Плотность электролита в акб зимой: какая должна быть, как проверить, как поднять?

Содержание

Плотность электролита зимой и летом

Всем привет! С Вами аккумуляторщик. Сегодня я бы хотел развеять миф про плотность электролита зимой и летом. Многие люди, особенно старой «советской» закалки, которые приходят в магазин или просто приходят со своим аккумулятором и просят им сделать зимнюю или летнюю плотность. Сразу скажу, сейчас это уже не актуально.

Сейчас во все аккумуляторные батареи, в частности для наших широт заливают электролит плотностью 1,27- 1,28 г/см3. И менять её не требуется, это запрещено вообще! Коррекцию электролита самостоятельно тоже нельзя делать ни в коем случае. Это может сделать только специалист по ремонту аккумуляторов, и то в крайнем случае, например, при восстановлении АКБ.

Если Вы измерите плотность на новом полностью заряженном аккумуляторе, то плотность в нем будет 1,27 ровно. Ничего подливать туда не надо! Дело в том, что многие люди думают что на зиму надо сделать поядрёнее такой покрепче электролит. На самом деле, этого не требуется.

При плотности 1,27 г/см3  электролит замерзает при температуре -60 0С. Подробнее об этом Вы можете прочитать тут. В редких городах можно встретить такие экстремальные температуры воздуха, но тем не менее можно. Для таких редких случаев плотность подымают, но это скорее исключение.

Слишком большая плотность делает среду чрезмерно агрессивной. И соответственно, идет быстрее осыпания пластин аккумулятора. Потому что аккумуляторная батарея на автомобиле – это сбалансированное устройство, вмешиваться в его электролит значит выводить из баланса АКБ. Как некоторые делают по старинке: доливают дистиллированную воду на лето, а зимой доливают электролит. Ничего этого делать не нужно!

Лучше позаботьтесь о другом. Например, качественно зарядите аккумулятор перед холодами хорошим зарядным устройством. Для того, чтобы плотность выровнялась по банкам АКБ и вышла у Вас к номинальной 1,27- 1,28 г/см3. С такой плотностью электролита можно ездить и летом и зимой, так скажем всесезонный аккумулятор.

Вот поэтому никогда не проводите самостоятельно манипуляций с электролитом. Только корректируем уровень дистиллированной водой. То есть, подливая воду в банки до номинального уровня. Напомню, для легковых АКБ это полтора сантиметра над свинцовыми пластинами аккумулятора, для грузовых 2-3 см. Вот и все! Ну и соответственно, заряжаем для того, чтоб достигнуть рабочей плотности.

Надеюсь наши советы по эксплуатации автомобильного аккумулятора помогут Вам в жизни. Не совершайте ошибок.

Также на эту тему:

Какая плотность должна быть в аккумуляторе зимой: оптимальные значения

Плотность электролита – главный параметр всех свинцово-кислотных электрических аккумуляторов, потому что он оказывает влияние на срок эксплуатации и ёмкость прибора.

Необходимо удерживать оптимальное значение показателя, чтобы гарантировать правильную работу АКБ. Оно зависит не только от климатических характеристик региона, в котором находится автомобиль, но и от времени года. К примеру, если плотность аккумулятора в зимний период составляет 1,25 г/см3, то это свидетельствует о критическом уровне, при котором транспортное средство не сможет завестись. Особенно речь идёт о районах, в которых температура может опускаться до -50 градусов. Однако при умеренном климате такое значение соответствует заявленным требованиям нормы. Следовательно, считается, что показатели в разные временные сезоны должны отличаться друг от друга.

Перед многими автовладельцами встаёт дилемма: разная или одинаковая должна быть плотность аккумулятора зимой и летом? Давайте разбираться.

Зима

Плотность электролита на зиму в аккумуляторе транспортного средства должна составлять около 1,27 г/см3. Но такое значение оптимально лишь для центральных районов России. В регионах, в которых температурный режим ниже -35 градусов, показатель изменяется в диапазоне от 1,28 г/см3 до 1,35 г/см3. Например, если автомобиль работает в условиях Крайнего Севера, то величина колеблется в пределах 1,31–1,35 г/см3. Возникает вопрос: почему плотность электролита в аккумуляторе зимой должна иметь такое значение? Существует две причины, дающих ответ на поставленный вопрос:

  1. Жидкость с большой вероятностью превратится в лёд при минусовой температуре, так как в ней доля воды превышает допустимую норму.
  2. Механизмы автомобиля замерзают в мороз и требуют увеличения электродвижущей силы, чтобы осуществить запуск двигателя. Даже лучшие модели автомобилей не смогут работать без дополнительной энергии. Уменьшение значения показателя вплоть до 1,1 г/см3 приведёт к замерзанию электрического аккумулятора.

Зимняя плотность аккумулятора находится на низком уровне. Следовательно, при разрядке она упадёт до критических значений. Чтобы решить эту проблему, желательно постоянно следить за состоянием АКБ. Чтобы проследить взаимосвязь между уровнем заряда и водным соотношением в составе электролита, можно рассмотреть различные сценарии при уменьшении АКБ на 25 % и 50 %:

  1. При первоначальной плотности в 1,30 г/см3 она сократится до 1,26 г/см3 и 1,22 г/см3.
  2. При начальном значении показателя в 1,27 г/см3 объём уменьшится до 1,23 г/см3 и 1,19 г/см3.
  3. При исходной величине в 1,23 г/см3 диапазон упадёт до 1,19 г/см3 и 1,15 г/см3.

Следовательно, плотность аккумулятора на зиму не должна опускаться ниже 1,27 г/см3. Однако нужно помнить, что электролит не может прогреться в результате ежедневных поездок от дома на работу, которые составляют менее получаса. Это в свою очередь влияет на АКБ, который получает необходимый уровень заряда только после осуществления разогрева. Значение показателя стремительно падает по причине того, что аккумуляторная батарея разряжается.

Таким образом, отвечая на вопрос, какая плотность аккумулятора должна быть зимой, можно привести таблицу оптимальных значений. Однако данные показатели характерны исключительно для полностью заряженной батареи. В случае если заряд находится на недостаточном уровне, то они будут больше.

Регион использования транспортного средстваЗначение показателя плотности, г/см3
Южные регионы1,25
Центральные регионы1,27
Северные регионы1,29
Регионы Крайнего Севера1,31

Лето

В летний период аккумуляторная батарея имеет проблему, связанную с потерей большого количества жидкости. Плотность рекомендуется держать на 0,02 г/см3 ниже значения, которое требуется по стандартам. В первую очередь такое замечание относится к регионам, расположенным на юге России.

Летом температурный режим под капотом, в котором располагается аккумулятор, повышен. Это влечёт за собой следующие моменты:

  1. Улетучивание жидкости из состава кислоты.
  2. Активное прохождение процессов превращения электрической энергии в химическую, протекающих в аккумуляторных кислотных батареях.

Всё это обеспечивает сильную отдачу тока, осуществляющуюся даже при минимальных допустимых показателях плотности электролита. Например, значение 1,22 г/см3 характерно для местности с тёплым и влажным климатом. Если уровень электролита систематически опускается, то это приводит к увеличению значения. Такой взаимосвязанный процесс является причиной химического разрушения проводников электрического тока. Поэтому контроль количества воды в АКБ – важная задача, выполнение которой является залогом грамотного ухода за автомобилем. Решение заключается в добавлении дистиллированной жидкости при понижении уровня электролита. Если данное действие опустить, то могут возникнуть проблемы с перезарядом и сульфацией.

Рассеянность автолюбителей – главный фактор, который лежит в основе разрядки аккумулятора. Другими словами, если водитель не уследил за состоянием АКБ, то нужно предпринять определённые меры. Они заключаются в обеспечении батареи зарядом при помощи специального устройства. Однако перед этим необходимо обратить внимание на уровень жидкости, которая могла испариться в процессе функционирования. Если это произошло, требуется долить очищенную воду без содержания каких-либо примесей.

Следовательно, рассмотрев, какая плотность должна быть в аккумуляторе зимой в зависимости от региона, нельзя не привести значения для летнего сезона.

Регион использования транспортного средстваЗначение показателя плотности, г/см3
Южные регионы1,25
Центральные регионы1,27
Северные регионы1,27
Регионы Крайнего Севера1,27

Как правильно откорректировать плотность электролита?

Автовладельцы часто сталкиваются с необходимостью поднять плотность в аккумуляторной батарее, что объясняется двумя причинами. Во-первых, периодическим регулированием количества дистиллированной жидкости. Во-вторых, частой зарядкой устройства, так как уменьшение интервала осуществления данного действия – первый признак того, что желательно провести процедуру повышения величины. Выделяют два способа корректировки значения показателя:

  • применение электролита, обладающего высокой концентрацией;
  • использование дополнительных кислот.

Чтобы изменить в нужном направлении плотность в аккумуляторной батарее, следует приобрести следующие предметы:

  • специализированный стакан с делениями, применяемыми для измерения объёма;
  • цистерна для создания нового раствора;
  • электролит или кислота корректирующего содержания;
  • очищенная жидкость.

Алгоритм действий по изменению значения включает в себя 5 этапов:

  1. Взять небольшое количество электролита с банки аккумуляторной батареи.
  2. Добавить корректирующий раствор в количестве, которое соответствует взятому на предыдущем этапе. Такое действие осуществляется при условии, что поставлена задача поднять плотность. Если необходимо получить противоположный результат, то регулирующий раствор заменяют на дистиллированную жидкость.
  3. Аккумулятор следует подзарядить с помощью специального устройства, так как номинальный ток даст возможность поступившей воде смешаться.
  4. После отключения АКБ от батареи целесообразно выждать в районе 2 часов. Это позволит плотности во всех банках встать на один уровень, что сделает вероятность возникновения погрешности при контрольном тестировании минимальной.
  5. Вторично осмотреть значение электролита. Если оно осталось на прежнем уровне, то повторно осуществить предыдущие этапы.

Плотность электролита изменяется в результате понижения в определённом отсеке аккумулятора. Причём предварительно полезно изучить номинальный объём, который в нём находится. Например, в классической стартерной батарее 6СТ-55 величина электролита равна 633 см3, а в 6СТ-45 – 500 см3. Если рассматривать его состав, то в него входят серная кислота и очищенная вода в процентном соотношении 40 на 60. Достичь необходимой плотности показателя можно, опираясь на представленные данные в следующей таблице:

Плотность аккумулятора, г/см3Обязательная величина параметра, г/см3
1,241,251,26
Забор электро-литаДолив раствора 1,40 г/см3Добавление жидкостиЗабор электро-литаДолив раствора 1,40 г/см3Добавление жидкостиЗабор электро-литаДолив раствора 1,40 г/см3Добавление жидкости
1,246062120125
1,2544256570
1,2685883940
1,2712212678804043
1,281561621171208086
1,29190200158162123127
1,30

Продолжение таблицы

Плотность аккумулятора, г/см3Обязательная величина параметра, г/см3
1,271,281,30
Забор электро-литаДолив раствора 1,40 г/см3Добавление жидкостиЗабор электро-литаДолив раствора 1,40 г/см3Добавление жидкостиЗабор электро-литаДолив раствора 1,40 г/см3Добавление жидкости
1,24173175252256
1,25118120215220
1,268566177180290294
1,27122126246250
1,28404363658198202
1,297578143146
1,3010911336387981

Отметим, что представленные данные соответствуют корректирующему электролиту с плотностью 1,40 г/см3. Если жидкость будет иметь другое значение, то возникает необходимость использовать следующую формулу расчёта для рассматриваемого показателя:

Представленные вычисления можно заменить методом золотого сечения, который гораздо проще применить на практике:

  1. Откачать больший объём воды из банки аккумулятора.
  2. Вылить полученную воду в специальный стакан с делениями, чтобы получить информацию о величине.
  3. Заполнить половину освободившегося объёма банки необходимым количеством электролита.
  4. Если значение ещё не соответствует требуемому, то долить ¼ от откаченной величины.
  5. Продолжать добавлять раствор до достижения оптимального результата.

Кислотная среда небезопасна для человека при неграмотном обращении. Целесообразно соблюдать все меры предосторожности, чтобы раствор электролита не попал на кожу или в дыхательные пути. Осуществлять корректировку рассматриваемой величины рекомендуется в помещениях с хорошей вентиляцией.

Возникают ситуации, в которых значение показателя опускается ниже 1,18 г/см3. В таких случаях использование электролита должно сопровождаться применением кислоты. Причём алгоритм действий изменения плотности включает в себя аналогичные этапы с одной поправкой: шаг разбавления при таком значении должен быть небольшим. Это связано с тем фактом, что плотность электролита имеет очень большую концентрацию, и возникает вероятность пропустить нужную отметку.

В процессе приготовления раствора в жидкость нужно вливать кислоту, а не наоборот.

При определённых обстоятельствах не представляется возможным исправить плотность электролита. Поэтому есть только один выход: купить новый аккумулятор. Возникает вопрос: как определить такие случаи? Очень просто: электролит становится коричневого оттенка, что свидетельствует об осыпании активной массы, принимающей участие в реакции электрохимического плана. Следовательно, это приводит к постепенной поломке аккумуляторной батареи.

Чтобы такая ситуация не застала врасплох, необходимо знать, что хороший АКБ будет служить в течение 5 лет при следовании всем эксплуатационным правилам. Следовательно, если данный срок истёк, то нет смысла проводить манипуляции по ремонту батареи. Если вы хотите, чтобы ваш прибор прослужил положенный срок, то следуйте следующим указаниям:

  • контролируйте плотность с помощью ареометра;
  • обеспечивайте грамотное обслуживание;
  • проверять уровень заряда.

Чем грозит завышенная или заниженная плотность электролита?

Оптимальный уровень плотности находится в пределах от 1,27 до 1,35 г/см3 в соответствии с сезоном и температурным режимом региона. Если значение рассматриваемого показателя выше нормы, то это свидетельствует о завышении, что отрицательно влияет на функционирование автомобиля. Данный процесс может привести к повреждениям аккумуляторной батареи. В ситуациях, при которых наблюдается противоположная картина, существует вероятность того, что автомобиль не заведётся. Главная причина в том, что АКБ замёрзнет при низких температурах.

Следовательно, необходимо контролировать значение, чтобы плотность электролита в аккумуляторе зимой и летом соответствовала оптимальной. Это поможет избежать возникновения непредвиденных обстоятельств. Однако сделать подобное проблематично, так как плотность изменяется при разных уровнях заряда аккумулятора. Например, при её уменьшении происходит поглощение дистиллированной жидкости батареей, что приводит к увеличению концентрации показателя. В обратных ситуациях возникает процесс сульфатации, ведущий к снижению уровня плотности. В результате этой химической реакции пластины наглухо закрываются и теряют возможность правильно заряжаться. Главный исход – выход из строя АКБ.

Защита АКБ в сильные морозы

Аккумулятор – сердце автомобиля! Именно от АКБ зависит запуск двигателя и функционирование всех приборов в салоне, поэтому важно правильно эксплуатировать и обслуживать батарею. Некоторые автолюбители считают, что, в зависимости от времени года, нужно уменьшать или увеличивать номинальную плотность электролита. Разберемся, так ли это.

Стоит ли увеличивать номинальную плотность электролита с наступлением зимы?

Заводы-изготовители выпускают аккумуляторы с плотностью электролита в максимально заряженных АКБ: 1,27 – 1,28 г/см³. Для наших широт это оптимальная плотность, и регулировать ее не просто не рекомендуется, а даже запрещено. Плотность 1,27 г/см³ позволяет электролиту не замерзать до –60 °C. Конечно, если предстоит более суровая зима или требуется восстановить АКБ после сильной разрядки, плотность электролита увеличить придется, но не самостоятельно. Обратитесь к специалистам по обслуживанию автомобилей. Самостоятельно можно только корректировать уровень электролита дистиллированной водой, доливая до необходимого уровня. Увеличение номинальной плотности с помощью кислоты приводит к агрессивности среды, а, следовательно, к ускоренному осыпанию пластин аккумулятора. Лучше доведите уровень заряда аккумулятора перед сильными холодами до выравнивания плотности по банкам АКБ и показателей 1,27- 1,28 г/ см³ (в свинцовых аккумуляторах).

К чему приводит глубокая разрядка АКБ?

Если в теплое время можно завести авто только с наполовину заряженным аккумулятором, то перед началом зимы заряда должно быть не менее 80%. Причина в том, что при минусовых температурах смазка в АКБ густеет, приводя к ее разрядке. В морозы требуется больше энергии на запуск холодного двигателя, интенсивную работу бортовой системы, печки, видеорегистратора, магнитолы, фар и т.д. Бросая автомобиль в ледяном гараже, во дворе, на стоянке, редко используя его из-за гололеда или снегопада, мы способствуем накапливанию разряженности АКБ, в результате чего снижается и плотность электролита. Ионы оседают на пластинах АКБ, а вода, входящая в его состав, кристаллизуется, расширяется и разрушает изоляторы между пластинами соседних банок. Таким образом, разряженный аккумулятор во время морозов приводит к замерзанию электролита и разрушению свинцовых пластин! Мутный электролит в банках – сигнал о гибели аккумулятора.

Рекомендации по зарядке замерзшего аккумулятора.

Зимой подзаряжайте АКБ хотя бы два раза в месяц, а размороженную «реанимируйте» малыми токами. Для этого можно использовать правило трех пятерок: при температуре -5 нужно поставить АКБ на зарядку током 5А на 5 часов.
Если нет возможности занести аккумулятор в дом, для восстановления энергетического баланса батареи необходимо не менее часа интенсивной поездки.

Для карбюраторных автомобилей – при оборотах не менее 1500 об/мин, для инжекторных – не менее 800-1000 об/мин. Электролиту нужно время, чтобы хорошо прогреться и зарядиться.
Когда машину не удается завести из-за подморожения АКБ и глубокой разрядки, некоторые водители «прикуривают» свою АКБ от чужого аккумулятора. В этом случае она подвергается двойному пусковому току, пробивающему изоляторы между пластинами. Имейте в виду, что заводская экспертиза это увидит, и возврат АКБ не примет.
Перед тем как оставить автомобиль на несколько часов, убедитесь, что двери закрыты, а в салоне отключены все энергопотребляющие приборы. Не выключенные на ночь фары часто являются причиной разрядки аккумулятора.
Когда автомобиль предстоит оставить на морозе дольше 2 месяцев, обязательно проверьте все электрические системы машины на утечки, а лучше – снимите минусовую клемму. Снижение токов утечки до нуля оставят батарею заряженной на более долгий срок.
Потребитель должен следить за аккумулятором. Это прописано во всех гарантийных талонах, прилагаемых к АКБ. Заботьтесь о своем аккумуляторе, и он не подведет вас в дороге!

АКБ. Правила зимнего хранения и эксплуатации

08.08.2016

Зимой некоторые автомобили эксплуатируются нечасто. Нужно ли перед долгой стоянкой скидывать клеммы и отключать массу? И каковы правила хранения АКБ зимой, если машина совсем не используется?

Снимать клеммы и отключать массу необходимо. На это есть свои причины. Прежде всего, в любом случае существует утечка в виде работы бортовых систем, например часов, питание идет и на бортовой компьютер. Все это постепенно опустошает вашу аккумуляторную батарею. Стандартная утечка бортовой цепи автомобиля, допустимая заводом-изготовителем по нормам, составляет 30 миллиампер (0,03 А). На первый взгляд, кажется, что это совсем немного. Но это только так кажется. Попробуйте пересчитать, за какое время такая утечка опустошит ваш аккумулятор. Возьмем, к примеру, стандартную батарею емкостью 55 А/ч. Это означает, что 55 ампер он, выдаст за час. Или 5,5 ампер за 10 часов. Половину ампера он отдаст уже за сто часов. Следовательно, 50 миллиампер уйдут за тысячу часов. Тысячу часов делим на 24 часа, получается, что полностью батарея сядет за 41 день, это если АКБ была 100% заряжена, если нет то еще быстрее. Но эксплуатация при 100% разряде совершенно недопустимо. Если аккумулятор разрядится на 25 % — это уже плохо, а если сядет на 50% — он замерзнет уже при «-27» градусах по Цельсию. Так что за 20 дней при стандартной утечке ваш аккумулятор превратится в кусок льда при стоянке на улице зимой, а про пуск автомобиля мы тут вообще не говорим. Чтобы избежать такого развития событий, нужно просто снять клемму. Это самый простой способ предотвратить утечку энергии и разрядку батареи при длительном промежутке времени «не езды» на машине. Для современных машин это, конечно, не очень хорошо. Могут сброситься настройки бортового компьютера, заблокироваться аудиосистема, потеряться настройки электронного ключа. Но ведь такие машины и не рассчитаны на такую редкую эксплуатацию. Впрочем, и здесь есть выход — периодически подзаряжать аккумулятор или как компромисс хотя бы запускать иногда машину на короткий промежуток времени.

Как же правильно хранить АКБ, если машина зимой на приколе, обслуживать аккумулятор и эксплуатировать его.

1. Хранение аккумулятора

Залитые батареи рекомендуется хранить в сухом помещении с температурой не ниже −30? и не выше 0?. Батареи устанавливаются на хранение полностью заряженными. Допускается хранить батареи и при положительных температурах, однако темп саморазряда аккумуляторов при этом будет в несколько раз выше. Ежемесячно необходимо проверять плотность электролита или измерять напряжение на клеммах аккумулятора. Степень разряда аккумулятора можно проверить по таблице № 1. При снижении плотности электролита более чем на 0,03 г/см3, т.е. до уровня 1,24 г/см3 или напряжения ниже «12,45» Вольт батарею следует подзарядить.

Перед продолжительной стоянкой автомобиля необходимо отсоединить АКБ от бортовой сети, полностью ее зарядить и хранить в прохладном помещении. Моноблок во избежание саморазряда по поверхности должен быть чистым. Если батарея должна быть постоянно готова к установке на автомашину, то при снижении плотности до уровня 1,24 г/см3, батарею следует подзарядить. Если от батареи не требуется постоянной готовности, то рекомендуется ее подзаряжать при снижении плотности до уровня 1,22 г/см3.

Зимой следует иметь в виду, что электролит в сильно разряженных батареях может замерзнуть при наступлении морозов. Зависимость температуры замерзания электролита от его плотности приведена в таблице № 2.

Не допускайте снижения плотности до критической, иначе при замерзании электролита возможно необратимое повреждение моноблока и пластин аккумулятора.

Таблица № 1. Степень разряженности аккумулятора.

Напряжение на клеммах, (В) 12,6612,4512,2412,0611,80 и ниже
Плотность электролита, г/см3 1,271,231,201,171,12 и ниже
Степень заряда, % 1007550250
t замерзания электролита ? -64-42-27-15-10 до 0

Таблица № 2. Температура замерзания электролита в зависимости от его плотности.

Плотность Эл-та 1,01,051,101,151,201,251,271,301,35
t замерзания, ? 0 −3,.3 −7,7 −15 −27 −52 −64 −70 −49

2. Контроль состояния батареи

Рекомендуется один раз в месяц проверять уровень электролита и при необходимости доливать только дистиллированную воду до нормального уровня. Пластины, не покрытые электролитом, высыхают и осыпаются, что приводит к преждевременному выходу АКБ из строя.

Запрещается доливать электролит или кислоту в АКБ.
Это можно делать только в том случае, если точно известно, что понижение уровня электролита произошло за счет его выплескивания.

Не используйте воду сомнительного происхождения.
Контролируйте степень заряженности аккумулятора по плотности электролита или по напряжению на клеммах ненагруженной батареи. Степень разряда батареи можно определить из Таблицы № 1, или посчитать по формуле:

Uнрц = 6*(0,84+Р), где
Uнрц (НРЦ) — напряжение разомкнутой цепи;
Р — Плотность электролита.

Следовательно, плотность можно посчитать соответственно по формуле: Р = Uнрц/ 6 — 0,84

100% заряженная батарея, т.е. с плотностью электролита 1,27 г/см3 будет иметь:
НРЦ = 6*(0,84+1,27) = 12,66 Вольта;
Р = 12,66 / 6 — 0,84 = 1,27 г/см3

Зная напряжение на клеммах аккумулятора, можно всегда посчитать плотность электролита в нем.

Категорически запрещается эксплуатировать батареи с уровнем заряда ниже 75% зимой и 50% летом.
Хранение и эксплуатация АКБ в разряженном состоянии приводит к необратимым процессам, при которых восстановление АКБ не возможно.

Низкая плотность электролита в АКБ говорит о её разряженности и для повышения плотности электролита необходимо заряжать АКБ, а не повышать её доливкой кислоты или электролита.
Просто долив кислоты или электролита, приведёт к изменению кислотного баланса и как следствие после полного заряда к превышению допустимого уровня плотности электролита. Превышение плотности электролита выше допустимой нормы приводит к разрушению пластин внутри АКБ.

3. Заряд аккумулятора

Заряд АКБ производится током равным 10% от её ёмкости (например при ёмкости 55 А/Ч ток зарядки не должен превышать 5,5 А). Нарушение данного требования приводит к разрушению пластин из-за перегрузок.

Старайтесь заряжать батарею малыми токами, при этом увеличивается степень и глубина заряда.

Окончанием процесса заряда аккумуляторов следует считать:

  1. равномерное кипение электролита во всех банках;
  2. равномерный нагрев корпуса батареи;
  3. напряжение на клеммах аккумулятора достигло значения 16,4 вольта;
  4. плотность электролита прекратила подниматься в батарее (если плотность растет, то это означает, что не все элементы еще прореагировали и батарея заряжается).

4. Контроль электрооборудования автомобиля

Необходимо качественно и регулярно проверять и обслуживать электрооборудование автомобиля. Отклонение параметров электрооборудования (генератора, стартера, различных реле) от установленных величин приводит к снижению надежности и к сокращению срока службы АКБ.

Нормы на параметры электрооборудования:

Пределы рабочего напряжения бортовой сети автомобиля не должны выходить за пределы 13,8-14,5 V, при различных режимах работы автомобиля.

Отклонение величины зарядного напряжения за пределы нормы на 0,3 — 0,5 V приводит к сокращению срока службы батареи в несколько раз.

Токи утечки не должны превышать 30 мА/ч (0,03 Ампера). Повышенный ток утечки уменьшает срок службы АКБ ввиду ускоренности циклов заряда-разряда батареи, и увеличивает вероятность глубокого разряда батареи.

Повышенное напряжение генератора приводит к осыпанию активной намазки пластин в батареях, что приводит к уменьшению емкости батареи и способствует замыканию пластин за счет осыпавшейся активной массы с положительных пластин.

Эксплуатация разряженной батареи приводит к осыпанию активной массы с отрицательных пластин. Признаком осыпания пластин является потемнение цвета электролита во всех банках (коричневый цвет — осыпание положительных пластин, серый цвет — осыпание отрицательных пластин).

Так же пониженное напряжение генератора (особенно зимой) не позволяет зарядить полноценно батарею, и происходит ее эксплуатация в полуразряженном состоянии. Это может привести к необратимой сульфатации пластин, что чревато уменьшением, как емкости батареи, так и величины стартового тока аккумулятора.

У недозаряженного аккумулятора плотность электролита понижена, что может привести к его замерзанию при сильных морозах и стоянке машины на улице (смотри таблицу № 2).

5. Эксплуатация аккумулятора

Пуск стартера производите короткими включениями, но не более чем на 10 сек. Перерыв между включениями летом не менее 15 сек., зимой не менее 1 мин. Избегайте включать стартер более 3-х раз подряд. Езда при помощи стартера не допускается.

Категорически запрещается «прикуривать» аккумулятор от нестандартных пускозарядных устройств во избежание взрыва моноблока, деформации пластин и внутренних тоководов, что приводит к осыпанию активной массы пластин и разрыву межэлектродных соединений.

При низких температурах происходит замедление всех химических процессов внутри АКБ, батарея переходит в «спящий режим» (электрические параметры АКБ при t ниже «-30» градусов по Цельсию понижаются в 2 раза.) Поэтому перед пуском двигателя на некоторое время необходимо включить электрические потребители (фары, габариты) для возобновления электрохимических процессов и только после этого делать попытки старта.

Для уменьшения рисков плохих пусков при эксплуатации автомобиля в зимнее время рекомендуется подбирать АКБ по ёмкости и стартовым характеристикам в соответствии с конкретной климатической зоной.

Оптимальная плотность электролита в аккумуляторе зимой и летом

Споры по вопросу правильной эксплуатации автомобильных аккумуляторов ведутся давно, и конца им не видно. Это объясняется, в том числе, и тем, что число автолюбителей неуклонно растет, и каждый из тех, кто смог проехать самостоятельно даже пару сотню метров, уже априори считает себя авторитетом в данной области и высказывает «авторские», порой безапелляционные, суждения.

Если «пройтись» по Интернету, то порой встречается и такое, что вполне можно засомневаться в собственной компетенции, пожалеть о напрасно потраченных годах и даже пересмотреть свое мировоззрение.

Но это еще полбеды. Дело в том, что даже у профессионалов мнения по некоторым вопросам не всегда совпадают. Поэтому попробуем суммировать всю доступную информацию и вывести «среднее арифметическое», не кидаясь в крайности. Не будем утруждать читателя пояснениями относительно всех нюансов химических процессов, протекающих в АКБ, специфическими терминами, а рассмотрим проблему поддержания плотности электролита в аккумуляторе зимой и летом на приемлемом уровне с чисто практической точки зрения.

Главный советчик по уходу и сбережению аккумулятора, в том числе, и по плотности электролита – Производитель!

К каждой батарее прилагается сопроводительный документ (памятка, инструкция или что-то еще – не суть важно). Но именно в нем написано то, что необходимо знать автовладельцу и  учитывать при эксплуатации конкретной батареи. Только тот, кто ее изготовил, разбирается во всех тонкостях ухода.

Например, к какой категории относится АКБ – обслуживаемые, малообслуживаемые (не требующие регулярной доливки воды на протяжении многих месяцев) или необслуживаемые. А то, что они бывают разными и по материалам, и по технологии изготовления (и так далее), объяснять, думается, никому не стоит.

Максимальный, причем систематический, разряд батареи резко снижает срок ее пригодности к эксплуатации. Это никем не оспаривается. Дело в том, что он вызывает повышенную сульфатацию пластин (отложение солей), и часто такой процесс становится необратимым. Слишком «запущенный» аккумулятор восстановлению не подлежит, и его дальнейший путь – в утиль, даже если он не так уж и давно приобретен.

Для батареи одинакова вредна как пониженная, так и повышенная плотность электролита. Если он (в силу разряженности аккумулятора) мало чем отличается от воды, то банки при низких температурах могут просто замерзнуть. Кроме того, такие понятия, как «плотность» и «емкость» батареи, взаимосвязаны (прямая зависимость). Следовательно, возникнут не только проблемы с запуском движка, но и с необходимостью более частой постановки на зарядку.

Излишняя же плотность провоцирует активацию химических процессов, которые в батарее протекают постоянно, независимо от того, «работает» она или «отдыхает». А это влечет более интенсивное разрушение пластин и снижает срок службы изделия.

Для каждого региона есть свое значение оптимальной плотности электролита, поэтому единой рекомендации изначально быть не может. Например, для условий Крайнего Севера – не менее 1,29. Поэтому необходимо ориентироваться не только на сезон, но и на критические значения температуры, которыми характеризуется данная местность. Следовательно, встречающиеся в интернете советы о поддержании плотности на уровне 1,26 – 1,27 можно расценивать только как общую рекомендацию. Кстати, такой показатель приемлем для большей части территории РФ, наверное, поэтому его часто и упоминают.

Учитывая сказанное, есть смысл выяснить минимально допустимое (критическое) значение плотности, ниже которого оно не должно опускаться. И вот тут нужно вспомнить об инструкции Производителя! Хотя есть и распространенное правило – не менее 1,23.

Практические советы

  • В зимний период запуск двигателя, как правило, затруднен. Поэтому, если машина стояла в холодном боксе и АКБ с нее не снималась, то ее желательно предварительно прогреть (повысить температуру электролита). Самый простой способ – включить осветительные приборы (например, дальний свет).
  • Необходимо чаще контролировать состояние клемм, особенно при сезонном понижении температуры. Уменьшение плотности электролита влечет увеличение значения внутреннего сопротивления батареи, а, следовательно, и всей эл/цепи «запуска». Вспомнив закон Ома, несложно понять, что пусковой ток становится несколько меньше, что и затрудняет работу стартера (не создается должный крутящий момент).
  • Если в батарею требуется долить воду (дистиллированную), то специалисты рекомендуют делать это, не снимая АКБ с машины и при запущенном двигателе. Объясняется это следующими причинами.

Во-первых, значения плотностей электролита и воды отличаются, и такой способ доведения уровня в банках до нормы обеспечивает качественное перемешивание жидкостей.

Во-вторых, если долить воды и после этого не эксплуатировать машину, а уйти хотя бы на время, то она может элементарно замерзнуть, так как легче электролита и, следовательно, будет являться «поверхностным слоем» жидкости в каждой банке.

  • Ни в коем случае нельзя добиваться повышения значения плотности путем банального добавления в электролит кислоты!!! Объяснение простое – чем агрессивнее среда, тем меньше срок пригодности АКБ к использованию. Именно по этой причине некоторые автомобилисты не могут понять, почему уже через год после приобретения вроде бы новая батарея уже ни на что не годится. Вывод – только постановка на зарядку.
  • Многие автомобилисты в зимний период ставят машину «на прикол». Им не рекомендуется оставлять АКБ по месту установки. Целесообразнее ее снять, полностью зарядить и перенести в прохладное помещение (например, спустить в погреб), предварительно «укутав» во влагонепроницаемый материал. В каждом регионе «своя» зима (по продолжительности). Поэтому не реже раза в пару месяцев ее стоит проверять «на плотность» и при необходимости подзаряжать. Такая аккуратность в уходе вполне окупится более продолжительным сроком эксплуатации батареи.

И напоследок — не нужно стесняться спрашивать советов у людей опытных. В любом гаражном комплексе есть автолюбители, которые характеризуются продолжительной безаварийной эксплуатацией, аккуратностью в уходе за «железным конем». А если такой человек имеет и большой стаж вождения (а значит, и обслуживания), то его рекомендации (и по плотности тоже), лишними никак не будут.

Эксплуатация авто аккумулятора зимой — AKBEXPERT

Какая плотность электролита должна быть зимой, и как подготовить аккумулятор к зиме?

Ответ:

Плотность электролита у полностью заряженной аккумуляторной батареи, предназначенной для эксплуатации в условиях умеренного климата в любое время года должна быть 1,27-1,30 г/см3 при температуре +25°С. При более высокой температуре электролита значение плотности должно быть ниже, а при более низкой температуре электролита, наоборот, — выше. В странах с тропическим климатом эксплуатируют батареи с более низкой плотностью электролита (1,22-1,24 г/см3). В условиях крайнего Севера, наоборот, требуется более высокая плотность электролита (1,30-1,32 г/см3). Перед началом зимнего периода необходимо проверить, чтобы батарея находилась в заряженном состоянии. Это обеспечит предохранение от замерзания электролита и обеспечит надежный пуск двигателя при отрицательных температурах. Именно в зимний период существенное влияние на работу АКБ будут оказывать слабо натянутый ремень генератора и повышенная утечка электроэнергии.

Если при запуске двигателя в зимнее время аккумулятор разрядился в «ноль», какие действия нужно предпринять?

Ответ:

В данном случае необходимо зарядить аккумулятор от стационарного зарядного устройства током малой величины. Сделать это следует не позднее, чем через 2-3 дня после глубокого разряда батареи.

Почему замерзает электролит?

Ответ:

При разряде АКБ плотность электролита снижается, уменьшается удельное количество серной кислоты, содержащейся в растворе электролита и образуется вода. Чем глубже разряд батареи, тем выше отрицательная температура, при которой может замерзнуть электролит. Например, при плотности 1,11 г/см3 электролит замерзнет уже при -7 0С, а при плотности 1,27 г/см3 — только при -58 0С.

Если замерз электролит, можно ли восстановить работоспособность аккумулятора?

Ответ:

Зависит от степени замерзания: если батарея замерзла не на весь объем, а корпус не подвергся деформации, ее можно восстановить. Необходимо, чтобы лед полностью растаял при комнатной температуре, и только потом приступить к заряду АКБ. При этом не избежать повреждения электродов и снижения токовых характеристик батареи.

Если в мороз перед запуском двигателя включить на короткое время фары автомобиля, поможет ли это облегчить запуск?

Ответ:

Нет. При данной процедуре эффект разогрева электролита ничтожен и не влияет на увеличение мощности разряда. Напротив, батарея может потерять драгоценную емкость и после этого не сможет запустить двигатель.

Почему в зимнее время рекомендуют аккумуляторы с более высокими пусковыми токами?

Ответ:

Холодный пуск имеет следующие особенности:

  • Стартеру требуется больше времени для прокрутки двигателя.
  • Сопротивление холодного двигателя в зимнее время увеличивается в 2,5-3 раза
  • От АКБ требуется отдача большей мощности и энергии.
  • Чем ниже температура окружающего воздуха, тем выше вязкость электролита и внутреннее сопротивление батареи.
Для обеспечения надежного пуска двигателя необходимо выбирать ту АКБ, которая при одних и тех же габаритных размерах имеет максимально высокие токи холодной прокрутки.

Пуск двигателя в зимнее время зависит только от АКБ?

Ответ:

Нет. Помимо технических характеристик и степени заряженности батареи, пуск двигателя зависит от следующих факторов:

  1. состояния электропроводки и электрооборудования автомобиля;
  2. состояния свечей;
  3. состояния топливной системы и качества топлива;
  4. качества масла;
  5. опыта водителя.
  6. По какой причине замерз аккумулятор?

    Ответ:

    Если замерзла только одна ячейка, то это, скорее всего, внутренний дефект батареи, который привел к снижению плотности и замерзанию электролита.

    Если замерзла не одна ячейка в батарее, то здесь ответ один — батарея была разряжена. Причины могут быть разные, самая распространенная — частые запуски двигателя и короткие дистанции движения по городу. В результате батарея в холодную погоду просто не успевает заряжаться от генератора. Плотность электролита 1,21 г/см3 соответствует примерно 45%-ной степени заряженности батареи. По справочным данным электролит с такой плотностью замерзает при температуре около -30 0С.

    Часто бывает ситуация: утром с нескольких попыток не завелась машина, и человек едет на работу на общественном транспорте. А разряженная батарея с низкой плотностью электролита до вечера замерзает.

самый подробный обзор ?, какие должны быть в заряженном АКБ или при разрядке зимой и летом (таблицы с показателями и видео)

Плотность электролита в аккумуляторе автомобиля представляет собой соотношение химически активного вещества и дистилированной воды, залитых в банки АКБ в определенной пропорции. Данный параметр устанавливается в зависимости от условий использования транспортного средства и совокупности требований к автомобилю.

Какие должны быть плотность и уровень электролита

В регионах с умеренным климатом рабочий параметр плотности электролита должен составлять от 1,25 до 1,27 г/см3 ±0,01 г/см3.

Важно знать

Следует учитывать, что чем ниже плотность электролита в полностью заряженной батарее авто, тем дольше она прослужит.

Плотность кислоты с водой в банках автомобильного аккумулятора разная, и зависит от нескольких параметров:

  • заряженность батареи;
  • процентного содержания серы — чем больше концентрация раствора, тем более высокая плотность жидкости;
  • температуры раствора — чем больше это значение, тем ниже уровень плотности.

Оптимальный уровень электролита в аккумуляторе машины должен быть таким, чтобы в каждой банке раствор покрывал пластины с запасом 10-15 мм.

Таблица: плотность в зависимости от климатической зоны

Климатический район (среднемесячная температура воздуха в январе, °C)Время годаЗаливаемогоПолностью заряженная батареяБатарея разряжена
на 25%на 50%
Очень холодный (от -50 до -30)Зима1,28-1,291,301,261,22
Лето1,271,281,241,20
Холодный (от -30 до -15)Круглый год1,261,271,241,20
Умеренный (от -15 до -8)Круглый год1,241,271,241,20
Теплый влажный (от 0 до +4)Круглый год1,221,231,191,05
Жаркий сухой (от +4 до +15)Круглый год1,201,231,191,15

Плотность электролита в аккумуляторе зимой

В странах, где зимой температура воздуха опускается до -30 градусов данное значение должно быть на 0,01 г/см3 больше, а в областях с жарким климатом — на 0,01 г/см меньше. Если в зимнее время года температура воздуха опускается до -50 °C, то уровень плотности рекомендуется увеличивать до 1,29 г/см3. Если данный показатель будет меньше, это станет причиной снижения электродвижущей силы и возможного замерзания рабочего раствора.

Важно знать

Слишком высокий уровень плотности раствора электролита в банках аккумуляторной батареи повлияет на ее срок службы. Пониженный параметр становится причиной падения напряжения и трудному пуску силового агрегата.

Если плотность рабочего раствора в холодное время года снизится до 1,09 г/см3, это станет причиной замерзания аккумуляторной батареи уже при -7 градусах. Надо учитывать, что кратковременные поездки на транспортном средстве, составляющие менее 30 минут, не дают возможности рабочей жидкости полностью прогреться и эффективно заряжаться. Поэтому разряд электролита при низких температурах ежедневно растет, что серьезно влияет на уровень плотности.

Полезно знать

Для нового и исправного аккумулятора нормальная величина изменения плотности рабочей жидкости при полном заряде и разряжении составляет в диапазоне от 0,15 до 0,16 г/см3.

Таблица: температура замерзания электролита в зависимости от его плотности
Плотность электролита (г/см3)Степень заряженности (%)Температура замерзания, °C
1,110,0-7
1,126-8
1,1312,56-9
1,1419-11
1,1525-13
1,1631-14
1,1737,5-16
1,1844-18
1,1950-24
1,256-27
1,2162,5-32
1,2269-37
1,2375-42
1,2481-46
1,2587,5-50
1,2694-55
1,27100-60

Плотность электролита в аккумуляторе летом

Важно знать

Данный параметр для теплых и влажных климатических регионов должен составить не менее 1,22 г/см3 (эта величина является критической).

В конце весны и летом температура в моторном отсеке более высокая, что приводит к испарению воды из кислотного раствора и более активному протеканию электрохимических процессов в аккумуляторе. Это становится причиной повышенной токоотдачи.

В жаркое время года из-за высокой температуры особо остро стоит проблема обезвоживания для аккумулятора. Поскольку высокий уровень плотности негативно влияет на свинцовые пластины обслуживаемых и необслуживаемых батарей, рекомендуется, чтобы этот параметр имел отклонение на 0,02 г/см3 меньше номинального. В частности, если речь идет о южных регионах, где используется устройство. При снижении объема или количества рабочей жидкости и увеличения параметра плотности коррозийные процессы на электродных выходах могут увеличиться.

Причины изменения плотности

Список причин, которые приводят к изменению уровня плотности аккумулятора:

  1. Снижение уровня электролита в АКБ (приводит к повышению плотности).
  2. Уменьшение концентрации серной кислоты в аккумуляторе или так называемая сульфатация пластин. Сульфат свинца кристаллизуется, теряя способность участвовать в химических реакциях. В результате такого процесса аккумулятор уже не получится зарядить полностью даже при использовании внешнего зарядного устройства, поскольку не вся площадь пластин задействована в работе. Так как аккумулятор не заряжается до конца, то и плотность электролита не восстанавливается до своих исходных значений.
  3. Разряд батареи. Данная проблема особо актуальна для зимы и тех автомобилей, которые редко используются или где замена аккумулятора производилась давно.
  4. Неоднократная зарядка аккумулятора. Это приводит к закипанию раствора и его испарению, что снижает его количество и повышает концентрацию. В этом случае активных молекул для ионизации свинца и его солей становится меньше, соответственно снижается густота жидкости.
  5. Не осуществляется контроль за уровнем концентрации раствора в емкостях с электродами после каждого пополнения дистиллятом. С каждым новым разбавлением концентрата снижается доля электролита за счет испарения воды и небольшого количества электролитической жидкости.

Как самостоятельно проверить плотность электролита и степень разряженности батареи?

Прежде чем измерить плотность электролита нужно провести проверку и подготовку аккумулятора, затем произвести замер с помощью:

  1. Ареометра (денсиметра). Для этого на отключенном аккумуляторе откручиваются все банки, прибор погружается в жидкость, и делается забор небольшого количества электролита. Определение уровня плотности производится в соответствии с показаниями на шкале тестера.
  2. Тестера (мультиметра). Прибор переводится в режим вольтметра, производится мониторинг параметра напряжения и полученные данные сравниваются с нормированными.
  3. Самодельным устройством. Способ аналогичен проверке ареометром, однако в данному случае в качестве резервуара используют стеклянную пробирку, в которую помещают какой-нибудь грузик (пшено, кусок свинца). Затем нужно будет самостоятельно произвести градуировку ареометра.

Важно знать

Если батарея необслуживаемая и на ней нет индикатора для проверки уровня и плотности, то для измерения ареометром потребуется высверлить отверстия в банках, которые после выполнения задачи необходимо запаять.

Видео: проверка плотности электролита в автомобильной батарее

Канал «videostar» в своем видео подробно рассказал о том, сколько должно быть электролита в банках аккумулятора и как проверять его плотность.

Таблица: поправка к показаниям ареометра

Температура рабочего раствора при измерении величины плотности, °СПоправка к показаниям ареометра, полученным в ходе проверки, г/см3
от -55 до -41-0,05
от -40 до -26-0,04
от -25 до -11-0,03
от -10 до +4-0,02
от +5 до +19-0,01
от +20 до +300,00
от +31 до +45+0,01
от +46 до +60+0,02

Таблица определения заряженности аккумулятора по плотности электролита

Температура воздухаСтепень заряженности аккумуляторной батареи
На 100% заряженаЗаряжена на 70%Полностью разряжена
+25 градусов и выше1,21 — 1,231,17 — 1,191,05 — 1,07
менее +25 градусов1,27 — 1,291,23 — 1,251,11 — 1,13

Таблица: плотность электролита и степень заряженности АКБ при проверке мультиметром

Степень заряженности аккумулятораПлотность рабочего раствора электролита, г/см3Напряжение аккумуляторной батареи, В
100%1,2812,7
80%1,24512,5
60%1,2112,3
40%1,17512,1
20%1,1411,9
0%1,111,7

Как скорректировать плотность электролита в аккумуляторе?

Полезно знать

Стабилизация плотности электролита производится с помощью добавления раствора рабочей жидкости и зарядки. Однако, чтобы поднять данный параметр, недостаточно просто долить дистиллированную воду в банки и тем самым увеличить или уменьшить плотность.

Таблица: корректировка плотности электролита

Плотность электролита в батарее, г/см3Уровень плотности по стандарту, г/см3
1,241,251,26
Отсос рабочей жидкостиДобавление раствора 1,40 г/см3Добавление дистиллятаОтсос рабочей жидкостиДобавление раствора 1,40 г/см3Добавление дистиллятаОтсос рабочей жидкостиДобавление раствора 1,40 г/см3Добавление дистиллята
1,246062120125
1,2544456570
1,2685883940
1,2712212678804043
1,281561621171208086
1,29190200158162123127
1,30
Плотность электролита в батарее, г/см3Уровень плотности по стандарту, г/см3
Отсос рабочей жидкостиДобавление раствора 1,40 г/см3Добавление дистиллятаОтсос рабочей жидкостиДобавление раствора 1,40 г/см3Добавление дистиллятаОтсос рабочей жидкостиДобавление раствора 1,40 г/см3Добавление дистиллята
1,24173175252256
1,25118120215220
1,266566177180290294
1,27122126246250
1,2840436365198202
1,297578143146
1,3010911336387981

Видео: руководство по увеличению параметра плотности в АКБ

Канал «Denis МЕХАНИК» в своем видео подробно рассказал о том, как повысить плотность электролита в аккумуляторной батарее автомобиля.

Температурный эффект и термическое воздействие в литий-ионных аккумуляторах: обзор

Abstract

Литий-ионные аккумуляторы с высокой плотностью энергии (до 705 Вт / л) и удельной мощностью (до 10 000 Вт / л) демонстрируют высокую емкость и отличные рабочие характеристики. Литий-ионные батареи, являющиеся перезаряжаемыми батареями, служат источниками питания в различных прикладных системах. Температура, как критический фактор, существенно влияет на характеристики литий-ионных батарей, а также ограничивает применение литий-ионных батарей.Более того, разные температурные условия приводят к разным побочным эффектам. Точное измерение температуры внутри литий-ионных батарей и понимание температурных эффектов важны для правильного обращения с батареями. В этом обзоре мы обсуждаем влияние температуры на литий-ионные батареи как при низких, так и при высоких температурах. В обзоре также обсуждаются современные подходы к мониторингу внутренней температуры литий-ионных аккумуляторов с помощью как контактных, так и бесконтактных процессов.

Графический реферат

Литий-ионные батареи (LIB) с высокой плотностью энергии и удельной мощностью демонстрируют хорошие характеристики во многих различных областях. Однако производительность LIB все еще ограничивается влиянием температуры. Приемлемый температурный диапазон для LIB обычно составляет от -20 ° C до 60 ° C. Как низкие, так и высокие температуры, которые находятся за пределами этого региона, приведут к ухудшению рабочих характеристик и необратимым повреждениям, таким как покрытие литием и тепловой разгон.Следовательно, понимание влияния температуры и точное измерение температуры внутри литий-ионных батарей важно для правильного обращения с ними. Современные достижения в мониторинге температуры внутри LIB можно разделить на контактное и бесконтактное измерение. В этом обзоре дается обзор последних достижений как в понимании температурных эффектов, так и в мониторинге температуры, а также обсуждаются проблемы и возможные будущие направления в достижении оптимальной производительности батарей.

  1. Загрузить: Загрузить изображение в высоком разрешении (200KB)
  2. Загрузить: Загрузить полноразмерное изображение

Ключевые слова

Литий-ионный аккумулятор

Влияние температуры

Внутренняя температура

Управление батареями

Управление температурой

Рекомендуемые статьиЦитирующие статьи (0)

© 2018 Китайское общество исследования материалов. Опубликовано Elsevier BV

Рекомендуемые статьи

Цитирующие статьи

Электролиты, изготовленные из сжиженного газа, позволяют батареям работать при сверхнизких температурах — ScienceDaily

Инженеры Калифорнийского университета в Сан-Диего разработали прорыв в химии электролитов, который позволяет литиевые батареи могут работать при температуре до -60 градусов Цельсия с отличной производительностью — для сравнения, современные литий-ионные батареи перестают работать при -20 градусов Цельсия.Новые электролиты также позволяют электрохимическим конденсаторам работать до -80 градусов по Цельсию — их текущий нижний предел температуры составляет -40 градусов по Цельсию. Несмотря на то, что эта технология обеспечивает работу при экстремально низких температурах, высокая производительность при комнатной температуре сохраняется. Новый химический состав электролита может также увеличить плотность энергии и повысить безопасность литиевых батарей и электрохимических конденсаторов.

Работа будет опубликована онлайн в журнале Science в четверг, 15 июня 2017 г.

Эта технология может позволить электромобилям в холодном климате путешествовать дальше на одной зарядке, уменьшая беспокойство по поводу дальности полета зимой в таких местах, как Бостон. Эта технология также может быть использована для управления кораблями в условиях сильного холода, таких как беспилотные летательные аппараты с Wi-Fi в высоких слоях атмосферы и метеорологические шары, спутники, межпланетные вездеходы и другие аэрокосмические приложения.

Батареи и электрохимические конденсаторы, разработанные исследователями, особенно устойчивы к холоду, поскольку их электролиты сделаны из сжиженных газовых растворителей — газов, сжижаемых при умеренном давлении, — которые гораздо более устойчивы к замерзанию, чем стандартные жидкие электролиты.Новый электролит литиевой батареи был изготовлен с использованием сжиженного газообразного фторметана. Электролит электрохимического конденсатора был изготовлен с использованием сжиженного газа дифторметана.

«Глубокая декарбонизация связана с прорывом в технологиях накопления энергии. Для производства электромобилей с улучшенным соотношением производительности и стоимости необходимы более совершенные аккумуляторы. А как только температурный диапазон для аккумуляторов, ультраконденсаторов и их гибридов будет расширен, эти технологии электрохимического накопления энергии могут быть приняты на многих других развивающихся рынках.Эта работа показывает многообещающий путь, и я думаю, что успех этого нетрадиционного подхода может вдохновить большее количество ученых и исследователей на изучение неизведанных территорий в этой области исследований », — сказала Ширли Мэн, профессор наноинженерии Инженерной школы Калифорнийского университета в Сан-Диего. старший автор исследования. Мэн возглавляет лабораторию по хранению и преобразованию энергии и является директором Центра устойчивой энергетики и энергетики в Калифорнийском университете в Сан-Диего.

«Принято считать, что электролит является основным узким местом для повышения производительности устройств накопления энергии следующего поколения», — сказал Сайрус Рустомджи, научный сотрудник группы Мэн и первый автор исследования.«Электролиты на жидкой основе были тщательно исследованы, и многие сейчас обращают внимание на твердотельные электролиты. Мы выбрали противоположный, хотя и рискованный подход, и исследовали использование газовых электролитов».

Исследователи Калифорнийского университета в Сан-Диего первыми исследовали газовые электролиты для электрохимических накопителей энергии.

В будущем эту технологию можно будет использовать для питания космических кораблей для межпланетных исследований. «Марсоходы имеют низкотемпературные характеристики, которым не может соответствовать большинство существующих батарей.«Наша новая аккумуляторная технология может соответствовать этим спецификациям без добавления дорогих и тяжелых нагревательных элементов», — сказал Рустомджи.

При реализации этого проекта команда Калифорнийского университета в Сан-Диего осознала, что газы обладают свойством, благодаря которому они особенно хорошо работают при температурах, при которых обычные жидкие электролиты замерзают — с низкой вязкостью. «Низкая вязкость приводит к высокой подвижности ионов, что означает высокую проводимость батареи или конденсатора даже при сильном морозе», — сказал Рустомджи.

Группа исследовала ряд потенциальных газов-кандидатов, но сосредоточила внимание на двух новых электролитах: один на основе сжиженного фторметана (для литиевых батарей), а другой на основе сжиженного дифторметана (для электрохимических конденсаторов).

Помимо исключительных характеристик при низких температурах, эти электролиты обладают уникальным преимуществом в плане безопасности. Они смягчают проблему, называемую тепловым разгоном, когда аккумулятор становится достаточно горячим, чтобы вызвать опасную цепочку химических реакций, которые, в свою очередь, еще больше нагревают аккумулятор. С этими новыми электролитами аккумулятор не сможет самостоятельно нагреваться при температурах, намного превышающих комнатную. Это связано с тем, что при высоких температурах эти электролиты теряют способность растворять соли, поэтому аккумулятор теряет проводимость и перестает работать.

«Это естественный механизм отключения, который предотвращает перегрев аккумулятора», — сказал Рустомджи. Он отметил, что еще одна приятная особенность заключается в том, что этот механизм обратимый. «Как только аккумулятор становится слишком горячим, он отключается. Но когда он снова остывает, он снова начинает работать. Это необычно для обычных аккумуляторов».

Кроме того, Рустомджи сказал, что в более тяжелых условиях, таких как автомобильная авария, когда аккумулятор раздавлен и закорочен, газ электролита может выходить из элемента и, из-за недостаточной проводимости электролита, предотвращать тепловую реакцию неуправляемого нагрева, которая в противном случае Этого трудно избежать с обычными жидкими электролитами.

Совместимый электролит для анодов металлического лития

Мэн, Рустомджи и его коллеги сделали большой шаг вперед к осуществлению еще одной долгожданной мечты исследователей аккумуляторов: создания электролита, который хорошо работает с анодом из металлического лития. Литий считается лучшим анодным материалом, потому что он может хранить больше заряда, чем существующие аноды, и легче. Проблема в том, что металлический литий вступает в реакцию с обычными жидкими электролитами.Эти химические реакции приводят к тому, что металлический литий имеет низкую кулоновскую эффективность, что означает, что он может пройти только ограниченное количество циклов зарядки и разрядки, прежде чем батарея перестанет работать.

Другая проблема, связанная с использованием обычных жидких электролитов с анодом из металлического лития, заключается в том, что при повторяющихся циклах зарядки и разрядки литий может накапливаться в определенных местах на электроде. Это вызывает рост игольчатых структур, называемых дендритами, которые могут проткнуть часть батареи, вызывая ее короткое замыкание.

Предыдущие подходы к решению этих проблем включают: использование электролитов с низкой вязкостью; приложение высокого механического давления на электрод; и использование так называемых добавок фторированного электролита для формирования идеального химического состава на поверхности электрода из металлического лития. Новые электролиты на сжиженном газе, разработанные командой Калифорнийского университета в Сан-Диего, объединяют все три этих ключевых аспекта в единую электролитную систему. Последующая межфазная поверхность, образующаяся на электроде, представляет собой очень однородную поверхность без дендритов, обеспечивающую высокую кулоновскую эффективность, превышающую 97 процентов, и улучшенную проводимость батареи.По словам исследователей, это также первый случай, когда электролит обладает высокими характеристиками как для металлического лития, так и для классических катодных материалов, что может позволить значительно увеличить общую плотность энергии батарей.

Следующие шаги

Двигаясь вперед, исследователи стремятся улучшить удельную энергию и возможность циклирования как батарей, так и электрохимических конденсаторов, а также работать при еще более низких температурах — до -100 градусов Цельсия. Эта работа может привести к разработке новой технологии для питания космических кораблей, отправляемых для исследования внешних планет, таких как Юпитер и Сатурн.

Рустомджи возглавляет команду из Калифорнийского университета в Сан-Диего, работающую над коммерциализацией этой технологии через стартап под названием South 8 Technologies.

Новый поворот в гонке по замене графитового анода на более качественные аккумуляторные батареи — ScienceDaily

Усовершенствования класса аккумуляторных электролитов, впервые представленного в 2017 году — сжиженные газовые электролиты — могут проложить путь к высокоэффективной и долговечной искал аванс для аккумуляторов: замена графитового анода на литий-металлический анод.

Исследование, опубликованное 1 июля 2019 года в журнале Joule , основано на инновациях, впервые опубликованных в Science в 2017 году той же исследовательской группой из Калифорнийского университета в Сан-Диего и филиалом университета South 8 Technologies.

Поиск рентабельных способов замены графитового анода в коммерческих литий-ионных батареях представляет большой интерес, потому что это может привести к созданию более легких батарей, способных хранить больше заряда, за счет 50-процентного увеличения плотности энергии на уровне элементов.Повышенная плотность энергии будет происходить из-за комбинации факторов, включая высокую удельную емкость литий-металлического анода, низкий электрохимический потенциал и легкий вес (низкая плотность).

В результате переход на литий-металлические аноды значительно расширит диапазон электромобилей и снизит стоимость аккумуляторов, используемых для хранения в сети, объяснила профессор наноинженерии Калифорнийского университета в Сан-Диего Ширли Мэн, автор-корреспондент новой статьи в Joule .

Однако создание коммутатора сопряжено с техническими проблемами.Основная проблема заключается в том, что аноды из металлического лития несовместимы с обычными электролитами. Когда эти аноды сочетаются с обычными электролитами, возникают две давние проблемы: низкая эффективность циклирования и рост дендритов.

Таким образом, подход Мэн и его коллег заключался в переходе на более совместимый электролит, называемый электролитами на сжиженном газе.

Электролиты сжиженного газа в действии

Одним из привлекательных аспектов этих электролитов на сжиженном газе является то, что они работают как при комнатной температуре, так и при очень низких температурах, вплоть до минус 60 ° C.Эти электролиты изготовлены из растворителей сжиженного газа — газов, сжижаемых при умеренном давлении, — которые гораздо более устойчивы к замерзанию, чем стандартные жидкие электролиты.

В статье 2019 года под номером Джоуль исследователи сообщают о том, как с помощью экспериментальных и вычислительных исследований они улучшили свое понимание некоторых недостатков химии сжиженных газовых электролитов. Обладая этими знаниями, они смогли адаптировать свои электролиты на сжиженном газе для улучшения основных показателей для литий-металлических анодов как при комнатной температуре, так и при минус 60 C.

При испытаниях литий-металлических полуэлементов команда сообщает, что эффективность циклирования анода (кулоновская эффективность) составляла 99,6 процента для 500 циклов зарядки при комнатной температуре. Это выше 97,5-процентной эффективности циклирования, указанной в статье Science от 2017 года, и 85-процентной эффективности циклического режима для анодов из металлического лития с обычным (жидким) электролитом.

При минус 60 ° C команда продемонстрировала эффективность циклирования литий-металлического анода 98,4%. Напротив, большинство обычных электролитов не работают при температуре ниже минус 20 ° C.

Инструменты моделирования и определения характеристик, разработанные командой Калифорнийского университета в Сан-Диего, многие из которых были разработаны в Лаборатории хранения и преобразования энергии под руководством Ширли Мэн, позволяют исследователям объяснить, почему металлические литиевые аноды лучше работают с электролитами из сжиженного газа. По крайней мере, часть ответа связана с тем, как частицы лития осаждаются на поверхности металлического анода.

Исследователи сообщают о плавном и компактном осаждении частиц лития на литий-металлических анодах при использовании сжиженных газовых электролитов.Напротив, при использовании обычных электролитов на аноде из металлического лития образуются игольчатые дендриты. Эти дендриты могут снизить эффективность, вызвать короткое замыкание и привести к серьезным угрозам безопасности.

Одним из показателей того, насколько плотно частицы лития осаждаются на поверхности анода, является пористость. Чем меньше пористость, тем лучше. Исследовательская группа сообщает в Joule , что пористость осаждения частиц лития на металлическом аноде составляет 0,90% при комнатной температуре с использованием сжиженных газовых электролитов при комнатной температуре.Пористость в присутствии обычных электролитов возрастает до 16,8%.

Гонка за правильным электролитом

В настоящее время ведется активная работа по поиску или совершенствованию электролитов, совместимых с металлическим литиевым анодом и конкурентоспособных с точки зрения стоимости, безопасности и температурного диапазона. Исследовательские группы в основном занимались высококонцентрированными растворителями (жидкими) или твердотельными электролитами, но в настоящее время серебряной пули нет.

«Как часть сообщества исследователей аккумуляторов, я уверен, что мы собираемся разработать электролиты, которые нам нужны для литий-металлических анодов.Я надеюсь, что это исследование вдохновит больше исследовательских групп серьезно взглянуть на электролиты сжиженного газа », — сказал Менг.

% PDF-1.4 % 66 0 объект > эндобдж xref 66 78 0000000016 00000 н. 0000002285 00000 н. 0000002366 00000 н. 0000002991 00000 н. 0000003367 00000 н. 0000003571 00000 н. 0000019129 00000 п. 0000019487 00000 п. 0000019682 00000 п. 0000026841 00000 п. 0000027215 00000 н. 0000027421 00000 н. 0000038638 00000 п. 0000038857 00000 п. 0000038998 00000 п. 0000039217 00000 п. 0000039350 00000 п. 0000039565 00000 п. 0000039945 00000 н. 0000040027 00000 н. 0000040163 00000 п. 0000040300 00000 п. 0000040437 00000 п. 0000040893 00000 п. 0000041100 00000 п. 0000041433 00000 п. 0000041824 00000 п. 0000042202 00000 п. 0000042425 00000 п. 0000042666 00000 п. 0000043020 00000 н. 0000043285 00000 п. 0000043335 00000 п. 0000043409 00000 п. 0000052335 00000 п. 0000056328 00000 п. 0000059916 00000 н. 0000063617 00000 п. 0000068501 00000 п. 0000072717 00000 п. 0000073086 00000 п. 0000073474 00000 п. 0000077219 00000 п. 0000084194 00000 п. 0000086118 00000 п. 0000088465 00000 п. 0000096214 00000 п. 0000096415 00000 п. 0000096651 00000 п. 0000097445 00000 п. 0000097555 00000 п. 0000098030 00000 п. 0000098090 00000 н. 0000098163 00000 п. 0000098266 00000 п. 0000098990 00000 н. 0000099230 00000 н. 0000099420 00000 н. 0000099665 00000 п. 0000102665 00000 н. 0000102875 00000 п. 0000103103 00000 п. 0000105979 00000 п. 0000106184 00000 п. 0000106371 00000 п. 0000108436 00000 н. 0000108651 00000 п. 0000108865 00000 н. 0000111775 00000 н. 0000111980 00000 н. 0000112165 00000 н. 0000114032 00000 н. 0000114247 00000 н. 0000127342 00000 н. 0000127381 00000 н. 0000138402 00000 н. 0000138441 00000 н. 0000001856 00000 н. трейлер ] / Назад 487010 >> startxref 0 %% EOF 143 0 объект > поток hb«e« + ̀

Зарядка свинцово-кислотных аккумуляторов в холодную погоду

В этом блоге рассказывается о зарядке свинцово-кислотных аккумуляторов при низких температурах.В следующем блоге будут рассмотрены литиевые батареи.

Зарядка свинцово-кислотных аккумуляторов в холодную (и даже жаркую) погоду требует особого внимания, в первую очередь из-за того, что требуется более высокое напряжение заряда при низких температурах и более низкое напряжение при высоких температурах.

Следовательно, зарядка должна иметь «температурную компенсацию» для улучшения ухода за батареей, и это требуется, когда ожидается, что температура батареи будет ниже 10 ° C / 50 ° F или выше 30 ° C / 85 ° F. Центральная точка температурной компенсации — 25 ° C / 77 ° F.

Холодная погода также снижает емкость аккумулятора. Это еще один фактор, который необходимо учитывать, наряду с нагрузкой и скоростью заряда по сравнению с емкостью аккумулятора (Ач). Оба эти фактора влияют на правильный и последующий размер батареи для вашего конкретного приложения.

Емкость аккумулятора в Ач обычно указывается как 20-часовая емкость при 25 ° C. Скорость разряда или нагрузка можно записать как 0,05C, где, например, C — коэффициент нагрузки 20-часовой номинальной емкости аккумулятора при 25 ° C.

Рабочие примеры: Если батарея рассчитана на 100 Ач 20 часов, то нагрузка 0,05 будет 100 x 0,05 = 5 ампер или 100/20, что также является скоростью разряда 5 ампер за этот 20-часовой период. Таким образом, нагрузка 10 А на батарею 100 Ач с номиналом 20 часов будет иметь скорость разряда 0,1 С, скорость разряда 0,2 С на 200 Ач будет 40 А и так далее. Рейтинг C также относится к скорости заряда, а также скорости разряда.

При покупке батареи вы можете увидеть, что ее Ач составляет 20 (стандартный тариф), 10 и 5 часов, чтобы вы могли увидеть, как нагрузка «сжимает» Ач.Некоторые даже называют 25-часовой тариф, что часто вводит людей в заблуждение, заставляя думать, что они получают батарею большей емкости, чем стандартная.

Напомним, что емкость снижается при низких температурах, как и при более высоких значениях C разряда, превышающих 0,05 ° C за 20 часов. Это уменьшение емкости из-за более высокой скорости разряда связано с законом Пойкерта.

График, показывающий влияние температуры и нагрузки на емкость аккумулятора:

Также, что касается температуры, будьте осторожны, чтобы не дать вашей свинцово-кислотной батарее замерзнуть.Температура замерзания зависит от степени его заряда и удельного веса электролита. Не вдаваясь в сложности, достаточно сказать, что батарею следует поддерживать в полностью заряженном состоянии, так как при низком заряде электролит больше похож на воду и замерзает раньше, чем в полностью заряженном состоянии.

Отличия свинцово-кислотных аккумуляторов

Свинцово-кислотные батареи

бывают разных типов:

  • Влажный свинец с возможностью доливки деминерализованной воды в каждую из шести ячеек.
  • Так называемая «герметичная» свинцовая аккумуляторная батарея, не требующая обслуживания. Их нельзя пополнить, и они часто имеют зеленый индикатор работы или красный индикатор неисправности ячейки.
  • AGM (Absorbent Glass Mat) свинцово-кислотный клапан с регулируемым клапаном (VRLA), где электролит абсорбируется стеклянным матом.
  • Аналогичен AGM, но электролит находится в геле.

Однако все вышеперечисленное основано на свинце (в отличие от лития). Помимо литиевых батарей Victron Energy продает моноблоки VRLA AGM и Gel (6 ячеек по 2 В последовательно) из-за их превосходства над моноблоками со свинцовым покрытием.Ассортимент Victron составляет:

  • Гель (Срок службы дольше, чем у AGM).
  • AGM (лучше, чем гель для более высоких нагрузок и хорошо подходит для использования с инверторами).
  • AGM Telecom. Предназначен в первую очередь для телекоммуникационных приложений, но также отлично подходит для использования на морских судах и транспортных средствах.
  • AGM Super Cycle (лучше всего, если ожидается частая разрядка до 60-80% DOD).
  • Свинцово-угольный аккумулятор
  • (улучшенная характеристика частичного заряда, больше циклов и более высокая эффективность).

Кроме того, Victron также продает специальные свинцово-кислотные батареи.

  • Отдельные аккумуляторные элементы OPzV 2V. Гель большой емкости с длительным сроком службы.
  • OPzS 2V отдельные аккумуляторные элементы. Залитые трубчатые пластинчатые батареи большой емкости с длительным сроком службы для специализированных солнечных батарей.

Температурная компенсация и зарядка

Теперь, когда мы знаем о типах батарей, емкости и нагрузках, с которыми мы имеем дело, нам нужно сложить некоторые числа для температурной компенсации и зарядки.

Рекомендуемая температурная компенсация для батарей Victron VRLA составляет -4 мВ / элемент (-24 мВ / ° C для батареи 12 В).

Помимо учета зарядки в холодную погоду, предпочтительно, чтобы зарядный ток не превышал 0,2 ° C (20 А для батареи 100 Ач), так как температура батареи будет увеличиваться более чем на 10 ° C, если ток заряда превышает 0,2 ° C. Поэтому температурная компенсация также требуется, если ток заряда превышает 0,2 ° C.

Как добиться зарядки с компенсацией температуры и напряжения

Для этого существует ряд продуктов Victron.

Благодаря нашему ассортименту инверторов / зарядных устройств и с тех пор, как некоторое время назад была выпущена прошивка VE.Bus версии 415, это обеспечило:

— Температурная компенсация продолжается до -20C

— Это для всех уставок напряжения, за исключением плавающего режима, хранения и начала массовой зарядки

— Как только температура опускается ниже -30 ° C, механизм компенсации отключается (применяются нормальные напряжения заряда) и отображается предупреждение.

Для систем, в которых не используется инвертор / зарядное устройство — мы можем использовать Smart Battery Sense, чтобы гарантировать, что источники зарядки обеспечивают оптимальное напряжение и зарядку с температурной компенсацией для ваших аккумуляторов, путем беспроводной передачи точных значений напряжения и температуры аккумулятора на контроллер заряда солнечной батареи или Умное зарядное устройство.

Эта информация затем используется для установки идеальных параметров зарядки, что приводит к более полной и быстрой зарядке, улучшая состояние аккумулятора и, следовательно, продлевая срок его службы.

Приложение Victron Toolkit позволяет рассчитать сечения кабелей и падение напряжения. Вот пример, где длина кабеля определяется как положительный и отрицательный зарядные кабели аккумулятора и обратно. Это дает вам представление о том, что Smart Battery Sense автоматически учитывает, чтобы обеспечить подачу правильного зарядного напряжения в батарею, обеспечивая компенсацию и корректировку зарядного напряжения из-за любых потерь в кабеле.

Контроллеры заряда SmartSolar MPPT серии

Victron работают с функцией Smart Battery Sense. Фактически, я только что установил один из них в свой автодом вместе с необходимым Smart Battery Sense, потому что температура аккумуляторной батареи для досуга по сравнению с расположением контроллера может отличаться до десяти градусов. Однозначно способ обеспечить точную температурную компенсацию.

Другие продукты также могут быть подключены с помощью того, что мы называем «VE.Поддержка Smart Networking ». См. Страницу VE.Smart Networking.

Заключение

Я знаю, что с указанными выше решениями я буду более счастлив, когда мои батареи будут заряжаться именно так, как надо, благодаря оптимальной компенсации температуры и напряжения.

Почему бы не убедиться, что вы делаете то же самое…

Джон Рашворт

Энергии | Бесплатный полнотекстовый | Низкотемпературные характеристики алюминиево-воздушных аккумуляторов

3.2. Электрохимическая характеристика
На рис. 4 показано поведение разряда алюминиево-воздушной батареи с использованием 25 мас.% Раствора KOH электролита при постоянной плотности тока 0.5 мА см −2 (а) и 1,0 мА см −2 (б). Результат показывает, что алюминиево-воздушная батарея при 0 ° C демонстрирует напряжение холостого хода 1,41 В, что выше, чем при других температурах, тогда как самое низкое напряжение холостого хода и платформы наблюдается при -15 ° C. На катодную реакцию будет влиять коэффициент диффузии кислорода. Согласно уравнению типа Аррениуса [37] коэффициент диффузии газа уменьшается с температурой. Тем не менее, правильный LT будет препятствовать выделению водорода из алюминиевого анода.Вдобавок время разряда алюминиево-воздушной батареи при −15 ° C неожиданно достигает 25 часов. Время разряда связано с использованием алюминиевой фольги. Генерация водорода практически не наблюдалась при -15 ° C, что указывает на то, что LT улучшает стабильность алюминиево-воздушной батареи и подавляет паразитную реакцию. При плотности тока разряда 0,5 мА · см −2 (рис. 4a) емкость алюмо-воздушной батареи достигает 116 мАч / г при 25 ° C, что составляет всего 4,03% от теоретической емкости алюминия (2980 мА · ч / г). [38]), а гравиметрическая плотность энергии составляет 142 Вт · ч / г.При температуре –15 ° C алюминиево-воздушная батарея показала гораздо более высокую емкость — 2343 мАч / г при той же плотности тока, что составляет 78,68% от теоретического значения. Гравиметрическая плотность энергии составляет 2480 Вт · ч · г −1 . По сравнению с плотностью тока 0,5 мА см −2 , емкость увеличивается в 1,12, 1,84 и 2,175 раза при −15 ° C, 0 ° C и 15 ° C, соответственно, при 1,0 мА см −2 (Рисунок 4b). Электропроводность электролита важна для разрядных характеристик. LT приводит к снижению активности OH , что также улучшает реакции восстановления кислорода.Чрезвычайная емкость в основном обусловлена ​​влиянием LT на анодную реакцию. Разрядные характеристики также проверены с использованием раствора электролита KOH с более высокой концентрацией (31 мас.%) С постоянной плотностью тока 0,5 и 1,0 мА · см −2 . При увеличении концентрации электролита в алюминиево-воздушной батарее достигается высокое напряжение разряда, но низкая емкость, как показано на рисунке 5. Когда концентрация электролита высока, скорость окисления алюминия увеличивается. Следовательно, батареи демонстрируют высокое напряжение разряда, короткое время разряда и малую емкость.Потенциодинамическую поляризацию при разных температурах измеряли с помощью трехэлектродной системы. На Рисунке 6 и в Таблице 1 соответственно представлены кривые Тафеля и соответствующие параметры коррозии алюминиевых анодов в растворах электролитов с концентрацией 25 мас.% КОН (рис. 6а) и 31 мас.% КОН (рис. 6b). Значения потенциала коррозии (Ecorr) и плотности тока коррозии (Icorr) рассчитываются из графиков Тафеля. Эффективность ингибирования коррозии рассчитывается по следующей формуле, которая используется в ссылке [39,40,41].

η% = Icorr − Icorr (дюйм) Icorr × 100,

где Icorr и Icorr (inh) — плотности тока коррозии при 15 ° C и других температурах соответственно. Основываясь на результатах графика Тафеля, плотность тока коррозии алюминиево-воздушных батарей при 15 ° C явно намного больше, чем при 0 или -15 ° C, и потенциал коррозии смещается, что означает, что они менее устойчивы к коррозии и обладают самая большая скорость самокоррозии, чем у других. Как показано в таблице 1, эффективность ингибирования очень высока при LT.Наибольшая эффективность ингибирования достигается при -15 ° C. Этот результат дополнительно подтверждает поведение разряда на рисунках 4 и 5. LT может значительно предотвратить коррозию алюминиевых анодов в растворе электролита KOH. Для дальнейшей оценки воздействия температуры окружающей среды на алюминиево-воздушные батареи их кривые «ток – напряжение / ток – мощность» при 25% масс. И 31% масс. КОН показаны на рис. 7a, b, соответственно. Напряжения находились в диапазоне от 1550 до 350 мВ с приложенной плотностью тока разряда в диапазоне 0.5–170 мА см −2 . С увеличением плотности тока соответственно уменьшалось напряжение разряда. Батареи при 0 ° C показали более высокую удельную мощность, чем у других. Алюминиево-воздушные батареи с 25 мас.% Электролита КОН достигли пикового значения 101,14 ± 2,8 мВт · см −2 (0 ° C) при 130 мА · см −2 , что выше, чем у 92,17 ± 2,6 мВт · см -2 (15 ° C) и 80,21 ± 2,8 мВт / см -2 (-15 ° C), как показано на рисунке 7a. Для случаев высоких концентраций раствора электролита (31 мас.%) Напряжения разряда и плотности мощности увеличиваются, как показано на рисунке 7b.Максимальные плотности мощности достигают 104 ± 2,9 мВт · см −2 (0 ° C) при 130 мА · см −2 , что более 95,55 ± 2,7 мВт · см −2 (15 ° C) и 84,37 ± 2,6 мВт см −2 (−15 ° C). Эти данные дают довольно неожиданные результаты, тем самым предполагая, что правильный LT улучшает удельную мощность алюминиево-воздушной батареи. Хотя среда LT снижает электропроводность раствора электролита, LT подавляет реакцию выделения водорода и в определенной степени способствует реакциям восстановления кислорода.

Последние достижения и перспективы в области тонких электролитов для твердотельных литиевых батарей с высокой плотностью энергии

Твердотельные литиевые батареи (SSLB) являются многообещающими устройствами хранения энергии следующего поколения из-за их потенциала высокой плотности энергии и повышенной безопасности. Свойства и физические параметры твердотельного электролита (SSE), как критического компонента батареи, оказывают значительное влияние на электрохимические характеристики и плотность энергии.В последние годы толстые SSE широко использовались в SSLB, но имеют несколько недостатков с точки зрения повышенного внутреннего сопротивления, дополнительного содержания неактивного материала, низкой практической плотности энергии и более высоких затрат на производство батарей. Уменьшение толщины SSE и разработка высокопроизводительных тонких SSLB на основе SSE необходимы для коммерциализации SSLB. В этом обзоре мы подробно описываем методы изготовления тонких SSE, их рациональную конструкцию, а также производственные процессы и приложения в различных системах SSLB.Кроме того, представлены передовые методы определения характеристик для понимания кинетики переноса Li + и структурной эволюции SSE на границе раздела. Кроме того, оцениваются гравиметрические / объемные плотности энергии для различных клеток-пакетов SSLB с SSE толщиной менее 100 мкм. Наконец, другие параметры конструкции ячейки настроены для достижения гравиметрической / объемной плотности энергии более 300 Вт · ч кг -1 /500 Вт · ч L -1 , и предполагаются будущие направления тонких SSE в SSLB. .

У вас есть доступ к этой статье

Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуй еще раз? .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *