Солнечная батарея из чего состоит – Солнечные батареи для частного дома

Солнечная батарея — это… Что такое Солнечная батарея?

Солнечная батарея — бытовой термин, используемый в разговорной речи или ненаучной прессе. Обычно под термином «солнечная батарея» или «солнечная панель» подразумевается несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток.

В отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя, солнечная батарея производит непосредственно электричество. Однако для производства электричества из солнечной энергии используются и солнечные коллекторы: собранную тепловую энергию можно использовать и для вырабатывания электричества. Крупные солнечные установки, использующие высококонцентрированное солнечное излучение в качестве энергии для приведения в действие тепловых и др. машин (паровой, газотурбинной, термоэлектрической и др.), называются Гелиоэлектростанции (ГЕЭС).

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος, Helios — солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается быстрыми темпами в самых разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

Использование

Микроэлектроника

Зарядное устройство

Для обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т. п.

Электромобили

На крыше автомобиля Prius, 2008

Для подзарядки электромобилей.

Энергообеспечение зданий

Солнечная батарея на крыше дома

Солнечные батареи крупного размера, как и солнечные коллекторы, очень широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов.

Новые дома Испании с марта 2007 года должны быть оборудованы солнечными водонагревателями, чтобы самостоятельно обеспечивать от 30 % до 70 % потребностей в горячей воде, в зависимости от места расположения дома и ожидаемого потребления воды. Нежилые здания (торговые центры, госпитали и т. д.) должны иметь фотоэлектрическое оборудование

[1].

В Нидерландах запущен проект по созданию оконного стекла «Smart Energy Glass» с функциональностью фотоэлемента (см. сайт проекта  (англ.) ).

Энергообеспечение населённых пунктов

Солнечно-ветровая энергоустановка

Использование в космосе

Солнечная батарея на МКС

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Эффективность фотоэлементов и модулей

Мощность потока солнечного излучения на входе в атмосферу Земли (AM0), составляет около 1366 ватт[2] на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D [3], [4]). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может[5]

быть менее 100 Вт/м². С помощью наиболее распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях.[6]

Сообщается, что в отдельных лабораториях получены солнечные элементы с эффективностью 43 %[7]. В январе 2011 года ожидается поступление на рынок солнечных элементов с эффективностью 39%

[8].

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях[9]
ТипКоэффициент фотоэлектрического преобразования, %
Кремниевые
Si (кристаллический)24,7
Si (поликристаллический)20,3
Si (тонкопленочная передача)16,6
Si (тонкопленочный субмодуль)10,4
III-V
GaAs (кристаллический)25,1
GaAs (тонкопленочный)
24,5
GaAs (поликристаллический)18,2
InP (кристаллический)21,9
Тонкие пленки халькогенидов
CIGS (фотоэлемент)19,9
CIGS (субмодуль)16,6
CdTe (фотоэлемент)16,5
Аморфный/Нанокристаллический кремний
Si (аморфный)9,5
Si (нанокристаллический)10,1
Фотохимические
На базе органических красителей10,4
На базе органических красителей (субмодуль)7,9
Органические
Органический полимер5,15
Многослойные
GaInP/GaAs/Ge32,0
GaInP/GaAs30,3
GaAs/CIS (тонкопленочный)25,8
a-Si/mc-Si (тонкий субмодуль)11,7

Факторы, влияющие на эффективность фотоэлементов

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Производство

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определенное количество PV элементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована.[10]

Топ десять

Крупнейшие производители фотоэлектрических элементов (по суммарной мощности) в 2010 году.[11]

  1. Suntech Power (англ.)русск.
  2. First Solar (англ.)русск.
  3. Sharp Solar (англ.)русск.
  4. Yingli (англ.)русск.
  5. Trina Solar (англ.)русск.
  6. Canadian Solar (англ.)русск.
  7. Hanwha Solarone (англ.)русск.
  8. SunPower (англ.)русск.
  9. Renewable Energy Corporation (англ.)русск.
  10. SolarWorld

Производство в России

Заводы производящие солнечные батареи[источник не указан 646 дней]:

  1. ООО «Хевел» (Новочебоксарск)[12]
  2. «Телеком-СТВ» (Зеленоград)
  3. «Солнечный ветер» (Краснодар)[13]
  4. ОАО «НПП «Квант» (Москва)
    [14]
    [15]
  5. ОАО «Рязанский завод металлокерамических приборов»
  6. ЗАО «Термотрон-завод» (Брянск)
  7. ОАО «Сатурн» Краснодар[16]

См. также

Ссылки

Примечания

  1. Spain requires new buildings use solar power
  2. «Solar Spectra: Air Mass Zero»
  3. «Solar Photovoltaic Technologies»
  4. «Reference Solar Spectral Irradiance: Air Mass 1.5»
  5. По материалам: www.ecomuseum.kz
  6. «Конкурентоспособность энергетики» // Photon Consulting
  7. Австралийцы установили новый рекорд КПД солнечных батарей  (рус.). Membrana. Membrana (28 августа 2009). Архивировано из первоисточника 25 июня 2012.
    Проверено 6 марта 2011.
  8. На рынок выходят солнечные батареи с рекордным КПД  (рус.). Membrana. Membrana (25 ноября 2010). Архивировано из первоисточника 25 июня 2012. Проверено 6 марта 2011.
  9. http://www.nitolsolar.com/rutechnologies/
  10. Производство фотоэлектрического солнечного модуля. Архивировано из первоисточника 25 июня 2012.
  11. PVinsights announces worldwide 2010 top 10 ranking of PV module makers
  12. ООО «Хевел». Архивировано из первоисточника 25 июня 2012.
  13. Солнечный ветер. Архивировано из первоисточника 25 июня 2012.
  14. Официальный сайт предприятия
  15. «Солнечные» крылья. Сюжет телестудии Роскосмоса февраль 2012 г.
  16. ОАО «Сатурн» Краснодар. Архивировано из первоисточника 25 июня 2012.
Есть более полная статья

dic.academic.ru

СОЛНЕЧНАЯ БАТАРЕЯ — это… Что такое СОЛНЕЧНАЯ БАТАРЕЯ?


СОЛНЕЧНАЯ БАТАРЕЯ
СОЛНЕЧНАЯ БАТАРЕЯ (батарея солнечных элементов), устройство, преобразующее энергию солнечного света непосредственно в ЭЛЕКТРИЧЕСТВО. Обычно состоит из кристалла кремния р-типа, покрытого кристаллом п-типа (см. ПОЛУПРОВОДНИК). Световое излучение вызывает высвобождение электронов и создает РАЗНОСТЬ ПОТЕНЦИАЛОВ, так что ток может течь между электродами, присоединенными к этим двум кристаллам. Все волны, длиной короче одного микрометра, могут вырабатывать электрическую энергию. Солнечные батареи преобразуют в полезную энергию около 10% солнечного света. Они часто используются в качестве элементов питания в небольших электронных устройствах типа карманного калькулятора. Панели из нескольких тысяч батарей могут вырабатывать энергию мощностью несколько сотен ватт. см. также СОЛНЕЧНАЯ ЭНЕРГИЯ.

Солнечный (фотогальванический) элемент (А) состоит из двух кремниевых полупроводников, расположенных между металлическими контактами, защищенными решеткой. Один из кремниевых полупроводников накапливает положительные заряды (1), а другой — отрицательные (2), создавая разность электрических потенциалов. Когда фотоны света попадают на р-л переход между полупроводниками (4), они смещают электроны, присоединенные к положительному полупроводнику. Металлические контакты (5) соединяют две заряженные области, используя разность потенциалов и создавая электрический ток.

Научно-технический энциклопедический словарь.

  • СОЛК
  • СОЛНЕЧНАЯ ПОСТОЯННАЯ

Смотреть что такое «СОЛНЕЧНАЯ БАТАРЕЯ» в других словарях:

  • Солнечная батарея — Солнечная батарея. Гелиоустановка с полупроводниковыми солнечными батареями в системе электроснабжения жилого дома. СОЛНЕЧНАЯ БАТАРЕЯ, источник тока на основе полупроводниковых фотоэлементов; непосредственно преобразует энергию солнечной радиации …   Иллюстрированный энциклопедический словарь

  • СОЛНЕЧНАЯ БАТАРЕЯ — (батарея солнечных элементов) устройство …   Физическая энциклопедия

  • СОЛНЕЧНАЯ БАТАРЕЯ — см. в ст. Солнечные элементы …   Большой Энциклопедический словарь

  • солнечная батарея — Устройство для выработки электроэнергии в результате поглощения и преобразования солнечной радиации. Syn.: солнечный коллектор …   Словарь по географии

  • Солнечная батарея — Дерево из солнечных панелей в Глайсдорфе Солнечная батарея бытовой термин, используемый в разговорной речи или ненаучной прессе. Обычно под термином «солнечная батарея» или «солнечная …   Википедия

  • солнечная батарея — (батарея солнечных элементов), устройство, в котором происходит непосредственное преобразование солнечного излучения в электрическую энергию с помощью фотоэлементов. Солнечная батарея состоит из многих (до нескольких десятков и сотен тысяч)… …   Энциклопедия техники

  • солнечная батарея — см. Солнечные элементы. * * * СОЛНЕЧНАЯ БАТАРЕЯ СОЛНЕЧНАЯ БАТАРЕЯ, см. в ст. Солнечные элементы (см. СОЛНЕЧНЫЕ ЭЛЕМЕНТЫ) …   Энциклопедический словарь

  • солнечная батарея — saulės baterija statusas T sritis automatika atitikmenys: angl. solar array; solar battery vok. Solarbatterie, f; Solarzellenbatterie, f; Sonnenbatterie, f rus. солнечная батарея, f pranc. batterie solaire, f; pile solaire, f …   Automatikos terminų žodynas

  • солнечная батарея — saulės baterija statusas T sritis Standartizacija ir metrologija apibrėžtis Įtaisas, paverčiantis Saulės spinduliuotės energiją elektros energija. atitikmenys: angl. solar battery vok. Sonnenbatterie, f rus. солнечная батарея, f pranc.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • солнечная батарея — saulės baterija statusas T sritis chemija apibrėžtis Įrenginys, paverčiantis Saulės spinduliuotės energiją elektros energija. atitikmenys: angl. solar battery rus. солнечная батарея …   Chemijos terminų aiškinamasis žodynas


dic.academic.ru

Принцип работы и устройство солнечной батареи

Одним из источников энергии является солнечная батарея, генерирующая альтернативную энергию Солнца. Она появилась сравнительно недавно, но уже успела обрести популярность в странах Евросоюза, за счет высокой эффективности и приемлемой стоимости.

Солнечная батарея является почти неисчерпаемым источником энергии, способным накапливать и преобразовывать световые лучи в энергию и электричество. В странах СНГ новый источник энергии постепенно только набирает популярность. (Кстати, статью о том, как выбрать солнечную батарею, Вы можете прочитать здесь.)

Компоненты

Само устройство и принцип работы энергоисточника можно называть простым. Оно состоит всего из двух частей:

  • основного корпуса;
  • преобразовательных блоков.

В большинстве случаев корпус делают из пластика. Он похож на обыкновенную плитку, к которой прикреплены преобразовательные блоки.

Преобразовательным блоком является кремниевая пластинка. Она может изготавливаться двумя способами:

  • поликристаллическим;
  • монокристаллическим.

Поликристаллический способ является менее затратным, а монокристаллический считается наиболее эффективным.

Все остальные дополнительные части (например, контроллеры и инверторы), гаджеты и микросхемы присоединяют только для увеличения работоспособности и функционирования источника энергии. Без них солнечная батарея также сможет работать.

Имейте в виду: для того чтобы данный источник начал функционировать нужно правильно и аккуратно подключить все преобразовательные блоки.

С расчётом мощности солнечных батарей может помочь данная статья: https://teplo.guru/eko/solnechnyie-batarei-kpd.html

Существует два вида их подключения:

  • последовательное;
  • параллельное.

Разница лишь в том, что в параллельном соединении происходит увеличение силы тока, а при последовательном увеличивается напряжение.

Если есть необходимость в максимальной работе сразу двух параметров, то используется параллельно-последовательное.

Но стоит учитывать, что высокие нагрузки могут способствовать тому, что некоторые контакты могут перегореть. Для предотвращения этого используют диоды.

Один диод способен защитить одну четвертую часть фотоэлемента. Если их нет в устройстве, то есть большая вероятность, что весь источник энергии прекратит своё функционирование после первого же дождя или урагана.

Важный момент: ни накопление, ни сила тока совершенно не соответствуют возможным параметрам современной бытовой техники, поэтому приходится перераспределять и накапливать электроэнергию.

Для этого рекомендуется дополнительно подключать минимум два аккумулятора. Один будет являться накопительным, а второй запасным или резервным.

Приведем пример работы дополнительных аккумуляторов. Когда на улице хорошая и солнечная погода, то заряд идет быстро и через малое количество времени появляется уже лишняя энергия.

Поэтому весь этот процесс контролирует специальный реостат, который способен в определенный момент перевести всю ненужную электроэнергию в дополнительные резервы.

Познакомиться с отзывами владельцев солнечных батарей можно в данной статье: https://teplo.guru/eko/solnechnyie-batarei-dlya-doma-otzyivy.html

Принцип работы

В чем же заключается принцип работы альтернативного источника энергии?

Во-первых, фотоэлементы являются кремниевыми пластинами. В свою очередь, кремний по своему химическому составу имеет максимальную схожесть с чистым силицием. Именно этот нюанс дал возможность понизить стоимость солнечной батареи и запустить ее уже на конвейер.

Кремний в обязательном порядке кристаллизуют, так как сам по себе он является полупроводником. Монокристаллы изготавливаются намного проще, но при этом не имеют много граней, за счет чего электроны имеют возможность двигаться прямолинейно.

Важно знать, что добавлением фосфора или мышьяка повышается электропроводность. Также, одним из важных свойств силиция является невидимость для инфракрасного излучения.

Благодаря этому элементу, преобразовательные блоки поглощают только полезные части солнечного спектра.

Последовательность действий солнечной батареи:

  1. Схема солнечной батареиСхема солнечной батареиПринцип работы солнечной батареи. (Для увеличения нажмите)

    Энергия солнца попадает на пластины.

  2. Пластины нагреваются и освобождают электроны.
  3. Электроны активно двигаются по проводникам.
  4. Проводники дают заряд аккумуляторам.

Вот мы и выяснили, из чего состоят солнечные батареи и каков их принцип действия.

Подробнее узнать об основных видах солнечных панелей можно здесь: https://teplo.guru/eko/vidyi-solnechnyih-paneley.html

В заключение хотелось бы добавить, что такую альтернативу можно сделать дома самостоятельно, при наличии всех необходимых частей.

Смотрите видео, в котором в легкой и познавательной форме объясняется принцип работы солнечных батарей:

teplo.guru

Конструкция солнечной батареи: из чего она состоит

Сегодня солнечная энергия используется практически во всех сферах жизни, от зарядки телефонов и питания детских игрушек до энергообеспечения частных (и даже многоквартирных!) домов. Преимущества гелиопанелей уже общеизвестны, а вот конструкция солнечной батареи и многие ее рабочие особенности по-прежнему малознакомы большинству людей. А между тем, в строении и особенностях работы таких устройств нет ничего непостижимого.

Как правило, подобные батареи нередко путают с гелиоколлекторами. Это достаточно распространенная ошибка, притом что эти устройства очень непохожи. Общее у них только одно – использование энергии солнца. Но если батареи преобразовывают эту энергию в электричество за счет явления фотоэффекта, то в коллекторах лучи нагревают внутренний жидкий теплоноситель и вырабатывают тепловую энергию. Отсюда и различие в сферах применения: коллекторы устанавливают для подогрева воды (реже — для отопления небольших домов), а батареи – для энергообеспечения домов и подзарядки техники.

Что такое «солнечная батарея»

Каждая серийная солнечная батарея – это набор соединенных определенным образом кремниевых фотоячеек, помещенных в защитный корпус с прозрачной лицевой частью. Фотоячейки отвечают за преобразование энергии солнца в электричество (иными словами – за выработку фототока), а корпус защищает их от внешних воздействий.

Кроме того, он обязательно снабжается специальными клеммами, через которые солнечные батареи соединяются между собой в гелиополя и подключаются к другому оборудованию (инверторам, аккумуляторам и т.д.). Подобное устройство позволяет и эффективно преобразовывать энергию солнца (с минимально возможными для серийных панелей потерями), и избегать порчи хрупких фотоячеек.

Фотоячейки

Фотоячейки в серийных солнечных батареях используются кремниевые, причем они бывают трех типов: из поликристаллов, из монокристаллов и из напыленного кремния. Первые два вида представляют собой кристаллические ячейки, они образуются либо при поли-, либо при монокристаллизации кремния. Третий же тип – это тонкопленочная ячейка, которая состоит из напыленного на гибкую тонкую подложку кремниевого слоя.

Каждый из этих видов имеет свои особенности и преимущества. Так, у моноячеек самый высокий КПД, гибкие ячейки можно устанавливать на криволинейных поверхностях, а поличейки отличаются более низкой стоимостью при достаточно высокой производительности (хоть и меньшей, чем у монокристаллов).

Корпус

Конструкция корпуса солнечной батареи включает в себя, помимо самих фотоячеек, несколько элементов:

  • Защитную алюминиевую рамку. Она придает корпусу жесткость и предохраняет торцы от проникновения влаги;
  • Стекло. Стекло используется закаленное, антибликовое, оно обеспечивает более эффективное поглощение солнечного спектра и защищает фотоячейки;
  • Ламинирующие слои. Они располагаются сверху и снизу фотоячеек и обеспечивают герметизацию конструкции в сочетании с удалением зазоров между стеклом и фотоячейками;
  • Заднюю стенку. Обычно ее изготавливают из легкого, но прочного материала, вплоть до толстой PET-пленки;
  • Клеммную коробку. Коробка включает в себя соединительные клеммы для интеграции солнечной батареи в общую структуру.

Причем качество этих составных элементов у разных производителей (особенно – малоизвестных) может сильно отличаться, и зачастую не в лучшую сторону. Поэтому при выборе солнечной батареи репутации производителя нужно уделить особое внимание. Дело в том, что некачественные корпуса очень быстро выходят из строя, в результате чего гелиопанель не сможет выполнять свои функции.

Как работают гелиобатареи

Работают все солнечные батареи по одному принципу – фотоэффекту, иными словами, образованию тока под действием солнечных лучей в определенных материалах (полупроводниках с разными примесями). Лучи солнца, попадая на поверхность двухслойной полупроводниковой пластины, передают электронам верхнего слоя дополнительную энергию. В результате этого электроны начинают движение и переходят в нижний, второй слой. Таким образом, слои полупроводников играют роль своеобразных электродов, между которыми возникает ток.

Но подобная конструкция солнечных батарей подразумевает и несколько нюансов. Например, полупроводники должны быть разного типа проводимости (один — так называемого «дырочного», с избытком положительных зарядов, второй – «электронного», с избытком отрицательного заряда). Кроме того, ширина зоны перехода электронов должна быть не больше определенной величины, чтобы электроны могли ее преодолеть. Именно поэтому принцип действия одинаков для всех солнечных ячеек.

Подключение и установка фотобатарей

Подключение солнечных панелей выполняется по нескольким схемам и зависит от определенных факторов.

Соединение отдельных батарей

Отдельные батареи соединяются между собой последовательно, параллельно или же последовательно-параллельно. Это позволяет получить гелиополе с нужными параметрами выходных тока и напряжения. Так, при последовательной коммутации увеличивается общее напряжение, при параллельной – сила тока. Смешанное же соединение позволяет гибко подбирать оба этих параметра.

Подключение к энергосистеме дома

Состав домашней энергосистемы и методика подключения солнечных батарей определяются нуждами потребителей и типом нагрузки. Так, если от гелиопанелей запитывается энергосберегающая нагрузка (12-вольтная), то использовать инвертор не нужно. Дело в том, что солнечные батареи генерируют постоянный ток, который и использует энергосберегающая нагрузка. Обычная же техника потребляет переменный ток, для получения которого понадобится инвертор. Также состав схемы должен включать в себя аккумулятор (если подразумевается потребление солнечной энергии в пасмурные дни или ночью) и контроллер заряда для регулировки этих процессов.

Нюансы установки

Монтируют солнечные батареи главным образом на крышах, хотя возможна и установка на стене здания или отдельно стоящих опорах. Также нужно иметь в виду, что верхние ряды не должны затенять нижние, для чего между ними необходимо выдерживать определенные интервалы. Ориентируют панели преимущественно на юг, а угол их наклона в идеале должен совпадать с географической широтой местности.

solarb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *