Как работает ветрогенератор – Принцип действия и устройство ветрогенератора (общие понятия)

Содержание

Принцип действия и устройство ветрогенератора (общие понятия)

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Принципиальная схема ветрогенератора

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Система торможения вращения лопастей

Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.

Конструкция ветрогенератора и узлов

При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.

Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер

Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:

  • установка экологически чистая;
  • отсутствует потребность её заправки топливом;
  • не накапливаются какие-либо отходы;
  • устройство работает очень тихо;
  • имеет большой срок эксплуатации.

Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.

Увеличение мощности установки

Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.

Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.

Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.

Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.

Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.

Схема увеличения мощности и емкости ветрогенератора

Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно,

скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.

tcip.ru

описание, конструкция, принцип работы и изготовление своими руками

Подключение к магистральной сети электроснабжения до сих пор доступно не всем. Есть немалое число населенных пунктов, до которых линии электропередач не дошли. Да и подключенные поселки и деревни, вследствие общей изношенности линий, испытывают частые перебои с электроснабжением. Кроме того, дачные поселки, выстроенные недавно, зачастую не имеют возможности подключиться к линии, расположенной в солидном отдалении.

Решение вопроса с электроснабжением традиционно возлагается на бензиновые или дизельные электростанции, нуждающиеся в снабжении топливом, капризные и требующие постоянного наблюдения устройства. При этом, есть альтернативные источники, не нуждающиеся в топливе. Одним из них является ветрогенератор.

Что из себя представляет ветрогенератор?

Ветрогенератор — это устройство, использующее энергию ветра для выработки электрического тока. Воздушные потоки, свободно перемещающиеся в атмосфере, имеют гигантскую энергию, причем, совершенно бесплатную. Ветроэнергетика — это попытка извлечь ее и обратить на пользу.

Ветрогенератор представляет собой набор устройств, принимающих, обрабатывающих и подготавливающих для использования энергию. Потоки ветра взаимодействуют с ротором ветряка, заставляя его вращаться. Ротор посредством повышающей передачи (или напрямую) соединяется с генератором, который заряжает аккумуляторные батареи. Заряд через инвертор перерабатывается в стандартный вид (220 В, 50 Гц) и подается на приборы потребления.

На первый взгляд, комплекс устроен довольно сложно. Существуют и более простые конструкции, например, ветряки, питающие насосы. Тем не менее, для сложных приборов требуется полный комплект оборудования, способный обеспечить стабильное и качественное электроснабжение.

Зачем он нужен?

Отличительное свойство электроэнергии состоит в том, что ее можно производить в любых количествах, если позволяет оборудование. Ветрогенератор как раз и относится к таким устройствам — он производит электроэнергию. Таким образом, ветряк представляет собой электростанцию, способную обеспечивать как крупные участки с большим количеством потребителей, так и отдельные дома или приборы.

Возможности устройства зависят от размеров крыльчатки и мощности генератора. Эти два параметра являются определяющими и зависят друг от друга. Чем мощнее ротор, тем большей мощности генератор он сможет вращать, вырабатывая большое количество энергии.

При этом, ветряк может быть создан самостоятельно и обеспечивать потребности отдельной группы приборов — например, освещения, водоснабжения, вентиляции и т.д. Такая избирательность удобна для сокращения расходов на электроэнергию, обеспечения бесперебойной подачи питания на старых изношенных линиях.

Конструкция и принцип работы

Конструктивно ветрогенераторы сочетают механическую, электромеханическую и электрическую части. К механической относится ветряк, непосредственно принимающий энергию ветра и преобразующий ее во вращательное движение. Оно передается на электромеханическое устройство — генератор, преобразующий кинетическую энергию вращения в электрический ток. После этого действуют чисто электронные устройства:

  • выпрямитель. Генератор вырабатывает переменный ток, который не годится для заряда аккумуляторных батарей. Для дальнейшего использования его надо выпрямить, для чего используется выпрямительное устройство
  • контроллер заряда. Обеспечивает своевременное переключение аккумуляторных батарей с режима зарядки на режим питания потребителей, чтобы избежать выхода АКБ из строя
  • аккумулятор (АКБ). Накапливает заряд, необходимый для поддержания напряжения в сети при ослаблении ветра
  • инвертор. Преобразует постоянный ток аккумулятора в обычные 220В 50 Гц переменного тока, необходимых для питания стандартных потребителей.

Все перечисленные электронные устройства являются типичным комплектом оборудования, используемым с любым типом ветряка. Изменение конструкции крыльчатки не влияет на состав комплекта, если только не происходит значительного увеличения скорости вращения, требующего изменения параметров генератора.

Виды ветрогенераторов

Используются два основных вида ветряков, имеющих принципиальные различия:

  • горизонтальные
  • вертикальные

В обоих случаях речь идет об оси вращения ротора. Конструкция различных моделей горизонтальных устройств мало отличается друг от друга, представляя собой подобие бытового вентилятора или пропеллера. Вертикальные устройства обладают намного большим разнообразием типов конструкции, внешне значительно отличаясь друг от друга. Рассмотрим их подробнее:

Горизонтальные ветряки

Горизонтальные конструкции имеют большую эффективность, так как поток ветра они воспринимают только рабочей стороной лопастей. Наибольшее распространение получили трехлопастные крыльчатки, но для небольших конструкций число лопастей может быть увеличено.

Именно горизонтальные конструкции используются для изготовления больших промышленных образцов, имеющих огромный размах лопастей (больше 100 м), которые в объединенном виде образуют довольно производительные электростанции. Государства западной Европы, такие как Дания, Германия, скандинавские страны активно используют ветряки для обеспечения населения энергией.

Устройства имеют один недостаток — они нуждаются в наведении на ветер. Для небольших ветрогенераторов проблема решается установкой хвоста наподобие самолетного, который автоматически располагает конструкцию по ветру. Большие модели имеют специальное устройство наведения, контролирующее положение крыльчатки относительно потока.

Вертикальные конструкции

Ветрогенераторы вертикального типа имеют меньшую эффективность, вследствие чего используются для обеспечения энергией лишь отдельных потребителей — частный дом, коттедж, группу приборов и т.д. Для самостоятельного изготовления такие устройства подходят больше всего, так как обладают широким выбором вариантов конструкции, не нуждаются в подъеме на очень высокую мачту (хотя это им и не противопоказано).

Вертикальные роторы могут быть собраны из любых подручных материалов, в качестве образца можно использовать любой тип из множества известных:

  • роторы Савониуса или Дарье
  • более современный ротор Третьякова
  • ортогональные конструкции
  • геликоидные устройства и т.д.

Описывать все типы подробно незачем, так как их количество постоянно увеличивается. Практически все новые разработки базируются на вертикальной оси вращения и предназначены для использования в частных домах или усадьбах. Большинство разработок предлагает собственный вариант решения основной проблемы вертикальных устройств — низкого КПД. Некоторые варианты имеют довольно высокие показатели, но обладают сложным устройством корпуса (например, конструкция Третьякова).

Расчет и выбор

Расчет мощности ветряка сводится к подсчету суммарной мощности потребления осветительными, вспомогательными и бытовыми приборами. Полученное значение увеличивается на 15-20% (запас мощности необходим при возникновении непредвиденных ситуаций), и на основании этих данных рассчитывается или выбирается готовый генератор.

От его параметров ведется построение всего остального комплекта — механические требования ложатся в основу проектирования ветряка, а эксплуатационные параметры — мощность, напряжение, сила тока — используются при создании системы накопления и обработки полученного тока.

Выбирая приборы, следует также обеспечивать небольшой (15-20%) запас мощности, который обеспечит устойчивость комплекса при возникновении форс-мажорных ситуаций.

Изготовление ветряка своими руками

Основные работы, которые предстоит сделать, это — изготовление и установка вращающегося ротора. Прежде всего следует выбрать тип конструкции и ее размеры. Определиться в этом поможет знание требуемой мощности устройства и производственные возможности.

Большинство узлов (если не все целиком) придется изготовить самостоятельно, поэтому на выбор повлияет, какие познания имеются у создателя конструкции, с какими приборами и устройствами он знаком наилучшим образом. Обычно сначала делается пробный ветряк, с помощью которого проверяется работоспособность и уточняются параметры сооружения, после чего приступают к изготовлению рабочего ветрогенератора.

Рекомендуемые товары

energo.house

принцип работы необычного ветряка будущего

Ветроэнергетика прочно заняла свою нишу среди других способов производства электроэнергии. Доля произведенного промышленными ветрогенераторами электротока от общего количества потребляемой энергии, например, в Дании, составляет 36%. Возможности этого метода еще не изучены полностью, а обилие новых разработок, постоянно появляющихся и демонстрируемых конструкторами, говорит о перспективности этого направления.

Слишком заманчиво производить энергию из ветра, который достается совершенно бесплатно и в неограниченном количестве. Энергия есть, ее много, надо только суметь получить.

Ветряки необычных конструкций

Согласно расчетным данным, максимально возможный КПД ветрогенератора составляет 59,3%. Причина этого кроется в особенностях конструкции ветряков и в большом количестве потерь на трение, передачу вращения и прочих тонких эффектах, в сумме отбирающих половину (а то и больше) эффективности устройств. Ограниченные возможности существующих ныне ветрогенераторов стали причиной активного поиска более удачных конструкций, работающих на иных принципах и способных к более интенсивному приему энергии ветра.

Наиболее привлекательна идея отказаться от привычных лопастей и пойти по пути использования более простых конструкций. Это позволит снизить расходы на производство и обслуживание, увеличит срок службы, снизит уровень шума и опасность для птиц и животных. Разработки, уже имеющиеся в этом направлении, сулят большие перспективы в случае их широкого распространения.

Ветрогенератор без лопастей

Безлопастные ветрогенераторы разрабатываются уже довольно давно, но дальше предложенных проектов пока дело не заходило. Наконец, испанская компания Vortex представила полноценную рабочую конструкцию ветротурбины, полностью лишенной лопастей.

Вариант, предложенный Vortex, вызвал немалый интерес среди представителей научных и деловых кругов. Учитывая скептицизм, который принято испытывать по отношению к различным «непонятным» конструкциям, подобное отношение наглядно демонстрирует наличие проблемы и существование серьезной заинтересованности в ее решении.

Существуют и другие безлопастные конструкции, например, парусные ветряки, не имеющие вращающихся частей, а использующие силу давления ветра на сплошное полотно. Поток, взаимодействующий с парусом, используется полностью, но велики потери при передаче энергии на систему поршней, от которых приводится во вращение генератор. Кроме того, сильный порыв ветра создает большую нагрузку на полотно, что создает угрозу разрушения или опрокидывания мачты с ветряком.

Все имеющиеся до сего времени варианты конструкции безлопастных ветрогенераторов имели общий недостаток — они использовали для производства энергии обычные тихоходные генераторы, нуждающиеся во вращении. Поэтому любая разработка имела один и тот же проблемный узел — участок преобразования полученной энергии во вращательное движение.

Специалисты Vortex, похоже, нащупали способ решения проблемы, отказавшись от традиционных генераторов.

Как устроены безлопастные ветряки?

Конструкция, которую вынесли на суд общественности инженеры Vortex, по их заверениям, имеет большую эффективность, экономичность, экологическую чистоту. Внешне устройство выглядит необычно и несколько футуристически — ветряк представляет собой вытянутый конус, установленный на вершину.

Определить на вид предназначение такого сооружения невозможно, если заранее не иметь о нем никакого представления. При работе никакого вращения нет, устройство лишь слегка раскачивается под действием ветра. Компания планирует начинать массовое производство с небольших моделей, имеющих вес 10 кг, высоту 3 м и развивающих мощность 100 Вт. Параллельно разработана более солидная установка на 4 кВт, имеющая 13 м высоты и вес 100 кг.

В ближайшее время предстоит тестовый запуск станции из 100 столбов, которые будут обеспечивать электроэнергией 300 частных домов в Шотландии. В планах компании проект создания мегаваттной установки, способной обеспечивать энергией серьезные количества потребителей в масштабе больших городов, крупных промышленных предприятий. Проект получил широкую поддержку экологических организаций и общественных движений.

Принцип работы

Действие генератора основано на образовании воздушных завихрений, которые создаются при обтекании потоками ветра цилиндрических препятствий. Конусообразная форма устройства способствует раскачиванию, чувствительность к нарушению равновесия является важным показателем работы ветряка.

Образующиеся вихри создают достаточно сильную вибрацию, приводящую в движение всю конструкцию столба, на изменение положения реагируют чувствительные магниты, создающие сильное поле. Эффект образования завихрений, создающих цепочки возмущений потока, известен уже более 100 лет. Он впервые описан и рассчитан Теодором фон Карманом в 1912 году, но на пользу его никто не пытался обратить.

Воздушные завихрения, использованные в основе конструкции, до сих пор считались вредными паразитными проявлениями. Их влияние способно к серьезным воздействиям на конструкцию, что наглядно продемонстрировал мост Такома-Нарроуз в Америке, который разрушился из-за таких колебаний. Подобных примеров, приведших к сильной раскачке мостовых конструкций, можно привести достаточно много. Ветрогенератор, предложенный компанией Vortex, является первой попыткой направить эти силы на пользу.

Испытания, проведенные специалистами, показали, что наилучшие показатели достигаются при использовании нескольких установок, расположенных неподалеку друг от друга. Колебания, инициированные первым столбом, улавливаются второй конструкцией, усиливаются и направляются дальше — нарастающей. Такая способность натолкнула конструкторов на мысль о необходимости использовать не отдельные устройства, а комплекты, дающие сильный эффект, производящие большее количество энергии.

Ветрогенераторы будущего

Усиленные исследования в области безлопастных конструкций дают основания предполагать рост производства подобных изделий. Существующие уже сегодня разработки сулят большие перспективы этому направлению, поскольку экономичность и эффективность таких моделей даже на стадии макетирования намного превышают показатели сегодняшних промышленных образцов.

Исследователи, конструкторы не хотят мириться с недоступностью дармовой, неисчерпаемой энергии ветра, использование которой позволяет отказаться от опасных или вредных для окружающей природы атомных или гидроэлектростанций.

Возможности ветрогенераторов пока не могут полностью решить проблему, но, по мере появления более успешных разработок, неминуемо начнут понемногу занимать место отработавших свой срок службы нынешних энергетических гигантов. Такой процесс будет плавным, резкого перехода не будет, поэтому каких-либо неудобств или потерь никто не почувствует.

Создание бесшумных, не имеющих вращающихся частей установок значительно снизит их себестоимость, что отразится на цене конечного продукта — электроэнергии, увеличит ее доступность, позволит всем без исключения пользоваться энергией ветра.

Рекомендуемые товары

energo.house

Устройство и принцип работы ветрогенератора

Как устроен ветрогенератор

Любой ветрогенератор состоит из таких компонентов как;

— генератор, который вырабатывает переменный ток, и в дальнейшем преобразуется в постоянное напряжение, предназначенное для зарядки аккумуляторов. От скорости ветра зависит и мощность генератора;- лопасти, предназначены для передачи вращения к валу генератора через редукторы и стабилизаторы скорости вращения ротора генератора;
— мачта ветряка должна иметь достаточную высоту. Чем выше находятся лопасти, тем больше они получат энергии ветра.

Также в устройство ветрогенератора входят;

— контроллер, необходимый для преобразования переменного напряжения идущего с генератора, в постоянное напряжение и последующей зарядкой аккумуляторов. Контроллер управляет поворотом лопастей, и контролируют направление ветра;
— аккумуляторы накапливают электроэнергию, чтобы использовать ее при небольшом ветре или его отсутствии. Батарея также хорошо стабилизирует электроэнергию, полученную от генератора;
— датчик направления ветра помогает лопастям «поймать» ветер;
— АВР представляет собой устройство автоматического переключения между ветрогенератором и другими источниками электроэнергии, например электросетью, генератором, солнечными панелями;
— инвертор предназначен для преобразования постоянного тока, поступающего с аккумуляторов, в переменное напряжение для домашней электросети. Инверторы могут разделяться по типу синусоиды для разных потребителей электроэнергии.

Устройство ветрогенератора

  1. Инвертор модифицированной синусоиды на выходе выдает квадратную синусоиду, предназначенную для не требовательных потребителей к качеству сети – это тэны, накальные лампы освещения.
  2. Инверторы с чистой синусоидой по качеству выходного напряжения подходят даже для самых требовательных потребителей электроэнергии.
  3. Инверторы трехфазного напряжения предназначены для трехфазных сетей.
  4. Сетевой инвертор работает без аккумулятора и способен к выводу электроэнергии в общую сеть.

Принцип действия ветрогенератора

Принцип работы ветрогенератора построен на преобразовании кинетической энергии силы ветра в энергию вращения вала генератора. Для вертикальных ветрогенераторов, вертикальная ось соединена с вертикальным ротором. Генератор и ротор расположены внизу конструкции. Лопасти закреплены в вертикальной оси.

Вращаясь, лопасти заставляют вращаться ротор генератора, который начинает вырабатывать переменный и нестабильный ток. Это ток идет на контроллер, который преобразует его в постоянное напряжение и заряжает аккумуляторы. С аккумулятора питание идет на инвертор, назначение которого превращение постоянного тока в переменное напряжением 220 В или 380 В, которое поступает к потребителям электроэнергии.

Схемы работы ветрогенераторов

Вариантов работы ветрогенератора может быть несколько:

  1. Автономная работа ветрогенератора.

Автономная работа ветрогенератора

  1. Такая совместная работа считается очень надежным и эффективным способом автономного электроснабжения. При отсутствии ветра, работают солнечные батареи. Ночью, когда не работают солнечные батареи, аккумулятор заряжается от ветровой установки.

Параллельная работа ветрогенератора с солнечными панелями

  1. Ветрогенератор также может работать параллельно с электросетью. При избытке электроэнергии, она поступает в общую сеть, а при недостатке ее потребители электроэнергии работают от общей электросети.

Параллельная работа ветрогенератора с электросетью

Ветряные генераторы могут прекрасно работать с любыми видом автономного электроснабжения и общей электросетью. Создавая при этом единую систему энергоснабжения.

Тоже интересные статьи

electricavdome.ru

Ветрогенератор паросного типа, его принцип работы, преимущества и недостатки

Первые ветряные мельницы придумали в Персии за 200 лет до н.э. Там с их помощью перемалывали зерно. А вот использовать ветрогенераторы как источник электрической энергии люди начали в XIX веке, когда один смекалистый фермер из Дании соединил два механизма: ветряную мельницу и электрогенератор. С тех пор ветряки используются не только в хозяйствах, но и в промышленности, а также в домашнем обиходе. Давайте разберемся в принципе работы такого источника энергии, его плюсах и минусах, а также рассмотрим способ сделать парусный ветряк своими руками.

Как работает парусный ветрогенератор

В качестве прототипа современных парусных ветрогенераторов выступал обычный ветряк-водокачка. Он преобразовывал ветряную энергию сначала во вращательное, а потом — в возвратно-поступательное движение. За счет этого двигалась помпа, которая подавала воду из скважины. Удивительно, но такие ветряки существуют и по сей день. Их популярность обусловлена надежностью и простотой конструкции.

Внешне старые и новые модели практически идентичны. Разница в материале, используемом для лопасти. У ветряков старого образца лопасти были cделаны из жестких материалов, а у современных — из мягких (брезент, парусина, нетканые слоистые материалы). По своему предназначению старые и новые ветряки тоже различаются: они выполняют разные функции. Водокачки использовались для подачи воды, а нынешние ветряки — для добычи электроэнергии.

Устройство и принцип работы современных парусников

Главная задача ветрогенератора парусного типа — превращать энергию ветра во вращение. Таким образом и получается электричество. На лопасти замкнутой или незамкнутой формы натягивается материал на манер лепестка. Сам парус представляет собой треугольник с вершиной у самого центра вращения. Одна из сторон этого треугольника должна примыкать к вершине и не присоединяться к раме.

Под силой давления ветра парус слегка прогибается, после чего начинает вращаться. В отличие от ветряков другого типа, парусник стартует даже при низких колебаниях ветра: генератор начинает работу со скорости ветра 3-4 м/сек. Даже при столь небольших скоростях генератор способен заряжать аккумуляторы!

Секрет эффективности парусников в форме лопастей. Они напоминают собой цветочные лепестки. Поэтому порыв ветра, попадая в такой раструб, «наращивает плотность» и действует на лопасти с максимальной силой. Вспомните детские игрушки-ветряки, способные вращаться при малейшем колебании ветра: парусник работает по тому же принципу.

Достоинства и недостатки

У парусного ветрогенератора множество плюсов:

  • высокий КПД;
  • экологичность;
  • низкие показатели шума;
  • легкость обслуживания и ремонта;
  • простота изготовления своими руками;
  • облегченная и компактная конструкция;
  • эффективная работа при низкой скорости ветра.

Проанализируйте минусы парусников, чтобы понять, подойдет ли вам такой источник энергии:

  • потеря мощности при сильном ветре;
  • лопасти не выдерживают высокие нагрузки;
  • медленный набор оборотов при смене направления ветра;
  • остановка механизма при резкой смене направления ветра.

Если вы проживаете в регионе с постоянными сильными ветрами, которые часто меняют направления, тогда парусник — не ваш вариант. Также конструкцию не стоит возводить в местах, окруженных горами или высокими строениями. Подобные препятствия на пути ветра создают завихрения — парусник не сможет подстроиться под постоянную смену порывов, и в итоге выйдет из строя.

Парусный ветрогенератор своими руками

Сначала вам нужно изготовить мачту, на которую будет крепиться ветряк. Проще всего использовать схему ферменной мачты треугольной или четырехугольной формы. Под основание мачты выкопайте яму и сделайте закладки для крепежа мачты на бетон. После закладок и вставки мачты, залейте в яму бетон и дайте ему застыть. После такой основательной подготовки ваш ветрогенератор устоит даже при шквальном ветре.

Поворотную ось генератора можно изготовить из подручных материалов: например, из колесных дисков и разобранного моста. Чтобы не покупать генератор, используйте двигатель постоянного тока из старого механизма. Подойдут двигатели даже 60-х или 70-х годов выпуска. Достаточно будет, чтобы генератор выдавал напряжение около 50В. После этого соберите узлы привода от редуктора к генератору.

Чтобы поднять и установить детали на мачту, удобней всего воспользоваться лебедкой. Сначала поднимите поворотную конструкцию, а уже потом — генератор. Когда основные работы завершены, приступайте к конструированию колеса. Для него можно использовать любой поворотный механизм и нетяжелые рейки (в качестве спиц). Наденьте на каркас паруса, как показано на фотографии: в форме треугольных лепестков. Готовое колесо с парусами поднимите лебедкой на мачту и закрепите болтами. При первом порыве ветра ваш парусный ветряк придет в движение и начнет подавать энергию к аккумуляторам.

Как видите, сконструировать парусник легко. Если у вас нет под рукой материалов, описанных в статье, импровизируйте. Главные составляющие — мачту, двигатель и паруса — реально сделать из любых доступных запчастей и материалов, которые отыщутся в любом гараже или сарае. Соблюдайте правила безопасности и не забудьте протестировать ветряк перед вводом в эксплуатацию.

altenergiya.ru

Ветрогенераторы: как они работают и возможны ли в России

Электрогенератор был изобретен более полутора веков назад. Ветровые колеса приводили в движение мельничные жернова еще с незапамятных времен. Так почему же современные ветрогенераторы — эти машущие гигантскими крыльями флагманы «зеленой энергетики» — требуют для производства высоких технологий? И сможем ли мы у нас, в России, наладить выпуск таких машин, или нам снова придется тратить нефтедоллары и покупать, покупать, покупать?..

Простота базового принципа не всегда означает технологическую простоту, особенно если из конструкции надо «выжать» максимальную эффективность. В теории самолет весьма прост, и братья Райт, создавая свой «Флайер-1», вполне обошлись подручными материалами и индустриальными технологиями гаражного класса. Однако, как известно, первенец мировой авиации улетел не дальше размаха крыльев «Боинга-747», едва подняв в воздух Орвилла Райта в качестве полезной нагрузки. Современные лайнеры пересекают океаны и континенты, поднимают в небо десятки и даже сотни тонн груза. При этом они буквально напичканы хайтеком, который обеспечивает высочайшую функциональность, экономическую эффективность и безопасность эксплуатации. Воплощая в жизнь примитивную схему «ветровое колесо плюс электрогенератор», конструкторы нынешних ветроэнергоустановок мощностью в несколько мегаватт вынуждены также опираться на последние достижения науки и наукоемких производств.

Собственно, у авиации и ветроэнергетики немало общего. И там и там используется подъемная сила, образующаяся при взаимодействии крыла с набегающим потоком воздуха. Однако если для образования подъемной силы под крылом самолета приходится тратить энергию на создание тяги, то ветряк использует естественное движение воздушных потоков, для того чтобы забрать у них энергию и преобразовать ее в электричество. Еще одно принципиальное отличие ВЭУ от авиационных конструкций заключается в том, что их ресурс безостановочной работы составляет годы.

Нужно худеть

Пока размах ветрового колеса невелик, а мощность генератора измеряется в десятках или сотнях кВт, никаких особенных технологий не требуется, однако современная ветроэнергетика ориентируется на поистине гигантские сооружения: на 100−120-метровых башнях устанавливаются имеющие вес в десятки тонн гондолы, а размах лопастей ветрового колеса достигает 130 м. Чем выше башня и чем больше диаметр ротора, тем значительней используемый ветропотенциал. Однако при увеличении линейного размера ветроэнергетической установки (ВЭУ) ее мощность растет в квадратной пропорции, а вес — в кубической. Именно поэтому, как и в авиации, борьба с избыточным весом всей конструкции — один из важнейших приоритетов. Другая серьезная задача — обеспечение устойчивости всей конструкции. ВЭУ представляет собой могучую «голову» на тонкой ножке и подвергается сильнейшему ветровому давлению, раскачивается, вибрирует, и, чтобы ветряк не разрушился и не опрокинулся, требуются сложные расчеты и нестандартные технические решения.

Ветроэнергетический хайтек начинается прямо с роторов — внутри окружности самых больших из них спокойно умещается футбольное поле.

Башня, гигантские лопасти, генератор и даже ступица ветроколеса — все в современных мегаваттных ветрогенераторах производит впечатление нечеловеческих масштабов. Размеры — дань эффективности.

Чем совершенней аэродинамический профиль лопастей ветрового колеса, тем выше его КПД. При этом лопасти должны быть прочными и упругими, иначе высотные ветры сломают их как спички. Лопасти также должны иметь минимальный вес, так как повышение массы увеличивает нагрузки на конструкцию в целом и, соответственно, ее цену. В производстве лопастей для ротора, как и в авиапроме, ставка делается на неметаллические композитные материалы при ключевой роли стеклопластика, который как раз и совмещает в себе все требуемые свойства. Внутри лопасти помещается более жесткий каркас с прямоугольным сечением, а внешняя оболочка обеспечивает необходимый профиль крыла, разработанный специально для работы в воздушных потоках с невысокими скоростями. Но оптимальный вес вкупе с аэродинамическими качествами — это еще не все. Ветровое колесо должно обладать длительным рабочим ресурсом. Служить ВЭУ предстоит два десятилетия, и чем меньше на это время придется регламентных и ремонтных работ, тем дешевле обойдется эксплуатация.

Крылом по ветру

Не зря во время бури на корабле спускают паруса — использовать энергию ветра на благо возможно лишь до какого-то предела. Когда дует слишком сильно, приходится защищаться — начинают расти нагрузки на лопасти, на башню, на корпус гондолы. До эпохи мегаваттных ВЭУ проблема защиты ветряка от сильных порывов ветра решалась за счет более массивных башен и более прочных лопастей. Профиль крыльев конструировался таким образом, что при достижении определенной скорости потока воздуха от конца лопасти вниз шло нарастание срыва потока и возникала потеря подъемной силы. Так удавалось предохранить генератор от вращения на нерасчетных оборотах, что привело бы к его поломке. Однако поистине революционным решением, позволившим современным ветроустановкам достичь мегаваттных мощностей, стало введение в конструкцию ВЭУ системы управления углом атаки лопастей (pitch control). Эта интеллектуальная система отслеживает количество энергии, поступающей на ветроколесо, и поддерживает оптимальные обороты за счет поворота лопастей вокруг продольной оси и изменения подъемной силы. Изменение угла атаки выполняется с помощью специальных приводов в ступице, поворачивающих лопасти.

Внизу — схема ветроустановки с многоступенчатым мультипликатором (наиболее распространенная в наши дни). Вверху — схема, использующая одноступенчатую планетарную передачу и среднеоборотный генератор. Второй вариант имеет более простую и надежную конструкцию и предъявляет меньшие требования к технологиям производства.

Система pitch control позволяет не только поддерживать вращение ротора в заданном диапазоне скоростей, но и помогает решить проблему безопасности всей ВЭУ — остановить ветроколесо при буревом ветре и избежать резонансного раскачивания башни. Дело в том, что ветрогенератор может попасть в резонанс от некоторых нагрузок — как от пульсации самого воздуха, так и от толчков, которые возникают, когда лопасть проходит мимо башни. Если смотреть издали, этот эффект практически незаметен, но если встать близко к башне, он вполне ощутим. Теперь представим себе, что частота этих толчков попала в резонанс с собственной резонансной частотой колебания башни. Итог нетрудно предсказать — ВЭУ разрушится. Конечно, бороться с этим эффектом можно, повышая частоту колебаний башни, то есть утолщая и утяжеляя ее. Это скажется на стоимости монтажа и материалов. А можно оставить ее изящной, но с помощью системы управления углом атаки заставить ветроколесо быстро проходить опасный режим.

15 тонн как часы

Не менее высокотехнологично и содержимое гондолы ветрогенератора. В большинстве действующих сегодня ВЭУ мегаваттного класса используется мультипликатор — 3−4-ступенчатая система зубчатых передач, которая позволяет повысить обороты с 15 об/мин на валу ветроколеса до 1500 об/мин на валу электрогенератора. И хоть зубчатыми передачами мир давно не удивишь, мультипликатор ВЭУ — случай особый. Современный мультипликатор — это махина весом в 12−15 т, которая имеет КПД не ниже 97%. Это, с одной стороны, весьма габаритная, а с другой — в высшей степени прецизионная механика. Для изготовления мультипликатора требуются высококачественные сплавы, сверхточная обработка поверхности. Особенно это касается высокооборотной ступени — той, что ближе к генератору. Требуются специальные масла, которые облегчают ход механизма и отводят в систему воздушного охлаждения те самые 3% потерь, которые преобразуются в тепло. Только так можно обеспечить низкий вес мультипликатора, высокий КПД и высокую износоустойчивость конструкции для длительного ресурса механизма.

Конструирование ветроустановки требует тщательных расчетов и математического моделирования. При огромных габаритах ВЭУ мегаваттного класса «продуть» ее в аэродинамической трубе практически невозможно, так что вся надежда на опыт и практичную теорию.

И мозги пригодятся

Создатели ВЭУ непрерывно борются за повышение энергетической и экономической эффективности установок, повышая КПД компонентов (ветроколеса, мультипликатора, генератора и преобразователя), улучшая надежность конструкций и снижая их массу и цену. Борьба идет за несколько процентов (1−3) и даже за их доли. Сильнейший фактор в борьбе за энергетическую эффективность ВЭУ — система управления (СУ) и программное обеспечение (ПО). Современная СУ, снабженная ПО, максимально учитывающим особенности ветров и характеристики потребителей энергии, может дать повышение энергоотдачи на 10 и более процентов.

Свои высокотехнологические особенности имеют, разумеется, и генератор, и система электрических тормозов, и конструкция обтекателя гондолы. Так может ли подобная наукоемкая продукция производиться в России?

Значительную роль в современных ветроустановках играет система управления углом атаки (pitch control), позволяющая варьировать подъемную силу на лопасти и избегать нерасчетных нагрузок при сильных порывах ветра.

Как купить черенок от лопаты

В статье «Бросим надежды на ветер» нашим собеседником была высказана весьма категоричная точка зрения — в России ветрогенераторы мегаваттного класса делать не умеют, и если решение о создании мощных ветропарков будет у нас принято, оборудование придется покупать у грандов индустрии из Германии, Дании и США. Чтобы выслушать альтернативную точку зрения, мы пригласили в редакцию руководителей проекта «Новый ветер» Вениамина Нырковского и Андрея Кулакова. Главная задача этого проекта — интеграция отечественных научных и промышленных возможностей для производства российских моделей ВЭУ.

«Цель нашего проекта — развитие российской ветроэнергетики как самостоятельной отрасли машиностроения, — говорит Андрей Кулаков, — однако к этому выводу мы пришли не сразу. Предварительные расчеты показывают: чтобы Россия в 2025 году имела 4,5% ‘зеленой электроэнергии’, необходимо будет построить ветропарки общей мощностью 8−10 ГВт. Где взять эти 5000 ВЭУ, если машиностроительные мощности Европы, Индии и Китая загружены ‘внутренним’ заказом? Ответ очевиден. Надо научиться производить здесь, в России.

Мощности для этого есть. Да и компетенции хватает. С металлом, а ВЭУ все-таки металлическая конструкция, наши мастера работают давно и в качестве не уступают иностранцам.

Лицензия? Мы проездили практически всю Европу — от Южной Австрии до Голландии — и поняли, что купить лицензию на выгодных для нас условиях попросту не получится. Во‑первых, предлагаются морально устаревшие конструкции минимум десятилетней давности, а прогресс в этой отрасли такой стремительный, что десять лет — это целая эпоха. Во‑вторых, по условиям лицензии мы получим, образно выражаясь, не лопату, а черенок от лопаты. Нам ограничат рынок сбыта, и свою продукцию мы не сможем продавать нигде, кроме России. Нам навяжут производителей генераторов, мультипликаторов, лопастей, системы управления, подшипников. Именно в этой продукции ‘зашит’ основной хайтек, но в лицензию она не входит, составляя при этом более 50% цены всей ВЭУ. Нам остаются башня, корпус гондолы и ступица. За это с нас попросят не менее? 10 млн. Есть ли в этом смысл?»

Середина золотая и доступная

«Вопреки скептическому мнению о возможностях нашей науки и промышленности мы пришли к выводу, что в России современные мощные ВЭУ производить можно, — продолжает тему Вениамин Нырковский.- Единственное, что мы очевидно ‘не потянем’, — это многоступенчатый мультипликатор с его прецизионной механикой. Таких производств в нашей стране нет, а их создание потребует миллиардов долларов. Но ситуация не безвыходная.


Ветер и сети

Ветер — величина непостоянная. Преобразование непостоянной ветряной энергии в условно-постоянную электрическую и подача ее в сеть — одна из важнейших проблем ветроэнергетики. В ветряках, применявшихся до 2000 года, в основном использовались асинхронные генераторы (в них скорость вращения вала и скорость вращения магнитного поля, создаваемого током в обмотке ротора, неодинаковы). Асинхронный генератор автоматически синхронизируется потоком энергии, приходящей из сети, и непосредственно своими обмотками связан с сетью. При этом старались держать скорость ветроколеса постоянной. Недостатки такой системы заключаются в том, что, во‑первых, если в системе генерации есть асинхронные генераторы и их количество приближается к 25%, сеть начинает вести себя нестабильно — впервые с этой проблемой столкнулась Германия с ее высокой долей ветрогенерации в энергетике. Во‑вторых, удержание ветроколеса на постоянной скорости снижает его КПД. В современных ВЭУ скорость в процессе работы может меняться в 2−3 раза. Пришлось перейти на синхронные генераторы, но вот беда — они с сетью никак не синхронизируются и подают туда «плавающие» частоту и напряжение, отражая, таким образом, колебания скорости вала ротора. Вопрос удалось решить с развитием силовой электроники — появились мощные транзисторы и тиристоры, способные прокачивать через себя мегаватты энергии. Теперь ток с обмотки генератора поступает в преобразователь, собранный на основе подобных электронных компонентов, а уже оттуда уходит в сеть, имея постоянные частоту и напряжение.

Сейчас порядка 17% представленных на рынке ветряков работают по системе direct drive, то есть обходятся вообще без мультипликатора. У этой схемы есть один большой плюс — наличие минимума движущихся частей, что добавляет конструкции надежности и уменьшает потери энергии. Но есть и большой минус: генератор, вал которого вращается со скоростью ветроколеса, должен быть очень большим. Для двухмегаваттной ВЭУ, работающей с многоступенчатой коробкой передач (мультипликатором), генератор будет иметь диаметр около 1,5 м и вес около 10 т. В установке системы direct drive той же мощности его диаметр составит более 7 м, а вес- около 60 т. Кстати, Россия — одна из немногих стран, где такие гигантские генераторы делать умеют. Правда, они предназначены для ГЭС и условия их эксплуатации сильно отличаются из-за различия динамики колебания энергии. Кроме того, 60-тонный генератор весьма непросто транспортировать, особенно в труднодоступные районы, и очень сложно монтировать на башне — нужна специальная крановая техника, которую перевозить также очень сложно.

Ветроустановка находится под сильнейшей ветровой нагрузкой, поэтому малейшие недостатки в проектировании, строительстве или обслуживании могут привести к ее обрушению. За последние десять лет в мире произошло около 80 подобных аварий. Известны также случаи отрыва лопастей. Внутри лопасти помещается более жесткий каркас с прямоугольным сечением, а внешняя оболочка обеспечивает необходимый профиль крыла, разработанный специально для действия в воздушных потоках с невысокими скоростями.

Но есть и «золотая середина» — среднеоборотные генераторы, работающие по системе multibrid. В этом варианте между валом ветроколеса и валом генератора ставится одноступенчатый планетарный мультипликатор, который передает на вал генератора вращение со скоростью не 1500, а 150 об/мин, при этом получается единый конструктивный моноблок «мультипликатор-генератор» (ММГ). Причем среднеоборотный генератор имеет уже вполне приемлемые габариты. При той же мощности 2 МВт он будет иметь диаметр 2,5−3 м и вес порядка 30 т. Сделать такой генератор и одноступенчатую передачу к нему в России могут, и даже не на одном предприятии. Конечно, что-то придется покупать — например, оборудование и технологии, связанные с производством лопастей, но эти расходы окажутся явно меньше, чем плата за лицензию на ‘черенок от лопаты’. Остальное — гондола, ступица, башня — не представляет для нашей промышленности никаких проблем».

Ностальгия по Королеву

В подготовке проекта двухмегаваттного генератора, разработанного специалистами «Нового ветра», участвовали всего около двух десятков человек. Это доказывает, что даже такие масштабные инициативы по плечу правильно подобранной команде специалистов. «В процессе работы над проектом, — говорит Нырковский, — нам не раз говорили: ‘Вы сами не справитесь, тут нужны целые институты!’ А мы отвечаем: ‘Нет, нам нужны не институты, нам нужны отдельные специалисты, которые занимаются, скажем, в ЦАГИ аэродинамикой низких скоростей. Или проблемами механики, динамики, прочности материалов в других институтах и КБ’. Для производства ВЭУ у нас есть теоретическая основа, есть конструкция, есть потенциальная производственная база. Чего у нас нет — так это специалистов по строительству и эксплуатации ветропарков. Но мы решим этот вопрос так же просто — пригласим к себе на работу опытных инженеров из западных компаний. Наймем отдельных людей, вместо того чтобы подряжать целые корпорации. И трансфер мозгов вместо трансфера технологий обойдется, поверьте, намного дешевле. Мне вообще кажется, — завершает свой монолог Вениамин Иванович, — что технический прогресс в России не идет не из-за отсутствия денег. Деньги вроде бы где-то ходят, но либо идут не туда, либо тратятся не на то что надо. А все от того, что организацию производственных проектов берут на себя исключительно экономисты, мыслящие на уровне корпоративного управления и биржевых котировок. При этом большие конструкторские проекты с высокой степенью интеграции мы разучились доверять тем, кто понимает суть процессов создания техники и организации ее производства. И где нам взять новых Туполевых и Королевых вместо ‘менеджеров широкого профиля’?»

Статья «Умные крылья энергии» опубликована в журнале «Популярная механика» (№5, Май 2010).

www.popmech.ru

Ветрогенераторы. Устройство и виды. Работа и применение

Электричество сегодня считается чем-то обыденным, ведь оно есть в каждом доме. И никто не задумывается, откуда оно берется. Электричество в основной массе вырабатывается электростанциями, работающими на нефти, природном газе, ядерном топливе или угле. Эти традиционные источники представляют определенную опасность для окружающей среды, вследствие чего все большее внимание уделяется альтернативным видам энергии. К последним можно отнести ветрогенераторы, которым для выработки электричества нужен лишь ветер.

Устройство

Конструктивно ветрогенераторы в большинстве случаев предполагают наличие следующих элементов:
  • Лопасти турбины (пропеллер).
  • Турбина (вращающаяся часть).
  • Электрогенератор.
  • Ось электрогенератора.
  • Инвертор, преобразующий переменный ток в постоянный, для возможности зарядки батареи.
  • Механизм вращения лопастей.
  • Механизм вращения турбины.
  • Аккумулятор.
  • Мачта.
  • Контроллер вращения(анемометр).
  • Демпфер.
  • Датчик ветра и анемоскоп.
  • Хвостовик анемоскопа.
  • Гондола и ряд других элементов.

В зависимости от вида ветрогенератора конструкция и входящие в него элементы могут разниться. К примеру, промышленные устройства также предусматривают наличие системы молниезащиты, силового шкафа, поворотного механизма, надежного фундамента, системы пожаротушения, системы изменения угла атаки лопасти, телекоммуникационной системы для передачи информации о работе ветрогенератора и так далее.

Принцип действия

Ветрогенератор представляет устройство, преобразующее энергии ветра в электрическую энергию. Прародителями современных видов ветрогенераторов являются ветряные мельницы, которые применялись для получения муки из зерен. И принцип их работы изменился ненамного: лопасти вращают вал, который передает необходимую энергию на другие элементы.

  • Ветер вращает лопасти, передавая крутящий момент через редуктор на вал генератора.
  • При вращении ротора образуется трехфазный переменный ток.
  • Полученный ток направляется на аккумуляторную батарею через контроллер. Аккумуляторы применяют для создания стабильности работы ветрогенератора. Генератор заряжает аккумуляторы при наличии ветра. При его отсутствии всегда можно взять энергию с аккумулятора, чтобы потребитель не прекращал получать электричество.
  • С целью защиты от ураганов в ветрогенераторах применяется система с уводом ветроколеса от ветра при помощи складывания хвоста, либо торможения ветроколеса электротормозом.
  • Для зарядки аккумуляторов ставится контроллер между ветряком и АКБ. Он отслеживает зарядку АКБ, чтобы не испортить аккумуляторы. При необходимости он может сбрасывать лишнюю энергию на определенный балласт, к примеру, большой резистор или тэны для отопления.
  • В аккумуляторах имеется лишь постоянное низкое напряжение рядностью 12/24/48 вольт. Однако потребителю нужно напряжение в 220 вольт, именно поэтому ставится инвертор. Это устройство преобразует постоянное напряжение в переменное, создавая напряжение в 220 вольт. Естественно, что можно обойтись и без инвентора, но придется использовать электрические приборы, специально рассчитанные на низкое напряжение.
  • Преобразованный ток направляется потребителю, чтобы питать отопительные батареи, освещение, телевизор и иные устройства.

В промышленных ветряках могут применяться и другие элементы, которые обеспечивают автономную работу устройства.

Типы и виды ветрогенераторов

Классифицировать ветряки можно по материалам, количеству лопастей, шагу винта и оси вращения.

Выделяют два основных типа ветрогенераторов по оси вращения:
  1. С горизонтальной осью круглого вращения, то есть крыльчатые.
  2. С вертикальной осью вращения, то есть «лопастные» ортогональные, «карусельные».

Горизонтальные классические ветрогенераторы имеют пропеллер (в большинстве случаев трехлопастной), а вертикальные ветряки обладают ветроколесом, которое вращается вертикально.

По количеству лопастей ветряки могут быть:
  • Трехлопастные и двухлопастные.
  • Многолопастные.

Вращение многолопастных ветряков начинается при слабом ветре, тогда как для двухлопастных и трехлопастных устройств требуется более сильный ветер. Однако каждая
дополнительная лопасть создает дополнительное
сопротивление ветроколеса, вследствие чего достигнуть рабочих оборотов генератора становится сложнее.

По материалам лопастей ветряки могут быть:
  • Парусные генераторы.
  • Жесткие лопасти ветрогенератора.

Парусные лопасти дешевле и проще в изготовлении, однако, когда необходима стабильная и надежная работа для автономного электроснабжения они не подойдут.

По шагу винта:
  • Изменяемый шаг винта.
  • Фиксированный шаг винта.
Изменяемый шаг винта дает возможность повысить диапазон эффективных скоростей работы. В то же время данный механизм неизбежно:
  • Усложняет конструкции лопасти.
  • Снижает общую надежность ветрогенератора.
  • Утяжеляет ветроколесо и требует дополнительного усиления конструкции.
Применение
Устройства могут использоваться в различных местах. В большинстве случаев в открытые пространства, где большой потенциал ветров:
  • Горы.
  • Мелководье.
  • Острова.
  • Поля.

В то же время ветрогенераторы современных конструкций дают возможность задействовать энергию даже слабых ветров – от 4 м/с. Благодаря им можно решать задачи электроснабжения и энергосбережения объектов любой мощности.

  • Стационарные ветряные электростанции в виде альтернативных источников энергии способны полностью обеспечить электрической энергией небольшой производственный объект или жилой дом. В периоды отсутствия ветра необходимый запас электроэнергии будет выбираться из аккумуляторных батарей. Они отлично могут сочетаться с фотоэлектрическими батареями, газовым или дизельным генератором.
  • Ветрогенераторы могут использоваться и для экономии при наличии центральной электросети.
  • Ветроустановки средней и малой мощности часто используются владельцами фермерских хозяйств и домов, удаленных от централизованных электросетей, в качестве автономного источника.
Достоинства и недостатки
К преимуществам можно отнести:
  • Энергия ветра является возобновляемой энергией. Ветер создается бесплатно и постоянно, без ущерба окружающей среде. Энергия ветра доступна в любом месте на планете.
  • Энергия ветра является достаточно дешевой.
  • Ветряные турбины находятся на мачтах, им требуется минимум места. Благодаря этому их можно устанавливать совместно с иными объектами и строениями.
  • Ветрогенераторы в процессе эксплуатации не производят вредных выбросов.
  • Энергия ветра в особенности требуется в удаленных местах, куда затруднена доставка электричества иными привычными способами.
К недостаткам можно отнести:
  • Сила ветра очень переменчива и непредсказуема, вследствие чего требуется дополнительный буфер для накапливания электроэнергии, либо дублирования источника.
  • Высокая начальная стоимость создания и установки ветрогенераторов.
  • Ветряные турбины создают шум, который сравним с шумом автомобиля, перемещающегося со скоростью 70 км/ч. Это отпугивает животных и создает определенный дискомфорт для людей.
  • Вращающиеся лопасти представляют потенциальную опасность для птиц.
Похожие темы:

electrosam.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *