помощью керамических выходных конденсаторов, а затем подает ее на аккумулятор, который необходимо зарядить, либо через линейный каскад, либо через импульсный стабилизатор.
  6. Батарея внутри портативного устройства получает питание и заряжается. Приемник может дать команду передатчику отрегулировать зарядный ток или напряжение, а также полностью прекратить передачу мощности при указании окончания заряда.

Основные рекомендации по проектированию

Беспроводное электричество, безусловно, представляет собой сложную область, и IDT в этом преуспевает. При интеграции системы беспроводной зарядки в устройство необходимо сначала решить, какой стандарт беспроводного питания наиболее подходит для данного приложения.В некоторых случаях IDT предлагает двухрежимные решения для максимальной совместимости и удобства.

Выбор катушки определяется стандартами. Все основные производители магнитных устройств предоставляют одинаковые стандартные катушки (как определено). Затем инженер обычно выбирает катушки в зависимости от области применения, в зависимости от входного постоянного напряжения и требований к выходу. Однако подходящая геометрия катушки и тип катушки обычно являются точными, используемыми в оценочном комплекте конкретного решения ИС приемника или передатчика.

Как правило, внутри приемника требуется всего несколько миллиметров пространства для размещения катушки и связанной с ней электроники. Некоторое экранирование может потребоваться для предотвращения шума и электромагнитных помех внутри устройства. Датчик уровня топлива обычно не встроен в беспроводные зарядные устройства, поэтому эту функцию, возможно, потребуется поддерживать отдельно

Еще одно соображение при интеграции состоит в том, что мощность не может передаваться через металлический корпус, поскольку металл эффективно защищает приемник от передатчика.Поэтому разработчику системы необходимо иметь относительно плоский пластиковый интерфейс на корпусе приемника, чтобы катушки беспроводной зарядки были обращены друг к другу. Кроме того, пластиковая стенка не может быть больше пары миллиметров, так как это тоже может повлиять на передачу энергии.

Наконец, некоторые инженеры осознают необходимость точного обнаружения постороннего металлического предмета, если он присутствует на пути передачи энергии, чтобы избежать перегрева. Чтобы удовлетворить эту потребность, все решения IDT оснащены надежной схемой обнаружения и контроля посторонних предметов, что делает решения совместимыми со всеми основными правилами техники безопасности.

IDT — лидер отрасли в области решений для беспроводных зарядных устройств

IDT заняла лидирующую позицию в области беспроводной зарядки, работая с тремя ключевыми группами стандартов — WPC, PMA и Alliance for Wireless Power. Эти отношения позволяют компании тесно сотрудничать с другими ведущими новаторами для разработки решений, направленных на решение проблем беспроводной доставки энергии.

В результате IDT предлагает ряд микросхем беспроводных приемников энергии, совместимых с WPC, PMA и WPC / PMA (двухрежимный).Двухрежимные приемники компании вырабатывают 5 Вт при 5 В, либо с понижающим импульсным стабилизатором постоянного тока, либо с отслеживающим LDO (стабилизатор с низким падением напряжения).

IDT также предлагает несколько передатчиков, совместимых с WPC, с различными требованиями к входу от 19 В до 12 В или работающими от адаптера 5 В или портов USB на 2 А. Все продукты для беспроводной зарядки поддерживаются мощными программными инструментами и руководствами по проектированию, которые помогают в процессе разработки.

Узнайте больше о решениях IDT Wireless Power Solutions

Зарядное устройство для солнечных батарей

обеспечивает высокую эффективность при слабом освещении

Важной характеристикой любой солнечной панели является то, что он обеспечивает пиковую выходную мощность при относительно постоянном рабочее напряжение ( МП В) независимо от уровня освещенности (см. Рисунок 1).Зарядное устройство LT3652 2A использует это характеристика для поддержания солнечной панели на пике работы эффективность за счет реализации регулирования входного напряжения (патент в ожидании). Когда доступной солнечной энергии недостаточно для удовлетворения требований к питанию батареи LT3652 зарядное устройство, регулировка входного напряжения уменьшает аккумулятор зарядный ток. Это снижает нагрузку на солнечную панель. для поддержания напряжения панели на уровне V MP , максимально увеличивая выходная мощность панели. Этот метод достижения пика панели КПД называется контролем максимальной мощности (MPPC).

Рис. 1. Солнечная панель производит максимальную мощность при определенном выходном напряжении, V MP , которое относительно не зависит от уровня освещенности. Зарядное устройство LT3652 2A максимально увеличивает выходную мощность солнечной панели, регулируя входное напряжение панели на уровне MP В.

В то время как MPPC оптимизирует эффективность солнечных панелей в периоды слабой освещенности, мощность преобразования КПД зарядное устройство страдает при уровни низкие, что снижает общую мощность эффективность передачи от панели к аккумулятор.В этой статье показано, как улучшить эффективность зарядного устройства за счет применения простая техника зарядки PWM, которая заставляет зарядное устройство высвобождать энергию импульсами при низком уровне мощности.

Вывод текущего состояния монитора CHRG на LT3652 показывает состояние батареи ток заряда, и используется здесь для управления функция ШИМ. Штифт опущен низко когда выходной ток зарядного устройства больше чем C / 10, или 1/10 запрограммированного максимальный ток и высокий импеданс когда выходной ток ниже C / 10.

В периоды слабого освещения контур регулирования входа может уменьшить выходной ток зарядного устройства ниже C / 10, в результате чего штифт CHRG стал высокий импеданс. Изменение состояния этого вывода состояния используется для отключения IC срабатывание блокировки пониженного напряжения на входе (UVLO) с порогом падения при напряжение солнечной панели выше, чем входное напряжение стабилизации (V IN (REG) ). Напряжение на солнечной панели повышается диапазон гистерезиса UVLO в ответ к отключенному зарядному устройству, пока Порог увеличения UVLO достигается, когда зарядное устройство снова включается на полную мощность.В затем зарядное устройство обеспечивает ток заряда до тех пор, пока регулировка входного напряжения снова отключает зарядное устройство. Этот цикл повторяется, генерируя выход зарядного устройства, который представляет собой серию сильноточные всплески, что максимизирует эффективность зарядного устройства, а также эффективность всего солнечного зарядного устройства система при любом уровне освещенности.

На рисунке 2 показана солнечная панель с 3 элементами. Литий-ионное зарядное устройство с функцией ШИМ малой мощности. В этом зарядном устройстве используется вход 17 В. регулировка напряжения (общий V MP для Панели «Система 12В»), программируемые с помощью резисторный делитель R4 и R5 на V IN_REG пин.Сохранение рабочего напряжения типичной солнечной панели системы 12 В рядом с Номинальное напряжение 17 В V MP обеспечивает эффективность панели близко к 100%, как показано на рисунке 3. Реализована функция маломощного ШИМ используя M1, R6, R7 и R8. Рисунок 4 показывает, что добавление схемы ШИМ значительно увеличивает эффективность ток заряда аккумулятора ниже 200 мА.

Рис. 2. От солнечной панели MP 17 В В к 3-элементному литий-ионному (12,6 В) зарядному устройству 2 А.

Рисунок 3. Типичная эффективность солнечной панели «12В системы» (V MP = 17 В).

Рисунок 4. КПД схемы на рисунке 2.

Штифт CHRG LT3652 тянется на низкий уровень, пока требуемый ток заряда превышает 1/10 от запрограммированный максимальный заряд 2А ток, или 200 мА. Когда зарядный ток снижается входным контуром регулирования ниже уровня 200 мА вывод CHRG становится высоким импедансом, что позволяет вентиль М1 подтянуться до В БАТ , включение полевого транзистора, M1. Этот полевой транзистор тянет R7 на землю, включая входное напряжение Функция UVLO с использованием вывода SHDN и резисторный делитель из R6 и R7.Функция UVLO программируется с помощью этот разделитель должен иметь порог падения 18 В и повышающийся порог 20 В. В порог падения — критический дизайн значение, и должно быть запрограммировано на напряжение что выше, чем входное регулирование напряжение, и на 10% ниже, чем порог повышения, как диктуется Гистерезис порога отключения LT3652.

В условиях низкой освещенности, когда доступная мощность панели недостаточна для LT3652 для обеспечения необходимого ток заряда, входное напряжение LT3652 регулирование снижает выходную плату ток, пока входная мощность зарядного устройства не станет эквивалент предоставленной доступной мощности панелью. С регулировкой входа активен, напряжение панели на В IN удерживается на запрограммированное пиковое напряжение 17 В, максимизация производимой мощности из панели. Если подсветка панели становится достаточно низким, чтобы доступный мощность панели соответствует току заряда менее 200 мА, вывод CHRG становится высокий импеданс и функция UVLO включается через M1, R6 и R7.

Так как V IN имеет 17 В, что ниже, чем Порог падения УВЛО, LT3652 отключается вниз, отключив всю зарядку аккумулятора функции.С зарядным устройством отключен, практически весь вывод панели ток заряжает входной конденсатор (С1), увеличивая напряжение на В В до тех пор, пока Достигнут возрастающий порог 20V UVLO, повторное включение LT3652. Зарядное устройство повторно активируется с V IN значительно выше Порог регулирования входа 17 В, полный зарядный ток течет в аккумулятор. В В ответ на вывод состояния CHRG устанавливается низкий уровень к высокому уровню заряда аккумулятора, который отключает функцию UVLO. В качестве пока мощность, необходимая для батареи зарядное устройство остается меньше доступного от солнечной панели, напряжение панели рухнет, пока V IN не уменьшится до 17 В, при токе заряда аккумулятора снижается за счет регулирования ввода для поддержания это напряжение. Когда зарядный ток равен снова снижается до 200 мА, вывод CHRG становится высокоомным, цепь UVLO повторно задействован, и цикл отключения / включения повторяется, что приводит к строке заряда текущие «всплески» в среднем на батарею зарядный ток, соответствующий доступная мощность от солнечной панели.

На рисунке 5 показан режим ШИМ схема на Рисунке 2. Пока LT3652 отключено, напряжение на V IN изменяется от порог регулирования входа от 17 В до порог отключения 20В. Напряжение на выводе LT3652 CHRG низкий, в то время как зарядное устройство включено и высокое, пока зарядное устройство отключено. Пока зарядное устройство отключен, энергия панели сохраняется в входной конденсатор, поэтому выходная мощность от панели остается непрерывным. КПД солнечной панели соответствует среднему напряжению на панели при работе ШИМ, которое составляет около 18.5В.

Рисунок 5. Форма сигнала V IN во время ШИМ для схемы на рисунке 2.

На рисунке 6 показана 6-элементная свинцово-кислотная батарея. зарядное устройство с функцией слаботочного ШИМ. Зарядное устройство предназначено для солнечная панель, имеющая аналогичные характеристики к зарядному устройству на Рисунке 2.

Рис. 6. Панель 17V V MP для 6-элементного свинцово-кислотного зарядного устройства 2A.

Рисунок 7. Кривая КПД для схемы на Рисунке 6.

Это свинцово-кислотное зарядное устройство выполняет трехступенчатую свинцово-кислотный профиль заряда, использующий 2А объемный режим зарядки, абсорбция режим зарядки до 14.4 В и плавающий заряд поддержание на 13,5В. Зарядное устройство обеспечивает до 2А при зарядке CC / CV характеристики вплоть до поглощения режим регулирования напряжения 14,4В, при наличии достаточной входной мощности доступны от солнечной панели. Поскольку батарея приближается к регулируемому напряжению 14,4 В, ток заряда уменьшается, завершая зарядка в режиме абсорбции при ток заряда падает до 200 мА, или 1/10 максимальный ток заряда (Кл / 10).

Когда зарядка в режиме абсорбции завершено, контакт CHRG становится высоким сопротивление в ответ на достижение Порог зарядного тока C / 10 и плавающий начинается режим поддерживающей зарядки.Регулирующее напряжение снижается с От 14,4 В до 13,5 В в плавающем режиме, достигается эффективное удаление R9 из V FB суммирование узел — выполняется диодом-ИЛИ цепь (D4 и D5) при вытягивании CHRG высокий на R8, через D4 с обратным смещением.

Регулировка заряда поплавкового режима также реализовано, если зарядное устройство LT3652 недостаточная входная мощность из-за низкого уровни освещенности панели солнечных батарей. Если заряд ток снижен до менее 200 мА через регулировка входа и работа ШИМ начинается, напряжение на выводе CHRG становится равным импульсный сигнал. D5 и C5 реализуют фильтр обнаружения пиковых значений, поддерживающий непрерывное обратное смещение на D4, сохраняя зарядное устройство в плавающем режиме (V CHARGE = 13,5 В) во время работы ШИМ. На рисунке 7 показано что добавление схемы ШИМ значительно увеличивает эффективность работы от аккумулятора зарядные токи ниже 200 мА.

Во время работы ШИМ входное напряжение линейные изменения от входного порога регулирования от 17В до порога отключения 20В в период, когда ИС отключена, как ранее описано для батареи зарядное устройство на рисунке 2.Выходная мощность от солнечной панели соответствует среднее напряжение панели, или около 18,5 В. На рисунке 3 показано, что это напряжение равно в оптимальном рабочем диапазоне для более высоких выходных токов, но выше этот диапазон при токах менее 200 мА. Чтобы максимизировать мощность обеих солнечных панелей КПД и КПД зарядного устройства в приложениях с расширенной низкой освещенностью работы, напряжения V IN (REG) и UVLO следует уменьшить в период всплеска. Ниже описан способ сделать это.

Зарядное устройство для свинцово-кислотных аккумуляторов LT3652 в г. Рисунок 8 аналогичен зарядному устройству в Рисунок 6, но также снижает входное регулирование напряжение (В В (РЕГ) ) при токе заряда ниже 200 мА. Это улучшает панель эффективность за счет отслеживания характеристик панели снижение В МП при малых токах.

Рис. 8. От панели 17V V MP к 6-элементному свинцово-кислотному зарядному устройству 2A с низким током V MP , отслеживание.

Слаботочный V MP реализовано отслеживание добавив R10 к входному регулированию делитель R4 и R5.R10 подключен к узлу суммирования входного регулирования через диодное ИЛИ (D6 и D7). Когда напряжение на выводе CHRG высокое, R10 эффективно удаляется из суммирующий узел через обратносмещенный D7, понижающий V IN (REG) с 17V до 15V.

Если зарядное устройство не соответствует требованиям входная мощность из-за низкого уровня освещенности, ток заряда уменьшается через вход контур регулирования для поддержания солнечной энергии V MP напряжение панели 17В. Если ток заряда снижен до менее 200 мА, зарядное устройство начинает работу PWM и регулирование порог снижен для плавающей зарядки, так как в предыдущем зарядном устройстве для свинцово-кислотных аккумуляторов схема.Кроме того, это зарядное устройство снижает V IN (REG) до 15 В, отслеживание снижения солнечной панели V MP на малых токах.

D6 и C6 реализуют фильтр обнаружения пика, аналогично описанному ранее D5 и C5. Этот фильтр поддерживает непрерывное обратное смещение на D7, сохраняя зарядное устройство входное напряжение регулирования при низком уровне 15 В уровень освещенности при работе ШИМ. Компоненты управления ШИМ (M1 и R6-R8) реализуют пороги UVLO 16 В (падение) и 17,5 В (рост).В течение ШИМ-режим, напряжение панели при V IN линейное изменение от входного регулирования 15 В напряжение до порога нарастания УВЛО 17,5В, давая среднее напряжение панели около 16,25 В. Это зарядное устройство максимально увеличивает как эффективность преобразования зарядного устройства, так и выходная мощность панели солнечных батарей на снижение напряжения на панели управления при реализации ШИМ операции в периоды слабой освещенности.

Микросхема зарядного устройства LT3652 имеет подана заявка на патент регулирование входного напряжения цепь, которая используется для поддержания солнечной панель при максимальном напряжении питания, V MP .В то время как выходная мощность солнечной панели оптимизирован с использованием этого техника, КПД батареи зарядное устройство падает при малых выходных токах. КПД LT3652 на солнечной энергии зарядное устройство можно значительно улучшить в условиях низкой освещенности с простая техника ШИМ, реализованная используя всего несколько внешних компонентов, максимизация операционной эффективности и зарядное устройство, и солнечная панель.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *