В 12 вольтах сколько ампер: 1 Вольт сколько ампер

Содержание

Мини ИБП 12 Вольт/1 Ампер на одном Li-Ion аккумуляторе 18650

Давно искал возможность обеспечить резервное питание для моей домашней малотоковой нагрузки (роутер, камера и т.п.). Не покупать же под такое отдельный ИБП 220В (отдельный потому, что подобные устройства, как правило, располагаются далеко от основного ПК, который у меня подключен через стандартный ИБП)! В сети (да и здесь на сайте) попадались разные самодельные штуки на базе модулей powerbank’ов и повышающих схем, но ни одного рабочего решения я так и не увидел. И вот, практически случайно, на просторах aliexpress был обнаружен такой мини-ИБП.

По ссылке предлагается ИБП с выходным напряжением 5В. Перед заказом надо списаться с продавцом и определить необходимые параметры — выходное напряжение и тип разъема на кабеле-переходнике (выход у всех моделей — стандартный USB-A male, в комплекте дается кабель-переходник). Я заказал с выходом 12В и с самым ходовым цилиндрическим разъемом 5.5×2.1mm. Цена для всех моделей одинакова.

Заявленные характеристики: выход 12 Вольт 1 Ампер,

безударное переключение на работу от аккумулятора при пропадании сети 220В, защита от КЗ и перегрузки, заряд аккумулятора возможен одновременно с питанием нагрузки. Время заряда аккумулятора до восстановления емкости 90% — 3 часа.

Пришел в непримечательной коробочке без указаний на производителя. На коробочке неизвестный китайский менеджер написал выходное напряжение.

Дополнительная информация


ИБП выглядит как стандартный блок питания, евровилка (можно заказать с американской). В сравнении с типовым блоком питания 12В — наш герой справа:

Общее качество изготовления корпуса — отличное. Ничего не люфтит, разъемы на месте, крышка батарейного отсека легко открывается и закрывается. Длина отсека позволяет вставить только незащищенные аккумуляторы.

Дополнительная информация


В комплекте — сам ИБП, кабель-переходник
и Li-Ion аккумулятор типоразмера 18650 китайского производителя FST емкостью 2600mAh.

FST (First New Energy Group Co.) — судя по всему, китайский производитель второго эшелона, имеет свой сайт, на котором я и нашел спецификации этого аккумулятора:
По коду можно определить, что аккумулятор довольно-таки старый — изготовлен 29 апреля 2015 года.

ИБП имеет на левом боку маленький переключатель на два положения (наименованы соответственно как A и B), а также два светодиода, сигнализирующие о режиме работы ИБП.

Вот так описывает режимы сам производитель:

Режим А — это основной режим ИБП. По умолчанию, питание нагрузки производится от сети 220В и одновременно осуществляется подзаряд аккумулятора (при необходимости). При потере сети 220В происходит безударный переход на питание от аккумулятора и обратный возврат на питание от сети.
Режим B — это режим обыкновенного блока питания, в этом режиме аккумулятор не задействован вообще. Может использоваться, когда надо избежать ненужного разряда аккумулятора.

А теперь — общее тестирование. Проводилось при помощи известной электронной нагрузки.

1. Тестирование блока питания.

На номинальных параметрах без проблем отработал несколько часов, температура корпуса не превышала 55 градусов. При токе 1.2А срабатывает защита от перегрузки и блок отключает выход. Восстановление происходит автоматически при устранении перегрузки.
На холостом ходу и при малой нагрузке (до 400mA) блок издает довольно громкие неприятные звуки в виде шелеста и разного скворчания.

2. Тестирование ИБП
Здесь все не так радужно. Попытка тестирования на заявленных параметрах (нагрузка 1А) закончилась отключением ИБП через 15 минут. Расчеты показывают, что это едва 20-25% емкости аккумулятора. Напряжение на клеммах аккумулятора в этот момент было примерно 3.6В. Что является причиной такого поведения — непонятно. Возможно, это перегрев блока или аккумулятора (аккумулятор был довольно-таки теплый, температура корпуса ИБП достигала 60 градусов).

Пришлось поумерить аппетиты и провести тестирование на половинной мощности (нагрузка 0. 5А). В этом случае полученные результаты значительно лучше — общее время работы составило 1 час 13 минут, из аккумулятора удалось добыть 7.260Wh из примерно 9.620Wh расчетных, т.е. порядка 75%.

Отключение ИБП происходит при напряжении аккумулятора меньше 3В.

Отдельное тестирование самого аккумулятора не проводил. Правильнее будет заказать какой-нибудь фирменный среднетоковый аккумулятор типа Sanyo NCR18650GA, и повторить тестирование в составе ИБП.

С зарядкой аккумулятора в составе ИБП тоже не все чисто. Заряд осуществляется током всего лишь 160mA, и расчет показывает, что в таком режиме заряд будет продолжаться не менее 16 часов. И да, так оно и вышло в реале (как это стыкуется с заявлением производителя, что 90% заряд достигается за 3 часа — известно только ему). Отсечка заряда производится на напряжении 4.215В, что является вполне правильным значением.

3. Разборка
Разборка производится элементарно. Достаточно открутить 4 шурупа на обратной стороне ИБП, и он аккуратно распадается на две половинки. Плата к корпусу никак не крепится, а просто зажимается между двумя половинками.

К сожалению, полноценных знаний, чтобы оценить схемотехнику ИБП, не имею, поэтому приведу здесь фотографии основной платы и укажу маркировку наиболее важных компонентов. Возможно, это кому-нибудь пригодится.

Верх:
Низ:

Качество пайки — удовлетворительное. Флюс не отмыт, некоторые детали припаяны криво-косо (присмотритесь, как припаян трансформатор — только одной стороной, вторая висит в воздухе!).
Кстати говоря, неприятный шум при работе на малой нагрузке, о котором я писал выше, значительно ослаб после того, как я тщательно отмыл плату от остатков флюса и всякой грязи. Хотя может и совпадение, конечно…

4. Выводы
Как обычно у китайской техники, параметры завышены ровно в два раза. Однако учитывая практически уникальную функциональность этого ИБП на сегодняшний день и то, что для планируемой нагрузки в виде камеры мне нужно меньше 500mA, покупка себя оправдала.

P.S. Для последователей (если таковые найдутся) могу посоветовать договариваться с продавцом о покупке без аккумулятора.

Блок питания 12 Вольт, 20 Ампер и 240 Ватт с пассивным охлаждением. Обзоры, тесты и испытания блоков питания. Купоны на скидки. Обзоры источников питания

Почему мне нравится ковырять блоки питания особо расписывать смысла нет, а вот почему именно 12 Вольт, напишу.
Так уж сложилось, но блоки питания с выходным напряжением в 12 Вольт являются одними из самых популярных наряду с 5 Вольт и 19 Вольт.
5 Вольт используется для питания небольших устройств, но больше популярности добавило то, что такое же напряжение дает порт USB, потому и начали «плодиться» такие БП.
19 Вольт используются в ноутбуках, а также такие БП используются энтузиастами радиолюбителями для разного рода паяльных станций и усилителей, в основном из-за приемлемой мощности и компактности.
Ну а 12 Вольт просто для начала является безопасным напряжением и при этом позволяет передавать довольно большую мощность. Конечно на мой взгляд зачастую его можно (а иногда и нужно) на 24 Вольта, но это напряжение больше используется в промышленных устройствах.
В быту же от 12 Вольт можно питать получившие распространение светодиодные ленты для декоративной подсветки и освещения, от 12 Вольт питаются также системы видеонаблюдения, иногда небольшие компьютеры, а также разные граверы, 3D принтеры и т.п.

Вообще у меня в планах сделать несколько обзоров подобных БП, но с разной мощностью и сегодня ко мне на стол попал блок питания на 240 Ватт с пассивной системой охлаждения.
На данный момент распространенные безвентиляторные БП имеют мощность до 240-300 Ватт, причем вторые встречаются куда реже и я бы скорее сказал, что 240 Ватт это уже почти максимум.

На этом я закончу краткое вступление и перейду к предмету обзора.
БП в привычном металлическом корпусе, думаю многие видели подобные решения в продаже.

Упакован был в обычную белую коробку, на фото она не попала, да и не особо там есть на что смотреть.

Вход и выход выведены на один большой клеммник, сверху присутствует наклейка с указанием назначения контактов, но приклеили со сдвигом, что может сбить с толку неопытного пользователя.

Клеммник имеет защитную крышку, причем открывается она на 90 градусов, что является хоть и небольшим, но плюсом, так как есть варианты, где крышка не открывается полностью.

Справа от клеммника приютился подстроечный резистор и светодиод индикации включения блока питания.
Заявленные параметры — 12 Вольт 20 Ампер, реальный производитель неизвестен, маркировка стандартна для многих недорогих БП — S-240-12

Сбоку находится переключатель входного напряжения 110/200 Вольт, лучше перед первым включением проверить что он находится в правильном положении.
Дата выпуска конец 2016 года, так что БП можно сказать, свежий.

Для начала измеряем что на выходе у БП настроено.
Выставлено 12.3 Вольта, диапазон регулировки 10-14.5 Вольта. после проверки выставил что-то близкое к 12 Вольт.

Внешне осматривать больше нечего, потому снимаем верхнюю крышку и посмотрим что внутри.

А внутри блок питания ничем не отличается от других, подобных недорогих блоков.
Мне он сходу напомнил блок питания на 48 Вольт 240 Ватт, я бы даже сказал что они один в один.

Даже наверное не так, фактически это тот же БП, просто на другое напряжение, потому я в самом начале и написал, что реальный производитель неизвестен.

Классический осмотр начинки.
1. Входной фильтр, присутствует, хотя и не в полном объеме, отсутствует конденсатор после дросселя и варистор. К сожалению это черта подавляющего большинства китайских БП.
2. Помехоподавляющие конденсаторы в опасной цепи — Y1, в менее опасной, обычный высоковольтный, можно сказать что нормально.
3. Входной диодный мост установлен с запасом, 8 Ампер 1000 Вольт, но радиатор отсутствует. В предыдущем варианте диодный мост был на 20 Ампер.
Также рядом видны два термистора, включенные параллельно.
4. Входные конденсаторы Rubicong закос под Rubicon, если бы еще параметры соответствовали заявленным, но об этом позже.
5. Пара высоковольтных транзисторов прижатых к алюминиевому корпусу, который работает как радиатор.
6. Силовой трансформатор явно промаркирован как 240 Ватт 12 Вольт. На вид довольно неплох, видны следы пропитки лаком.

Китайские производители продолжают штамповать свои блоки питания на классической элементной базе. Я не скажу что это плохо, но более именитые производители уже гораздо реже делают БП на базе TL494.
По своему это имеет свои плюсы, ремонт такого БП довольно прост, комплектующие есть везде, да и документации по ним очень много.

Как и в варианте 48 Вольт, здесь также использован усиленный вариант радиатора, выходная диодная сборка прижата к ребристому радиатору, который уже отводит часть тепла на корпус. Если в 48 Вольт версии это было не особо и нужно, то при токах в 20 Ампер такое решение не лишнее.

1. Выходной дроссель при вполне нормальных габаритах намотан всего в два провода, причем сечение провода сопоставимо с тем, что использовалось в БП 48 Вольт.
2. Выходные конденсаторы имеют заявленную емкость в 2200мкФ, производитель также неизвестен, впрочем я и не ожидал здесь увидеть конденсаторы от Nichicon или хотя бы Samwha.
3,4. А вот момент с прижимом силовых элементов я проверил отдельно, так как в прошлый раз у меня были большие нарекания по поводу крепежа диодной сборки. В данном случае все в принципе нормально. Можно немного попридираться к прижиму транзисторов (слева), но практика показала, что все в порядке.

Вынимаем плату из корпуса и посмотрим на качество пайки и поищем «косяки» производителя.

Высоковольтные транзисторы применены с запасом, можно не беспокоиться. К тому же корпус TO247, в котором они выполнены, улучшает отвод тепла на радиатор.
Выходная диодная сборка MBR30200 представляет собой два высоковольтных диода Шоттки. Я немного скептически отношусь к применению высоковольтных диодов Шоттки, так как у них уже нет преимущества перед обычными в плане падения напряжения, но остается преимущество в большей скорости переключения, т. е. динамические потери меньше.

Общий вид печатной платы снизу.

Пайка на вид вполне нормальная, в этой части БП все нормально, даже чисто.

Силовые дорожки дополнительно покрыты припоем для увеличения сечения, здесь также нареканий особо нет, хотя в некоторым местах на мой взгляд припоя маловато.

Но один неприятный момент я все таки нашел. Один из силовых контактов не очень хорошо пропаян. Можно конечно сказать, что там по три контакта на полюс, но ведь может так попасть, что он как раз окажется нагруженным. Собственно потому я всегда советую при покупке блоков питания проверять как они собраны. Хотя нет, корректнее сказать — при покупке недорогих блоков питания всегда проверять качество сборки.

На плате присутствует не совсем понятная мне маркировка, очень похоже, что плата рассчитана под БП мощностью до 365 Ватт, но это уже скорее с активным охлаждением (на плате есть место под разъем вентилятора, но сам разъем и необходимые компоненты отсутствуют).

Попутно измерил емкость конденсаторов.
Входные имеют суммарную емкость 166мкФ (два по 330 соединенные последовательно), хотя указано 470мкФ (соответственно суммарная 235), маловато для мощности в 240 Ватт.
Выходные в сумме дают около 6600, соответственно как указано 2200х3. Здесь вопросов нет, для блоков питания с подобными характеристиками это нормально, даже для фирменных. Правда в фирменных блоках питания стоит более качественные конденсаторы.

Так как схема блока питания практически идентична модели на 48 Вольт, то я просто внес соответствующие коррективы, а не рисовал ее с нуля. Не гарантирую 100% совпадение, но 99% думаю есть 🙂

Вот теперь можно проводить тесты.
В качестве тестового стенда использовались
1. Электронная нагрузка
2. Мультиметр
3. Осциллограф
4. Тепловизор
5. Термометр
6. Ручка и бумажка. На бумагу ссылки нет.

1. Режим холостого хода.
2. Нагрузка 5 Ампер, пульсации около 50мВ

1. Нагрузка 10 Ампер, напряжение лишь немного просело, пульсации остались на прежнем уровне
2. Нагрузка 15 Ампер, практически без изменений

Со времени проведения большого теста аккумуляторов я доработал нагрузку чтобы поднять максимальный ток до 30 Ампер. Но что-то пошло не совсем так, как было задумано и максимальный ток ограничен на уровне 16383мА (14 бит), потому для продолжения теста мне пришлось прибегнуть в обычным советским резисторам с сопротивлением 10Ом. при напряжении в 12 Вольт они обеспечивают ток нагрузки около 3.6 Ампера.

1. 20 Ампер, напряжение просело всего на 70мВ, уровень пульсация практически не отличается от предыдущих тестов и составляет 60мВ
2. В качестве дополнительного теста на нагрев я решил поднять выходное напряжение до 12.55 Вольта и погонять БП еще минут 15. Выходная мощность БП при этом была около 250 Ватт.
Как видно по фото, это практически никак не сказалось на результате.

В прошлом обзоре я был так удивлен качеством работы блока питания, что даже проводил тесты с полуторакратной перегрузкой. С БП мощностью 240 Ватт я снял 360 и только тогда начал откровенно волноваться по поводу перегрева.
Но в данном случае все немного печальнее. Для начала фото с тепловизора, снятое в самом конце теста при мощности 250 Ватт.
Самый горячий элемент — выходной дроссель, впрочем такая же картина была и при тесте БП 48 Вольт. Но как я тогда писал, на самом деле материал из которого изготовлен этот дроссель, не боится таких температур, ограничением является стойкость изоляции провода, которым он намотан.

Для компании сфотографировал нагрузочные резисторы, на которых рассеивалось всего около 50 Ватт. Электронная нагрузка при этом брала на себя около 200 Ватт, у нее температура радиаторов была 61 градус.

Как и раньше, я свел все данные в одну табличку.
Тестирование проходило при комнатной температуре, БП лежал горизонтально на столе, что несколько ухудшало тепловой режим, в вертикальном положении он охлаждался бы лучше.
Каждый этап длился 20 минут, затем шел замер температуры и повышение тока на одну ступень.
Последний этап был проведен как дополнительный и занял 15 минут, итого в сумме 20+20+20+20+15= 1ч 35мин.

Результаты заметно выше чем у БП на 48 Вольт, но я бы сказал что вполне терпимые. Самый нежный элемент — силовой трансформатор, не перегревается.

Как-то в комментариях затронули тему низкого КПД таких блоков питания и мне реально стало интересно, какой же КПД у них в реальности.
Конечно я не претендую на высокую точность , так как в процессе участвует много измерительных приборов и каждый имеет свою погрешность, но я постарался измерить максимально корректно.
И так. Я измерил потребляемую мощность БП без нагрузки, с нагрузкой 33, 66 и 100%, при этом у меня вышло:
Вход — Выход — КПД.
4.2 — 0 — 0
96.2 — 79 — 82%
189,3 — 159 — 84%
290,4 — 238 — 82%

Говорили, что КПД подобных БП около 60-70%, честно, мне не верилось. Но до этого я судил по количеству выделяемого тепла, потому как не заметить «лишние» 100 Ватт тепла тяжело, вот и решил провести этот тест, думаю что не зря.

Конечно в комментариях могут начать писать — а как же MeanWell, почему не MeanWell? Да, я очень хорошо отношусь к блокам питания этой фирмы, и очень часто их использую, потому решил ради интереса сравнить обозреваемый БП и БП фирмы MeanWell. Но стоит отметить, что сравнивал я с БП серии RS, а точнее — RS-150-12, т.е. 12 Вольт 150 Ватт. На данный момент стоимость этого БП составляет около 36 долларов — ссылка.
Блоки питания этой серии отличные, надежность действительно на высоком уровне, БП который вы видите, отработал в составе системы видеонаблюдения около 3 лет при нагрузке близкой к 90% и был заменен планово на новый.

Производитель же заявляет что —

Особенности:
Долговечные 105°C электролитические конденсаторы
Комплекс защит от короткого замыкания, перегрузки, перенапряжения
Электромагнитная совместимость: EN50082-2/EN61000-6-2 для тяжелой промышленности
Высокая рабочая температура до 70°C
Вибрации 5G
Малые размеры, высокая удельная мощность
Высокие КПД, долговечность и надежность
Все модули проходят 100% прогон

Но это относится именно к RS серии, обычные же БП MenWell серий S-ххх-хх немного проще, правда и стоят меньше.

Входной фильтр более полный, чем у обозреваемого, но варистора на входе все равно нет.

1. Термистор упакован в термоусадку, но что интересно, уже когда разбирал фото, то заметил, что термисторов два, причем второй «голый», он стоит справа от переключателя.
2. Входные конденсаторы Rubicon, а не RubiconG. Суммарная емкость 165мкФ при выходной мощности в 150 Ватт.
3. Высоковольтный транзистор имеет дополнительную изоляцию. ШИм контроллер применен другой, потому рядом совсем пусто.
4. Выходных диодных сборок две, причем у обоих на выводах присутствуют ферритовые бусины, что практически никогда не встречается в недорогих китайских БП. ТАкие же бусины есть и на некоторых конденсаторах.
5. А вот выходной дроссель изготовлен в лучших традициях Китая 🙂 Намотка кривая, закатали в какой то клей.
6. Выходные конденсаторы фирменные, емкость 1000х3 мкФ, напряжение 35 Вольт, что весьма правильно. У обозреваемого конденсаторы на 25 Вольт, но в двухтактной схеме это нормально (в компьютерных БП вообще на 16).

Сегодня не буду выделять плюсы и минусы, а просто опишу мое впечатление о блоке питания.
На мой взгляд это типичный «среднестатистический» китайский блок питания. Нагрев в пределах допуска, среднее качество сборки, но при этом низкий уровень пульсаций и отсутствие «дрейфа» выходного напряжения от прогрева (это довольно важно). Производитель не особо волнуется насчет комплектующих, об этом говорят непонятные конденсаторы на входе, если судить по маркировке, то емкость достаточна, если измерить, то занижена. Я в подобной ситуации просто добавил один конденсатор 100мкФх400В выпаянный из платы монитора.
Самые критичные элементы, которые в данном БП будут влиять на срок службы — выходные конденсаторы.
В остальном вполне нормальный блок питания, все тесты прошел без проблем, но получить такие результаты как с его 48 Вольт вариантом, я увы не смог. На мой взгляд средний блок питания за вполне приемлемые деньги.

Надеюсь что обзор был полезен, старался дать максимум информации.

Как повысить силу тока, не изменяя напряжения

Из статьи вы узнаете как повысить силу тока в цепи зарядного устройства, в блоке питания, трансформатора, в генераторе, в USB портах компьютера не изменяя напряжения.

Что такое сила тока?

Электрический ток представляет собой упорядоченное перемещение заряженных частиц внутри проводника при обязательном наличии замкнутого контура.

Появление тока обусловлено движением электронов и свободных ионов, имеющих положительный заряд.

В процессе перемещения заряженные частицы могут нагревать проводник и оказывать химическое действие на его состав. Кроме того, ток может оказывать влияние на соседние токи и намагниченные тела.

Сила тока — электрический параметр, представляющий собой скалярную величину. Формула:

I=q/t, где I — сила тока, t — время, а q — заряд.

Стоит знать и закон Ома, по которому ток прямо пропорционален U (напряжению) и обратно пропорционален R (сопротивлению).

I=U/R.

Сила тока бывает двух видов — положительной и отрицательной.

Ниже рассмотрим, от чего зависит этот параметр, как повысить силу тока в цепи, в генераторе, в блоке питания и в трансформаторе.

Приведем проверенные рекомендации, которые позволят решить поставленные задачи.

От чего зависит сила тока?

Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:

  • Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
  • Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
  • Напряженности магнитного поля. Чем она больше, тем выше напряжение.
  • Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
  • Мощности усилия, которое передается на ротор.
  • Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
  • Конструкции источника питания.
  • Диаметра проводов статора и якоря, числа ампер-витков.
  • Параметров генератора — рабочего тока, напряжения, частоты и скорости.

Как повысить силу тока в цепи?

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств.

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

Вариант 1.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Также читают — как действует электрический ток на организм человека.

Вариант 2.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

Как повысить силу тока в блоке питания?

В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.

Ситуация №1.

Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.

Узнайте больше — как проверить транзистор мультиметром на исправность.

При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.

Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.

Кроме того, возможны следующие варианты:

  • Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
  • При наличии защиты по току снизить номинал резистора в цепочке управления.

Ситуация №2.

Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.

Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.

При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.

Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.

Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.

Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.

После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.

Как повысить силу тока в зарядном устройстве?

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству. Вот и все — остается обратить внимание на параметры тока и напряжения.

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

С учетом сказанного выше можно сделать следующие выводы:

  • Мощность трансформатора зависит от ширины постоянного магнита.
  • Для увеличения тока в трансформаторе требуется снижение R нагрузки.
  • Ток (А) зависит от диаметра обмотки и мощности устройства.
  • В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.

Как повысить силу тока в генераторе?

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

После припаивания место стыка изолируется термоусадкой.

Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.

Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).

После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.

Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).

Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.

Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.

Итоги

Как видно из статьи, повысить силу тока, не изменяя напряжение в сети, реально.

Главное — разобраться с особенностями конструкции устройства, которое подлежит корректировке, и иметь практические навыки работы с измерительными приборами и паяльником. Кроме того, важно осознавать потенциальные риски от внесения корректировок.

Блоки питания 12В 5А (12 Вольт 5 Ампер)

Фильтры товаров

Производитель

  • Не найдены элементы по данным критериям поиска

Тип оборудования

  • Не найдены элементы по данным критериям поиска

Количество каналов

Тип источника питания

  • Не найдены элементы по данным критериям поиска

Выходное напряжение (1)

Выходное напряжение

Максимальный ток на выходе

Количество подключаемых АКБ

Сертификат пожарной безопасности

  • Не найдены элементы по данным критериям поиска

Функционал

  • Не найдены элементы по данным критериям поиска

Исполнение корпуса

  • Не найдены элементы по данным критериям поиска

Материал корпуса

  • Не найдены элементы по данным критериям поиска

Напряжение питания

  • Не найдены элементы по данным критериям поиска

Влагозащита

  • Не найдены элементы по данным критериям поиска

Сколько ампер в блоке питания компьютера

Бывает такое что надо в гараже например подкачать колеса на авто, или колеса при замене (летозима) или даже на велосипеде качнуть)
Для адекватной работы компрессора надо заводить авто.
можно и не заводить но мощность не та, и акб нагружать не хочется…
Решил замутить блок питания для компрессора.
Всякие блоки на 12 вольт с силой тока до 2А включительно не походят 100% проверено! компрессор высасывает весь ток мгновенно! и работает 0,2 сек потом 0,5 сек тишина потом 0,2 сек работает, 0,5 тишина…
Посмотрев сколько ампер выдает блок питания от компа на 12 вольт — 40А и больше
Решил из него и собрать такой блок
Вот что получилось:

Есть видео как все это работает:

блоком пользуюсь раз в месяц точно !

Блок питания на 350W
взял с бу компа который по сути просто списали)
Затрат с моей стороны разве что время и усилия)

Компьютерный блок питания (или сокращённо — блок питания, БП) — вторичный источник электропитания, предназначенный для снабжения узлов компьютера электроэнергией постоянного тока путём преобразования сетевого напряжения до требуемых значений.

Также в состав компьютера могут входить блоки преобразования уровня напряжения следующей ступени — третичные блоки питания и т. д. Примером таких преобразователей могут служить модуль питания центральных процессоров (в том числе модернизируемых), графических процессоров, а также устройства, требующие повышения напряжения или изменения характеристик тока — переменного, с изменением фазы.

В некоторой степени блок питания также выполняет функции стабилизации и защиты от незначительных помех питающего напряжения. Как компонент, занимающий значительную часть внутри корпуса компьютера, несёт в своём составе (либо монтируемые на корпусе БП) компоненты охлаждения частей внутри корпуса компьютера.

Содержание

Описание [ править | править код ]

Если брать, в качестве примера, блок питания для настольного компьютера персонального стандарта PC, то, согласно спецификации разных лет, он должен обеспечивать выходные напряжения ±5 / ±12 / +3,3 Вольт, а также +5 Вольт дежурного режима (+5VSB).

  • Основными силовыми цепями компьютеров периодически являлись линии напряжения +3,3, +5 и +12 В. Традиционно, чем выше напряжение в линии, тем большая мощность передаётся по данным цепям.
  • Отрицательные напряжения питания (−5 и −12 В) допускали небольшие токи и в современных материнских платах в настоящее время не используются.
  • Напряжение −5 В использовалось только интерфейсом ISAматеринских плат. Для обеспечения −5 В постоянного тока в ATX и ATX12V версии до 1.2 использовался контакт 20 и белый провод. Это напряжение (а также контакт и провод) не является обязательным уже в версии 1.2 и полностью отсутствует в версиях 1.3 и старше.
  • Напряжение −12 В необходимо лишь для полной реализации стандарта последовательного интерфейса RS-232 с использованием микросхем без встроенного инвертора и умножителя напряжения, поэтому также часто отсутствует.
  • Напряжение +12 В используется для питания наиболее мощных потребителей. Разделение питающих напряжений на 12 и 5 Вольт целесообразно как для снижения токов по печатным проводникам плат, так и для снижения потерь энергии на выходных выпрямительных диодах блока питания.
  • Напряжения ±5, +12, +3,3 В дежурного режима используются материнской платой.
  • Для жёстких дисков, оптических приводов, вентиляторов используются напряжения +5 и +12 В.
  • Наиболее мощные потребители энергии (такие, как видеокарта, центральный процессор, северный мост) подключаются через размещённые на материнской плате или на видеокарте вторичные преобразователи с питанием от цепей как +5 В, так и +12 В.
  • Напряжение +3,3 В в блоке питания формируется из напряжения +5 В, а потому существует ограничение суммарной потребляемой мощности по ±5 и +3,3 В.
  • Напряжение на модулях памяти имеет стойкую тенденцию к уменьшению и для DDR4 SDRAM снизилось до 1,2 Вольта.
  • В большинстве случаев, для компьютера в рассматриваемом примере, используется импульсный блок питания, выполненный по полумостовой (двухтактной) схеме. Блоки питания с накапливающими энергию трансформаторами (обратноходовая схема) естественно ограничены по мощности габаритами трансформатора и потому применяются значительно реже. Гораздо чаще встречается схема прямоходового однотактного преобразователя, которая не так ограничена по массо-габаритным показателям. При этом используются те же м/с, что и в обратноходовом преобразователе.

    Устройство (схемотехника) [ править | править код ]

    Широко распространённая схема импульсного источника питания состоит из следующих частей:

    Входные цепи

    • Входной фильтр, предотвращающий распространение импульсных помех в питающую сеть[1] . Также входной фильтр уменьшает бросок тока заряда электролитических конденсаторов при включении БП в сеть (это может привести к повреждению входного выпрямительного моста).
    • В качественных моделях — пассивный (в дешёвых) либо активный корректор мощности (PFC), снижающий нагрузку на питающую сеть.
    • Входной выпрямительный мост, преобразующий переменное напряжение в постоянное пульсирующее.
    • Конденсаторный фильтр, сглаживающий пульсации выпрямленного напряжения.
    • Отдельный маломощный блок питания, выдающий +5 В дежурного режима материнской платы и +12 В для питания микросхемы преобразователя самого ИБП. Обычно он выполнен в виде обратноходового преобразователя на дискретных элементах (либо с групповой стабилизацией выходных напряжений через оптрон плюс регулируемый стабилитрон TL431 в цепи ОС, либо линейными стабилизаторами 7805/7812 на выходе) или же (в топовых моделях) на микросхеме типа TOPSwitch.

    Преобразователь

    • Полумостовой преобразователь на двух биполярных транзисторах.
    • Схема управления преобразователем и защиты компьютера от превышения/снижения питающих напряжений, обычно на специализированной микросхеме (TL494, UC3844, KA5800, SG6105 и пр.).
    • Импульсный высокочастотный трансформатор, который служит для формирования необходимых номиналов напряжения, а также для гальванической развязки цепей (входных от выходных, а также, при необходимости, выходных друг от друга). Пиковые напряжения на выходе высокочастотного трансформатора пропорциональны входному питающему напряжению и значительно превышают требуемые выходные.
    • Цепи обратной связи, которые поддерживают стабильное напряжение на выходе блока питания.
    • Формирователь напряжения PG (Power Good, «напряжение в норме»), обычно на отдельном ОУ.

    Выходные цепи

    • Выходные выпрямители. Положительные и отрицательные напряжения (5 и 12 В) используют одни и те же выходные обмотки трансформатора, с разным направлением включения диодов выпрямителя. Для снижения потерь, при большом потребляемом токе, в качестве выпрямителей используют диоды Шоттки, обладающие малым прямым падением напряжения.
    • Дроссель выходной групповой стабилизации. Дроссель сглаживает импульсы, накапливая энергию между импульсами с выходных выпрямителей. Вторая его функция — перераспределение энергии между цепями выходных напряжений. Так, если по какому-либо каналу увеличится потребляемый ток, что снизит напряжение в этой цепи, дроссель групповой стабилизации как трансформатор пропорционально снизит напряжение по другим выходным цепям. Цепь обратной связи обнаружит снижение напряжения на выходе и увеличит общую подачу энергии, что восстановит требуемые значения напряжений.
    • Выходные фильтрующие конденсаторы. Выходные конденсаторы, вместе с дросселем групповой стабилизации интегрируют импульсы, тем самым получая необходимые значения напряжений, которые, благодаря дросселю групповой стабилизации, значительно ниже напряжений с выхода трансформатора.
    • Один (на одну линию) или несколько (на несколько линий, обычно +5 и +3,3) нагрузочных резисторов 10-25 Ом, для обеспечения безопасной работы на холостом ходу.

    Достоинства такого блока питания:

    • Простая и проверенная временем схемотехника с удовлетворительным качеством стабилизации выходных напряжений.
    • Высокий КПД (65—70 %). Основные потери приходятся на переходные процессы, которые длятся значительно меньшее время, чем устойчивое состояние. Больше всех греются диоды выпрямляющие 5 и 12 вольт. Силовые транзисторы греются мало .
    • Малые габариты и масса, обусловленные как малым выделением тепла на регулирующем элементе, так и малыми габаритами трансформатора, благодаря тому, что последний работает на высокой частоте.
    • Малая металлоёмкость, благодаря чему мощные импульсные источники питания стоят дешевле трансформаторных, несмотря на бо́льшую сложность.
    • Возможность подключения к сетям с широким диапазоном выбора напряжений и частот, или даже сетям постоянного тока. Благодаря этому возможна унификация техники, производимой для различных стран мира, а значит, и её удешевление при массовом производстве.

    Недостатки полумостового блока питания на биполярных транзисторах:

    • При построении схем силовой электроники использование биполярных транзисторов в качестве ключевых элементов снижает общий КПД устройства [2] . Управление биполярными транзисторами требует значительных затрат энергии.
      Всё больше компьютерных блоков питания строится на более дорогих мощных MOSFET-транзисторах. Схемотехника таких компьютерных блоков питания реализована как в виде полумостовых схем, так и обратноходовых преобразователей. Для удовлетворения массогабаритных требований к компьютерному блоку питания в обратноходовых преобразователях используются значительно более высокие частоты преобразования (100—150 кГц).
    • Большое количество намоточных изделий, индивидуально разрабатываемых для каждого типа блоков питания. Такие изделия снижают технологичность изготовления БП.
    • Во многих случаях недостаточная стабилизация выходного напряжения по каналам. Дроссель групповой стабилизации не позволяет с высокой точностью обеспечивать значения напряжений во всех каналах. Более дорогие, а также мощные современные блоки питания формируют напряжения ±5 и 3,3 В с помощью вторичных преобразователей из канала 12 В.

    Принципиальная схема БП персонального компьютера

    просто и подробно о персональном компьютере,его устройстве, настройке и сборке.

    Популярные сообщения

    Pеклама

    Реклама

    четверг, 2 августа 2012 г.

    Блок питания для компьютера

    Основные характеристики современных блоков питания:

    Самые распространенные БП для настольных компьютеров относятся к форм-фактору ATX с дополнительным 12-вольтовым разъемом питания и имеют стандартные габариты 150х86х140 мм. Они строго выдерживаются всеми производителями, следовательно можно легко менять один блок питания на другой. Однако модели повышенной мощности, как правило, имеют нестандартные, увеличенные габариты, что вызвано необходимостью установки двух силовых трансформаторов, способных выдать нужную мощность. Речь идет о блоках питания мощностью 1000 Вт и выше – они длиннее стандартных примерно на 40-50 мм.

    На выходе блок питания выдает следующие напряжения +3.3 v, +5 v, +12 v и некоторые вспомогательные -12 v и + 5 VSB. Основная нагрузка ложится на линию +12 V.
    Мощность (W – Ватт)расчитывается по формуле P = U x I, где U – это напряжение (V – Вольт), а I – сила тока (A – Ампер). Отсюда вывод, чем больше сила тока по каждой линии, тем больше мощность. Но не все так просто, допустим при большой нагрузке по комбинированной линии +3.3 v и +5 v, может уменьшиться мощность на линии +12 v. Разбирем пример на основе маркировки блока питания AEROCOOL E85-700.

    Указано, что максимальная суммарная мощность по линиям +3.3V и +5V = 150W, также указано, что максимальная мощность по линии +12V = равна 648W. Обратите внимание, что указаны две виртуальные линии +12V1 и +12V2 по 30 Ампер каждая – это вовсе не означает, что общий ток 60А, так как при токе в 60А и напряжении 12V, мощность бы была 720W (12×60=720). На самом деле указан максимально возможный ток на каждой линии. Реальный же максимальный ток легко рассчитать по формуле I=P/U, I = 648 / 12 = 30 Ампер. Общая мощность 700W.

    Для расчета мощности блока питания можете воспользоваться этим калькулятором , сервис на английском языке, но думаю разобраться можно.
    По своему опыту могу заметить, что для офисного компьютера вполне достаточно блока питания на 350W. Для игрового хватит БП на 400 – 500W, для самых мощных игровых с мощной видеокартой или с двумя в режиме SLI или Crossfire – необходим блок на 600 – 700W.
    Процессор обычно потребляет от 35 до 135W, выдеокарта от 30 до 340W, материнская плата 30-40W, 1 планка памяти 3-5W, жесткий диск 10-20W. Учитывайте также, что основная нагрузка ложится на линию 12V. Да, и не забудьте добавить запас 20-30% с расчетом на будущее.

    Не маловажным будет КПД блока питания. КПД (коэффициент полезного действия) – это отношение выходной мощности к потребляемой. Если бы блок питания мог преобразовать электрическую энергию без потерь, то его КПД был 100%, но пока это невозможно.
    Например, для того, чтобы блоку питания с КПД 80% обеспечить на выходе мощность 400W, он должен потреблять от сети не больше 500W. Тот же блок питания, но с КПД 70%, будет потреблять около 571W. Опять же, если блок питания не сильно нагружен, например на 200W, то и потреблять от сети он будет тоже меньше, 250W при КПД 80% и приблизительно 286 при КПД 70%.
    Существует организация, которая тестирует блоки питания на соответствие определенному уровню сертификации. Сертификация 80 Plus проводилась только для электросети 115В распространенной, например в США. Начиная с уровня 80 Plus Bronze, блоки питания тестируются для использования в электросети 230В. Например, для прохождения сертификации уровня 80 Plus Bronze КПД блока питания должен быть 81% при нагрузке 20%, 85% при нагрузке 50% и 81% при нагрузке 100%.

    Наличие одного из логотипов на блоке питания говорит о том, что блок питания соответствует определенному уровню сертификации.
    Плюсы блока питания с высоким КПД:
    Во-первых, меньше энергии выделяется в виде тепла, соответственно системе охлаждения блока питания нужно отводить меньше тепла, следовательно, и шума от работы вентилятора меньше. Во-вторых, небольшая экономия на электричестве. В-третьих, качество у данных БП высокое.

    Активный и пассивный PFC

    PFC (Power Factor Correction) – Коррекция фактора (коэффициента) мощности. Фактором мощности называется отношение активной мощности к полной (активной + реактивной).
    Так как реальная нагрузка обычно имеет еще индуктивную и емкостную составляющие, то к активной мощности добавляется реактивная. Нагрузкой реактивная мощность не потребляется – полученная в течение одного полупериода сетевого напряжения, она полностью отдается обратно в сеть в течение следующего полупериода, впустую нагружая питающие провода. Получается, что от реактивной мощности толку ноль, и с ней по возможности борются, с помощью различных корректирующих устройств.
    PFC – бывает пассивным и активным.
    Преимущества активного PFC:
    Активный PFC обеспечивает близкий к идеальному коэффициент мощности (у активного 0.95-0.98 против 0.75 у пассивного).
    Активный PFC стабилизирует входное напряжение основного стабилизатора, блок питания становится менее чувствительным к пониженному сетевому напряжению.
    Активный PFC улучшает реакцию блока питания во время кратковременных провалов сетевого напряжения.
    Недостатки активного PFC:
    Снижает надежность блока питания, так как усложняется устройство самого блока питания. Требуется дополнительное охлаждение. В целом преимущества активного PFC перевешивают его недостатки.
    В принципе можно не обращать внимания на тип PFC. В любом случае, при покупке блока питания меньшей мощности, в нем, скорее всего, будет пассивный PFC, при покупке более мощного блока от 500 W – вы, скорее всего, получите блок с активным PFC.

    Система охлаждения блоков питания.

    Кабели и разъемы.
    Обратите внимание на количество разъемов и длину кабелей идущих от блока питания, в зависимости от высоты корпуса нужно выбрать БП с соответствующими по длине кабелями. Для небольшого корпуса достаточно длины 40-45 см.

    Современный блок питания имеет следующие разъемы:

    124-х контактный разъем для питания материнской платы. Обычно раздельный 20 + 4 контакта, бывает и цельный.

    23Разъем процессора. Обычно 4-х контактный, для более мощных процессоров используется 8-и контактный.
    4Разъем для дополнительного питания видеокарты. 6-и и 8-и контактный. 8-и контактный иногда сборный 6+2 контакта.

    6Разъем SATA для подключения жестких дисков и оптических приводов.

    54-х контактный разъем (Molex) для подключения старых IDE жестких дисков и оптических приводов, вентиляторов.

    74-х контактный разъем для подключения дисководов FDD.
    Модульные кабели и разъемы.

    Многие более мощные блоки питания сейчас используют модульное подключение кабелей с разъемами. Это удобно, тем, что нет надобности, держать неиспользуемые кабели внутри корпуса, к тому же меньше путаницы с проводами, просто добавляем по мере необходимости. Отсутствие лишних кабелей, также улучшает циркуляцию воздуха в корпусе. Обычно в этих блоках питания несъемные только разъемы для питания материнской платы и процессора.

    Производители.
    Производители блоков питания делятся на три группы:

    1. Производят свою продукцию – это такие бренды, как FSP, Aerocool, Enermax, HEC, Seasonic, Delta, Hipro.
    2. Производят свою продукцию, частично перекладывая производство на другие компании, например Corsair, Antec, Silverstone, Zalman.
    3. Перепродают под собственной маркой – например Chiftec, Cooler Master, Gigabyte, OCZ, Thermaltake.
    Можно смело приобретать продукцию этих брендов. В интернете можно найти обзоры и тесты многих блоков питания и ориентироваться по ним.

    4 коммент.:

    Господа, приветствую! Обнадёжте своими соображениями.
    Есть светодиод из авторитетного магазина с Али (по заверениям опытных юзеров, диоды китаец продаёт качественные), мощность 3W, напряжение питания в диапазоне 3-3,4V, потребляемый ток 0,4-0,5A.
    Хочу заставить его гореть. И так как у АТХ есть линия +3,3В, что вписывается в указанный диапазон у диода, думаю подключить диод к ней. На шильдике БП указано, что линия 3
    +3,3В 28Ампер. Я конечно не профильный электротехник, но всегда думал, что 28 ампер (в данном случае 28) – это нагрузка, которую источник может потянуть.
    Так вот вопрос в том, что если я подам +3,3В с БП на диод, у которого максимально допустимый ток 0,5А, он, этот диод, не сгорит?
    [email protected]

    10 марта 2019 г., 01:48 Сергей Ветров комментирует.

    Сколько ампер у 12-вольтовой батареи?

    Владение автомобилем означает большую ответственность по отношению к нему. Вам нужно понять некоторые термины и трилогию, чтобы понять, что ему нужно для правильного функционирования. Или, может быть, вы просто новый автомеханик, изучающий термины и навыки. А если вы здесь по какой-то другой причине, добро пожаловать!

    Как видно из названия, вы уже знаете, что у нас есть довольно простой вопрос, требующий внимания.

    Но есть ли на это прямой ответ? Не совсем! Именно поэтому я так взволнован и нервничаю, когда отвечаю на один из самых простых, но запутанных вопросов: сколько ампер у 12-вольтовой батареи в машине.

    Сколько ампер: нужно немного покопаться.

    Аккумуляторы — одна из важнейших частей любого автомобиля. Есть амперы запуска, которые заставляют двигатель зажигаться и работать. Короче говоря, сила тока отвечает за питание каждого электрического компонента внутри автомобиля.

    При подключении аккумулятора всегда помните, что его емкость напрямую влияет на характеристики вашего автомобиля. Итак, понимание и применение некоторых основных терминов более чем важно.

    Понять, как работают номинальные токи.

    Сила тока автомобильного аккумулятора очень сильно зависит от номинального тока. Итак, я начну с этого. Данный автомобильный аккумулятор может вместить определенное количество электрических накопителей. Номинальный ток фактически учитывает эту емкость аккумулятора.

    В зависимости от типа и размера автомобильного аккумулятора это число может варьироваться. Обычно он составляет от 550 до 1000 ампер.

    Есть два самых популярных типа рейтингов, которые здесь обычно используются.Они отлично подходят для определения производительности автомобильного аккумулятора. Один известен как Cranking Amperes, сокращенно CA. А другой — CCA или амперы холодного пуска. Потребители и пользователи автомобилей уделяют большое внимание этим двум жизненно важным показателям аккумуляторов.

    Первый тип, называемый CA, — это, в основном, пусковой ток двигателя вашего автомобиля, который вырабатывается аккумулятором. Это происходит в течение получаса при напряжении 1,2 на каждую ячейку батареи. Температура здесь 32 градуса по Фаренгейту. Обычно для обычных или нормальных погодных условий это мощность, необходимая для запуска двигателя автомобиля.

    Другой тип рейтинга, известный как CCA, — это способность к растрескиванию при температуре минус четыре градуса по Фаренгейту. Это также примерно полминуты при 1,2 В на каждую ячейку батареи. Обычно это необходимое количество энергии, которое автомобильный аккумулятор должен обеспечивать в холодную погоду.

    Возвращаясь к вопросу.

    Обычный автомобильный аккумулятор с номиналом 12 В на самом деле имеет емкость 48 Ач. При полной зарядке аккумулятор может обеспечить около одного Ампер в течение 2 дней подряд.Или он может выдавать около 2 ампер за один день. То же самое и для аналогичных соотношений.

    Здесь AH — это в основном ампер-час. Это называется емкостью энергии батареи. Его можно найти путем вычисления фактического непрерывного тока батареи.

    А затем число умножается на время разряда. Это равнозначное количество ампер-часов. Расчет здесь предназначен для питания от батареи до того, как исчерпается какой-либо внутренний химический накопитель энергии.

    С помощью этого числа можно идеально выбрать подходящий аккумулятор путем приближения. Производителю необходимо описать и другие моменты. Например, текущий уровень или указанное время.

    Как проверить ток на 12-вольтовой батарее ?

    Независимо от ответа, вы все равно можете сами проверить ампер, если есть батарея на 12 В. Для этого вам понадобится мультиметр. Начните с выбора функции постоянного тока. Здесь вы будете использовать циферблат и поддерживать показания около 200 мА.

    Теперь щупами мультиметра нужно соединить клеммы аккумулятора. А потом вы можете проверить цифры. Он должен быть рядом с аккумулятором. Тем, кому интересно, какую клемму аккумулятора подключить в первую очередь, особо заморачиваться не стоит.

    То же самое и с теми, кто спрашивает, какую клемму аккумулятора отсоединить в первую очередь. Вы можете начать с любого терминала, чтобы проверить соединение, если негативы вместе. То же самое и с позитивом.

    Заключение

    Итак, ответ на ваш вопрос кажется довольно простым.Но на самом деле, чтобы использовать его, нужно было знать еще кое-что. И это было моим намерением по сегодняшней теме.

    Надеюсь, у вас больше не будет путаницы по поводу номинального тока и блока AH. Эти два параметра в значительной степени обязательны для понимания, когда дело доходит до выбора заряда батареи.

    Эффективность вашего автомобиля зависит от нескольких факторов. Не упустите ни одного важного фактора, и вы получите удовольствие от хорошей мощности и хорошей езды.

    Учебное пособие по зарядному устройству на 12 В | Зарядные устройства.com


    Технология зарядного устройства на 12 вольт идет в ногу с революцией микропроцессоров, и поэтому текущая философия зарядки аккумулятора использует трехступенчатый (или двух- или четырехступенчатый) микропроцессор регулируемые профили зарядки. Это и «умные зарядные устройства», и качественные агрегаты. обычно не встречаются в дисконтных магазинах. Три стадии или стадии свинца / кислоты зарядка аккумуляторов бывают объемными, абсорбционными и плавающими (или в некоторых случаях полностью отключенными).Квалификация или уравнивание иногда считаются еще одним этапом. 2 этап блок будет иметь объемную и плавающую ступени. Важно использовать батареи производителя. рекомендации по зарядке и напряжениям, или качественный микропроцессор управляемое зарядное устройство для поддержания емкости аккумулятора и срока его службы.

    Старое зарядное устройство на 12 В будет иметь фиксированное зарядное напряжение, достаточно высокое, чтобы «насиловать» энергию (амперы) в батарею.Чем ниже начальная батарея напряжение (состояние разряда), тем легче процесс нагнетания, поэтому вы можете увидеть амперметр (если таковой имеется) достигает максимальной выходной силы тока зарядного устройства и остается там какое-то время. По мере увеличения сопротивления батареи, так же как и по мере увеличения уровня заряда, чем труднее 12-вольтовому зарядному устройству усилить усилитель, тем меньше его мощность. В конце концов, зарядное устройство достигает точки, когда его выходное напряжение больше не может работать. в батарею, поэтому ток почти прекращается, но в зависимости от того, где находится эта точка напряжения, он может быть достаточно высоким, чтобы со временем перезарядиться или удерживать аккумулятор в газе этап, сушка батареи затопленного типа.Эти зарядные устройства следует контролировать для этого. причина и отключается, когда амперметр падает до нижней точки.

    «Умные зарядные устройства» созданы с учетом современной философии зарядки. а также получать информацию от аккумулятора, чтобы обеспечить максимальный заряд с минимальное наблюдение. Для некоторых гелевых батарей и аккумуляторов AGM могут потребоваться специальные настройки. или зарядные устройства. Аккумуляторы True Gel обычно требуют определенного профиля заряда и геля. требуется специальное или выбираемое гелеобразное или подходящее гелеобразное зарядное устройство.Пиковая зарядка напряжение для гелевых аккумуляторов составляет от 2,3 до 2,36 вольт на элемент, а для зарядного устройства на 12 вольт это работает от 13,8 до 14,2 вольт, что ниже, чем у мокрого или AGM Тип батареи необходим для полной зарядки. Превышение этого напряжения в гелевой батарее может вызывают пузырьки в геле электролита и необратимые повреждения, так как пузырьки не рассеиваются, когда прекращается состояние перенапряжения.

    Трехступенчатая зарядка аккумулятора

    Ступень BULK в зарядном устройстве на 12 В включает около 80% перезарядки, при этом ток зарядного устройства остается постоянным (в зарядном устройстве постоянного тока), и напряжение увеличивается.Правильно размер зарядного устройства даст батарее столько тока, сколько она может принять до зарядного устройства емкость (25% емкости аккумулятора в ампер-часах), и не поднимать мокрый аккумулятор выше 125 F, или аккумулятор AGM или GEL (регулируемый клапаном) более 100 F. Целевое напряжение для зарядного устройства на 12 В для AGM или некоторых залитых аккумуляторов от 2,4 до 2,45 В на элемент, что составляет от 14,4 до 14,7 вольт. Некоторые залитые элементы выдерживают напряжение более 15 вольт.

    Поглощение Стадия (примерно оставшиеся 20%) в AGM / затоплена. Зарядное устройство на 12 вольт имеет зарядное устройство удерживая при напряжении поглощения (между 14.4 В постоянного тока и 14,7 VDC, в зависимости от уставок зарядного устройства) и уменьшая ток до тех пор, пока аккумулятор не полностью заряжен. Если аккумулятор не держит заряд или ток не падает По истечении ожидаемого времени перезарядки в аккумуляторе может быть необратимая сульфатация.

    В каскаде FLOAT напряжение заряда снижено примерно до 2,25 вольт. на ячейку, что составляет около 13,5 В постоянного тока и остается постоянным, в то время как ток уменьшается до менее 1% емкости аккумулятора.Этот режим можно использовать для полного заряжал аккумулятор на неопределенный срок. Некоторые зарядные устройства отключаются вместо того, чтобы поддерживать поплавок напряжение и контролировать аккумулятор, при необходимости инициируя цикл зарядки.

    Время перезарядки можно приблизительно определить, разделив заменяемые ампер-часы на 90%. номинальной мощности зарядного устройства. Например, аккумулятор на 100 ампер-час с Разряд 10% потребует замены 10 ампер. Используя зарядное устройство на 5 ампер и 12 вольт, у нас есть 10 ампер. часы/(.9×5) ампер = расчетное время зарядки 2,22 часа. Сильно разряженный аккумулятор отклоняется от этой формулы, требуя больше времени на замену усилителя.

    Рекомендации по частоте подзарядки варьируются от эксперта к эксперту. Похоже, что глубина разряда влияет на срок службы батареи больше, чем частота подзарядки. По сути, свинцово-кислотные батареи, в том числе герметичные (AGM и гелевые), хотелось бы хранить полностью взимается, когда это возможно. Для например, подзарядка, когда оборудование не будет использоваться какое-то время (прием пищи перерыв или что-то еще), может поддерживать среднюю глубину разряда выше 50% для услуги день.В основном это относится к аккумуляторным приложениям, где средняя глубина разряд падает ниже 50% за день, а аккумулятор можно полностью зарядить один раз в течение 24 часов. Это называется «возможность зарядки».

    Выравнивание

    Выравнивание — это, по сути, контролируемый перезаряд. Некоторые производители зарядных устройств назовите пиковое напряжение, которое зарядное устройство достигает в конце НАСОСНОГО режима (поглощение напряжение) выравнивающее напряжение, но технически это не так.Большая влажность (залитые) батареи иногда выигрывают от этой процедуры, особенно физически высокие батареи. Электролит в мокрой батарее со временем может расслаиваться, если не ездить на велосипеде изредка. При выравнивании напряжение поднимается выше типичного. пиковое напряжение зарядки (от 15 до 16 вольт в зарядном устройстве на 12 вольт) хорошо в газовыделение этап и проводится в течение фиксированного (но ограниченного) периода. Это разжигает химию в аккумулятор целиком, «уравняв» силу электролита и сбив любой рыхлая сульфатация, которая может быть на пластинах.

    Конструкция герметичных аккумуляторов (AGM и Gel) практически исключает расслоение, и почти все производители этого типа не рекомендуют его (не советуют). Некоторые производители (в частности, Concorde) указывают процедуру, но с учетом напряжения и времени. технические характеристики имеют решающее значение, чтобы избежать повреждения аккумулятора.

    Размеры зарядного устройства 12 В

    Зарядное устройство на 12 вольт может быть получено от низкого выхода миллиампер (100, 200, 500 миллиампер), до 90 ампер, который можно подключить к розетке на 115 вольт (зарядные устройства более 65 ампер обычно требуется цепь на 20 ампер, так что проверьте).Некоторые из более мелких единиц не регулируются, и просто иметь фиксированное выходное напряжение, как у старых зарядных устройств. Это обычно занимает больше времени заряжать, и этого следует по возможности избегать. Меньшая мощность усилителя подходит для батареи меньшего размера, такие как мотоциклы, квадроциклы и т. д., или электронные устройства и устройства безопасности в диапазоне от 1,3 до 12 ампер-часов. Их также можно использовать для обслуживания больших батареи. Зарядное устройство на 12 В со средним выходом будет в диапазоне от 20 до 50 ампер. или около того, и может использоваться во многих приложениях, потребляющих около 100 ампер-часов от батареи, или приложения с постоянной амперной нагрузкой (приложение источника питания).Для блока питания Тип ситуации, постоянная потребляемая мощность должна составлять низкий процент от максимума зарядного устройства емкость усилителя, чтобы зарядное устройство не вернулось в режим повышения или увеличения мощности, или зарядное устройство должно иметь возможность выбора источника питания или режим «аккумулятор с нагрузкой». Более крупные блоки в моделях зарядных устройств на 12 В примерно Выходной ток от 55 до 90 ампер. Они используются в больших аккумуляторных батареях в ампер-часах или в приложениях. желая сократить время перезарядки (возможно, за счет максимального срока службы батареи).Иногда более крупные блоки используются там, где генератор является источником питания переменного тока, а генератор работает время — это соображение.

    Большинство производителей аккумуляторов рекомендуют устанавливать зарядное устройство примерно на 25% емкости аккумулятора. емкость (ah = емкость в ампер-часах). Таким образом, аккумулятор на 100 Ач на 12 В потребует около 25 А. Зарядное устройство на 12 вольт (или меньше). Для сокращения времени зарядки можно использовать зарядные устройства большего размера, но уменьшить срок службы батареи.Меньшие зарядные устройства подходят для длительного плавания, например а 1 или «умное зарядное устройство» на 2 А можно использовать для обслуживания батареи между циклами с повышенным током использовать, но будет неэффективным или сгорит, если используется для большой загрузки большой емкости, глубоко разряженные батареи.

    Для получения дополнительной информации или рекомендаций по применению зарядного устройства на 12 В, напишите по электронной почте. нам или позвоните в службу технической поддержки.

    Домой | Учебники | Зарядка батареи

    Автомобильный усилитель и сабвуфер с питанием от источника питания компьютера

    Общая информация:

    Во-первых, ваш автомобильный усилитель должен получать напряжение от источника постоянного тока 12 В, которым является автомобильный аккумулятор.Обычные домашние хозяйства используют приблизительно 120 вольт переменного тока. Итак, вы видите, что у нас две проблемы. Во-первых, нам нужно 12 В, а не 120 В, если бы это была единственная проблема, которую было бы несложно решить. Однако настоящая проблема в том, что нам нужно электричество постоянного тока вместо переменного тока. Так почему бы не использовать простой трансформатор, например дешевое зарядное устройство для ноутбука, питающее 12 В постоянного тока?

    Проблема с использованием трансформатора не в том, что он выдает 12 В, а в силе тока. Типичный автомобильный усилитель требует от 10 до 30 ампер.(Вы можете проверить, сколько силы тока вам нужно, посмотрев на предохранители, обычно расположенные рядом с входами вашего усилителя.) Итак, если бы вы использовали простой трансформатор, обеспечивающий 12 В DV, он, скорее всего, работал бы на очень низкой громкости, но он будут разрушены из-за потребности в энергии, когда громкость начнет становиться громче и усилителю потребуется большая сила тока. Итак, делают ли они переводы при большой силе тока при 12 В постоянного тока?

    Да, но они часто очень дороги, легко от нескольких сотен долларов за качественный.Итак, какое решение является лучшим и более экономичным?

    Лучшее решение — преобразовать компьютерный блок питания (CPS) для работы от 12 В постоянного тока и обеспечения высокой силы тока. Это наиболее эффективный и, возможно, самый простой способ заставить ваш усилитель работать на полную мощность. Процесс не слишком сложный, было бы полезно иметь некоторые знания в области базовой электроники и схемотехники, а также уметь паять.

    Учебное пособие:

    Для начала узнайте, сколько усилителей необходимо вашему усилителю.Сделайте это, заглянув в Интернет или проверив предохранители на вашем усилителе. В идеале вам следует увеличить силу тока на предохранителе, чтобы не перегружать CPS постоянно. Это тот, который я использовал, он рассчитан на 24 А для выхода 12 В. (http://www.tigerdirect.com/applications/SearchTools/item-details.asp?EdpNo=2475867&CatId=1078) Когда у вас есть CPS, найдите серийный номер с дополнительными словами, такими как распиновка, чтобы найти лист распиновки ваших моделей. Найти распиновку CPS обычно не так уж и сложно.После того, как вы найдете его, вы захотите найти контакт, который говорит что-то вроде «PS_ON» или «PS_OK», обычно расположенный на вилке «Main Power Connector». В большинстве случаев провод будет зеленым, но я видел некоторые из них, которые были пурпурного или другого цвета (обычно в старых источниках питания зеленый не используется). Как только вы найдете этот провод, подключите его к любому из черных проводов заземления. Это позволяет CPS правильно включиться. Итак, как только вы соединили эти два провода, попробуйте включить свой CPSband, он должен работать.

    Теперь, когда ваш CPS работает, отключите его и снимите крышку. Оранжевые провода обычно подают 3,3 В (хорошо для подключения любых светодиодов, если хотите), а красные провода обычно питают источник 5 В, конечно, оба напряжения постоянного тока. Если вы используете только CPS для питания усилителя, обрежьте все оранжевые и красные провода. СОХРАНИТЕ желтый и черный провода, они используются для подачи напряжения и заземления усилителя. Спустившись вниз, сгруппируйте все желтый и черный отдельно. Я использовала стяжки на молнии, чтобы не было беспорядка.

    Я НАДЕРЖИВАЮ, что необходимо подключить все желтые и все черные провода к усилителю. При таком высоком напряжении только один или несколько проводов, идущих к усилителю, могут поначалу работать отлично, но это приведет к проблемам. Подумайте о проводе, который используется для подключения усилителя к автомобильному аккумулятору, эти провода толстые. Это не только создает серьезную опасность возгорания, но также сохраняет поток напряжения более открытым и снижает нагрузку на усилитель, соединяя их все вместе.

    Теперь вам нужно найти способ прикрепить пучок проводов к небольшому разъему на вашем усилителе.Лучшее решение, которое я нашел, заключалось в использовании клеммы для вилочного провода по двум причинам. (1) это прекрасная связь. (2) это не выглядит небрежно. Вы можете купить их в своем местном хозяйственном магазине, автомобильном магазине и практически везде, где есть секция оборудования. Я бы посоветовал вам спаять провода вместе в жгут, прежде чем обжимать клеммы. Это гарантирует, что каждый провод подключен, и затрудняет вытаскивание проводов из клеммы. В качестве дополнительной меры предосторожности я также усадил соединение.

    Кроме того, вы захотите перемыть провод от источника 12 В на вашем усилителе к терминалу «REM» или «REMOTE» на вашем усилителе. Этот мост позволяет усилителю включаться.
    Итак, подключите провода 12 В, заземления и REM к вашему усилителю, и он должен хорошо включиться. Однако не подключайте его к сабвуферу сразу.

    Наконец, я уверен, что вы знаете, как подключить усилитель к сабвуферу, но вам нужно знать, как подключить его к стереосистеме. Это немного сложно из-за количества Ом, которое принимает ваш усилитель, и количества Ом, которое выдает ваша стереосистема.Почти во всех случаях ваш домашний стереоресивер будет выдавать сигнал 8 Ом, а вашему усилителю потребуется сигнал 4 Ом. Эту проблему легко решить, используя входы уровня динамиков на автомобильном усилителе. Просто подключите оба канала входов уровня громкоговорителей на вашем усилителе только к одной паре терминалов на задней панели ресивера. Это разделит один сигнал 8 Ом на два сигнала по 4 Ом для вашего усилителя. Дважды проверьте свои рейтинги в омах, чтобы быть уверенным.

    А теперь попробуйте.

    Дополнительная информация:

    Будьте осторожны, электроника может быть хрупкой в ​​правильных условиях, и вы не хотите что-то повредить и тратить часы или, возможно, дни на устранение неполадок или необходимость повторной покупки чего-либо. Нет ничего постыдного в том, чтобы оставить комментарий, если вы чего-то не понимаете и вам нужна помощь.

    У меня были предложения построить блок CPS, уже переоборудованный и готовый к подключению. У меня нет проблем сделать это немного дороже, чем затраты на материалы и доставку.Отправьте мне электронное письмо, чтобы я что-нибудь придумал.

    Калькулятор мощности усилителя постоянного тока

    Используя данные нашего образца панели, 60 Вт, разделенные на 5 ампер, равны 12 вольт. Формула для ампер — это ватты, разделенные на вольты. Чтобы использовать диаграмму, закройте A пальцем и используйте оставшееся в таблице вычисление W, разделенного на V. Используя данные нашей панели образцов, 60 Вт, разделенные на 12 вольт, равны 5 ампер.

    В качестве примера, если вы выбираете холодильник или морозильник, для работы которого требуется 40 ампер-часов в день, это означает, что вам понадобится солнечная батарея, которая может обеспечить выходную мощность не менее 10 ампер (40 ампер-часов / 4 часа) в течение зима и 6.Выходная мощность 6 ампер (40 ампер-час / 6 часов) летом. Расчет выглядит следующим образом: Вольт x (Потребляемая мощность в амперах / миль в час) = Втч / м Размер аккумуляторной батареи (кВтч): Напряжение блока x Номинальная мощность в ампер-часах батареи = Полезная емкость аккумуляторной батареи в кВтч: К сожалению, мы не можем использовать весь наш аккумулятор или мы разрядим наши батареи очень быстро. Чтобы продлить срок службы батарейного блока, мы не хотим разряжать батареи более чем на 80%.

    8 апреля 2013 г. · Для работы этих двух устройств нам нужно в общей сложности 2640 Вт (плюс начальные ватты для переменного тока), даже если они имеют разное напряжение и потребляют разную величину тока (ампер).«Эксплуатационные ватты» или «Номинальные ватты» относятся к способности генератора непрерывно подавать электроэнергию без перегрузки или отключения автоматических выключателей.

    Ник — сантехник, и ему нужен торговый генератор для работы с инструментами на стройплощадках без электричества. Ему нужно запустить воздушный компрессор и мойку высокого давления. Воздушный компрессор имеет пусковую мощность 3,8 кВт и рабочую мощность 1,1 кВт. Наконец, в руководстве по эксплуатации мойки высокого давления указано, что ей требуется максимум 15,0 А и непрерывный 5,4 А. Эти уравнения можно изучить при — ЭДС и уравнение крутящего момента машины постоянного тока.Для двигателя постоянного тока величина обратной ЭДС определяется тем же уравнением ЭДС генератора постоянного тока, то есть E b = PɸNZ / 60A. Для машины P, Z и A постоянны, поэтому N ∝ E b / ɸ Характеристики двигателей постоянного тока Зависимость крутящего момента от тока якоря (T aI a)

    Падение напряжения влияет на количество ампер, необходимое для привода. нагрузка. (Закон Ватта: амперы x вольт = ватты) 13,5 вольт x 10,00 ампер = 135 ватт 10,5 вольт x 12,86 ампер = 135 ватт Таким образом, этот калькулятор предназначен только для определения размеров.

    8 апреля 2013 г. · Для работы этих двух устройств нам нужно в общей сложности 2640 Вт (плюс начальные ватты для переменного тока), даже если они имеют разное напряжение и потребляют разную величину тока (ампер). «Эксплуатационные ватты» или «Номинальные ватты» относятся к способности генератора непрерывно подавать электроэнергию без перегрузки или отключения автоматических выключателей. Преобразование ватт в амперы может быть выполнено с использованием формулы мощности, которая гласит, что I = P ÷ E, где P — мощность, измеренная в ваттах, I — ток, измеренный в амперах, а E — напряжение, измеренное в вольтах.Исходя из этого, чтобы найти амперы при заданной мощности и напряжении, используйте следующую формулу: I (A) = P (W) V (V)

    См. Также. Электрооборудование — электрические блоки, усилители и электропроводка, калибр и калибр проводов, электрические формулы и двигатели; Связанные документы . Электрический провод Однофазный 240 вольт — максимальная длина — максимальная длина провода при падении напряжения 2%; Электрические двигатели — Ампер полной нагрузки — Токи полной нагрузки для двигателей 460 В, 230 В и 115 В — одно- и трехфазные

    Для индуктивных нагрузок обычно требуется в 2-3 раза больше рабочего напряжения или силы тока при первой подаче питания на устройство.Например, мощность двигателя 5 ампер и 125 В переменного тока часто требует 10-15 ампер только для того, чтобы привести вал двигателя в движение. В движении двигатель может потреблять не более 5 ампер. Он состоит из 20 ампер в течение 1 секунды, а затем 0,1 ампер в течение оставшейся части часа. Средний ток рассчитывается следующим образом. 20 * 1/3600 + 0,1 (3599) / 3600 = средний ток 0,1044 А.

    Ток холодного пуска, или CCA, аккумулятора позволяет владельцу знать, какой уровень скачка напряжения может иметь аккумулятор.IOW: сколько энергии может обеспечить батарея за короткий период времени. Ампер-часы, или Ач, батареи позволяют владельцу знать, как долго батарея должна обеспечивать питание с определенной скоростью. Это постоянная власть над …

    31 марта 2005 г. · Как более высокое давление всасывания влияет на потребление тока? Да, потребляемая мощность выше — но соответствует ли она условиям двигателя? Более важно выяснить, почему давление всасывания высокое. Верните давление всасывания на должный уровень, и ток потребления усилителя последует.Кривые силы тока — бесценный инструмент при диагностике проблем компрессора. Никола Тесла изобрел первый асинхронный двигатель переменного тока в 1888 году, представив более надежный и эффективный двигатель, чем двигатель постоянного тока. Однако регулирование скорости переменного тока было сложной задачей. Когда требовалось точное управление скоростью, двигатель постоянного тока стал заменой двигателя переменного тока из-за его эффективных и экономичных средств точного управления скоростью.

    Номинальная мощность блока питания

    ATX 12 В

    Номинальная мощность блока питания 12 В ATX

    Представитель ATX 12 В.Номинальные характеристики блока питания (амперы)

    Источники питания различаются по характеристикам в зависимости от производителя и даты изготовления — следовательно, имеющийся у вас блок питания может не точно соответствуют номинальным выходным характеристикам, указанным ниже. Блок питания на 200 Вт будет аналогичным, но, вероятно, будет немного другим. цифры силы тока. Я заметил, что поставки более позднего производства имеют тенденцию указывать более высокие текущие уровни, чем раньше, но также перечислить максимальный комбинированный вывод. Помните, что приведенная ниже таблица является приблизительной и может рассматриваться только как ориентировочная.
    Модель (номинальная мощность) 145 Вт 200 Вт 235 Вт 250 Вт 275Вт 300 Вт 350 Вт 400 Вт 425 Вт 475 Вт
    +3,3 В и nbsp 14 13 13 14 14 28 40 40 45
    +5 В 18 22 22 25 30 30 32 40 40 40
    +12 В 4.2 10 8 10 10 12 15 15 15 18
    -5 В 0,5 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3
    -12 В 0.5 1,0 0,5 0,5 1,0 1,0 0,8 1,0 1,0 2,0 ​​
    +5 VSB * 0,2 2,0 ​​ 2,0 ​​ 2,0 ​​ 2,0 ​​ 2,0 ​​ 2,0 ​​ 2,0 ​​ 2,0 ​​ 3,5
    +3.Максимальная комбинированная мощность 3 В и + 5 В ** и nbsp 135 Вт 125 Вт 150 Вт 150 Вт 150 Вт215 Вт 300 Вт 300 Вт 300 Вт

    * Напряжение в режиме ожидания — большинство системных плат на недавно произведенных компьютерах будут постоянно получать питание в режиме ожидания. чтобы разрешить пробуждение при запуске LAN.

    ** Немного прикладной алгебры покажет, что общая производимая мощность (ватт = вольт x ампер) будет значительно выше номинальная мощность блока питания.Однако источники питания последнего поколения будут иметь максимальную номинальную мощность для линий 3,3 и 5 В. комбинированный. Даже если вы можете получить номинальную мощность от одного напряжения, вы не сможете получить максимальную номинальную мощность. с обеих линий одновременно.

    НАЗАД
    Таблица номинальных значений усилителей генератора

    , однофазное расширение, Таблица номинальных значений усилителей генератора

    , однофазное расширение

    Это новое всплывающее окно в верхней части окна браузера GeneratorJoe. НАЖМИТЕ ДЛЯ ЗАКРЫТЬ ОКНО

    ФАЗОВЫЙ АМПЕР — 100% КОЭФФИЦИЕНТ МОЩНОСТИ * (Расширенная таблица)

    (кВт, умноженное на 1000) разделенное по Volts

    кВА кВт 120 240
    1 1 8.3 4,2
    3 2 16,7 8,3
    4 3 25.0 12,5
    5 4 33,3 16,7
    6 5 41.7 20,8
    8 6 50,0 25,0
    9 7 58.3 29,2
    10 8 66,7 33,3
    11 9 75.0 37,5
    13 10 83,3 41,7
    14 11 91.7 45,8
    15 12 100,0 50,0
    16 13 108.3 54,2
    18 14 116,7 58,3
    19 15 125.0 62,5
    20 16 133,3 66,7
    21 17 141.7 70,8
    23 18 150,0 75,0
    24 19 158.3 79,2
    25 20 166,7 83,3
    26 21 175.0 87,5
    28 22 183,3 91,7
    29 23 191.7 95,8
    30 24 200,0 100,0
    31 25 208.3 104,2
    33 26 216,7 108,3
    34 27 225.0 112,5
    35 28 233,3 116,7
    36 29 241.7 120,8
    38 30 250,0 125,0
    39 31 258.3 129,2
    40 32 266,7 133,3
    41 33 275.0 137,5
    43 34 283,3 141,7
    44 35 291.7 145,8
    45 36 300,0 150,0
    46 37 308.3 154,2
    48 38 316,7 158,3
    49 39 325.0 162,5
    50 40 333,3 166,7
    51 41 341.7 170,8
    53 42 350,0 175,0
    54 43 358.3 179,2
    55 44 366,7 183,3
    56 45 375.0 187,5
    58 46 383,3 191,7
    59 47 391.7 195,8
    60 48 400,0 200,0
    61 49 408.3 204,2
    63 50 416,7 208,3
    64 51 425.0 212,5
    65 52 433,3 216,7
    66 53 441.7 220,8
    68 54 450,0 225,0
    69 55 458.3 229,2
    70 56 466,7 233,3
    71 57 475.0 237,5
    73 58 483,3 241,7
    74 59 491.7 245,8
    75 60 500,0 250,0
    76 61 508.3 254,2
    78 62 516,7 258,3
    79 63 525.0 262,5
    80 64 533,3 266,7
    81 65 541.7 270,8
    83 66 550,0 275,0
    84 67 558.3 279,2
    85 68 566,7 283,3
    86 69 575.0 287,5
    88 70 583,3 291,7
    89 71 591.7 295,8
    90 72 600,0 300,0
    91 73 608.3 304,2
    93 74 616,7 308,3
    94 75 625.0 312,5
    95 76 633,3 316,7
    96 77 641.7 320,8
    98 78 650,0 325,0
    99 79 658.3 329,2
    100 80 666,7 333,3
    101 81 675.0 337,5
    103 82 683,3 341,7
    104 83 691.7 345,8
    105 84 700,0 350,0
    106 85 708.3 354,2
    108 86 716,7 358,3
    109 87 725.0 362,5
    110 88 733,3 366,7
    111 89 741.7 370,8
    113 90 750,0 375,0
    114 91 758.3 379,2
    115 92 766,7 383,3
    116 93 775.0 387,5
    118 94 783,3 391,7
    119 95 791.7 395,8
    120 96 800,0 400,0
    121 97 808.3 404,2
    123 98 816,7 408,3
    124 99 825.0 412,5
    125 100 833,3 416,7
    126 101 841.7 420,8
    128 102 850,0 425,0
    129 103 858.3 429,2
    130 104 866,7 433,3
    131 105 875.0 437,5
    133 106 883,3 441,7
    134 107 891.7 445,8
    135 108 900,0 450,0
    136 109 908.3 454,2
    138 110 916,7 458,3
    139 111 925.0 462,5
    140 112 933,3 466,7
    141 113 941.7 470,8
    143 114 950,0 475,0
    144 115 958.3 479,2
    145 116 966,7 483,3
    146 117 975.0 487,5
    148 118 983,3 491,7
    149 119 991.7 495,8
    150 120 1000,0 500,0
    151 121 1008.3 504,2
    153 122 1016,7 508,3
    154 123 1025.0 512,5
    155 124 1033,3 516,7
    156 125 1041.7 520,8
    158 126 1050,0 525,0
    159 127 1058.3 529,2
    160 128 1066,7 533,3
    161 129 1075.0 537,5
    163 130 1083,3 541,7
    164 131 1091.7 545,8
    165 132 1100,0 550,0
    166 133 1108.3 554,2
    168 134 1116,7 558,3
    169 135 1125.0 562,5
    170 136 1133,3 566,7
    171 137 1141.7 570,8
    173 138 1150,0 575,0
    174 139 1158.3 579,2
    175 140 1166,7 583,3
    176 141 1175.0 587,5
    178 142 1183,3 591,7
    179 143 1191.7 595,8
    180 144 1200,0 600,0
    181 145 1208.3 604,2
    183 146 1216,7 608,3
    184 147 1225.0 612,5
    185 148 1233,3 616,7
    186 149 1241.7 620,8
    188 150 1250,0 625,0
    189 151 1258.3 629,2
    190 152 1266,7 633,3
    191 153 1275.0 637,5
    193 154 1283,3 641,7
    194 155 1291.7 645,8
    195 156 1300,0 650,0
    196 157 1308.3 654,2
    198 158 1316,7 658,3
    199 159 1325.0 662,5
    200 160 1333,3 666,7
    201 161 1341.7 670,8
    203 162 1350,0 675,0
    204 163 1358.3 679,2
    205 164 1366,7 683,3
    206 165 1375.0 687,5
    208 166 1383,3 691,7
    209 167 1391.7 695,8
    210 168 1400,0 700,0
    211 169 1408.3 704,2
    213 170 1416,7 708,3
    214 171 1425.0 712,5
    215 172 1433,3 716,7
    216 173 1441.7 720,8
    218 174 1450,0 725,0
    219 175 1458.3 729,2
    220 176 1466,7 733,3
    221 177 1475.0 737,5
    223 178 1483,3 741,7
    224 179 1491.7 745,8
    225 180 1500,0 750,0
    226 181 1508.3 754,2
    228 182 1516,7 758,3
    229 183 1525.0 762,5
    230 184 1533,3 766,7
    231 185 1541.7 770,8
    233 186 1550,0 775,0
    234 187 1558.3 779,2
    235 188 1566,7 783,3
    236 189 1575.0 787,5
    238 190 1583,3 791,7
    239 191 1591.7 795,8
    240 192 1600,0 800,0
    241 193 1608.3 804,2
    243 194 1616,7 808,3
    244 195 1625.0 812,5
    245 196 1633,3 816,7
    246 197 1641.7 820,8
    248 198 1650,0 825,0
    249 199 1658.3 829,2
    250 200 1666,7 833,3
    251 201 1675.0 837,5
    253 202 1683,3 841,7
    254 203 1691.7 845,8
    255 204 1700,0 850,0
    256 205 1708.3 854,2
    258 206 1716,7 858,3
    259 207 1725.0 862,5
    260 208 1733,3 866,7
    261 209 1741.7 870,8
    263 210 1750,0 875,0
    264 211 1758.3 879,2
    265 212 1766,7 883,3
    266 213 1775.0 887,5
    268 214 1783,3 891,7
    269 215 1791.7 895,8
    270 216 1800,0 900,0
    271 217 1808.3 904,2
    273 218 1816,7 908,3
    274 219 1825.0 912,5
    275 220 1833,3 916,7
    276 221 1841.7 920,8
    278 222 1850,0 925,0
    279 223 1858.3 929,2
    280 224 1866,7 933,3
    281 225 1875.0 937,5
    283 226 1883,3 941,7
    284 227 1891.7 945,8
    285 228 1900,0 950,0
    286 229 1908.3 954,2
    288 230 1916,7 958,3
    289 231 1925 г.0 962,5
    290 232 1933,3 966,7
    291 233 1941.7 970,8
    293 234 1950,0 975,0
    294 235 1958.3 979,2
    295 236 1966,7 983,3
    296 237 1975 г.0 987,5
    298 238 1983,3 991,7
    299 239 1991.7 995,8
    300 240 2000,0 1000,0
    301 241 2008.3 1004,2
    303 242 2016,7 1008,3
    304 243 2025.0 1012,5
    305 244 2033,3 1016,7
    306 245 2041.7 1020,8
    308 246 2050,0 1025,0
    309 247 2058.3 1029,2
    310 248 2066,7 1033,3
    311 249 2075.0 1037,5
    313 250 2083,3 1041,7
    314 251 2091.7 1045,8
    315 252 2100,0 1050,0
    316 253 2108.3 1054,2
    318 254 2116,7 1058,3
    319 255 2125.0 1062,5
    320 256 2133,3 1066,7
    321 257 2141.7 1070,8
    323 258 2150,0 1075,0
    324 259 2158.3 1079,2
    325 260 2166,7 1083,3
    326 261 2175.0 1087,5
    328 262 2183,3 1091,7
    329 263 2191.7 1095,8
    330 264 2200,0 1100,0
    331 265 2208.3 1104,2
    333 266 2216,7 1108,3
    334 267 2225.0 1112,5
    335 268 2233,3 1116,7
    336 269 2241.7 1120,8
    338 270 2250,0 1125,0
    339 271 2258.3 1129,2
    340 272 2266,7 1133,3
    341 273 2275.0 1137,5
    343 274 2283,3 1141,7
    344 275 2291.7 1145,8
    345 276 2300,0 1150,0
    346 277 2308.3 1154,2
    348 278 2316,7 1158,3
    349 279 2325.0 1162,5
    350 280 2333,3 1166,7

    1 ФАЗНЫЙ АМПЕР — 100% КОЭФФИЦИЕНТ МОЩНОСТИ * (Расширенная таблица)

    (кВт, умноженное на 1000) разделенное по Volts

    конвертировать умножить кВт на ватты кВт (x) 1000

    МОЩНОСТЬ (ВАТТ) = НАПРЯЖЕНИЕ умноженное на АМПЕР

    АМПЕР = МОЩНОСТЬ (ВАТТ) деленная на

    ВОЛЬТОВ

    ВОЛЬТ = МОЩНОСТЬ (ВАТТ) разделить на

    AMPS

    * Все указанные значения являются приблизительными.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *