Ток разряда аккумулятора li ion – Немного теории о Li-Ion аккумуляторах

Разряд литиевых батарей

Категория: Поддержка по аккумуляторным батареям
Опубликовано 18.05.2016 15:08
Автор: Abramova Olesya


Первые литий-ионные аккумуляторы были довольно непрочными и считались непригодными для высоких нагрузок. Но сегодня ситуация изменилась, и эта электрохимическая система стоит наравне с никелевой и свинцовой. Существует две основные направленности литий-ионных аккумуляторов — оптимизация под энергетические (емкостные) и мощностные требования.

Энергетический литий-ионный элемент оптимизирован под максимальную емкость для обеспечения долгой автономной работы. Примером такого элемента является Panasonic NCR18650B (рисунок 1), которая обладает высокой емкостью, но при разрядке значением в 2С и больше имеет существенное проседание характеристик. При пороговом значении напряжения отсечки в 3,0 В на элемент, разрядка силой 2С снизит емкость до 2,3 Ач вместо номинальных 3,2 Ач. Такие элементы рассчитаны, в первую очередь, для портативных компьютеров и других не особо мощных применений.

Разрядные характеристики литий-ионных аккумуляторов

Рисунок 1: Разрядные характеристики Panasonic NCR18650B. Элемент емкостью 3,200 мАч разряжается силой 0,2С, 0,5С, 1С и 2С. Отмеченная красным кружком область с пороговым напряжением отсечки 3,0 В на линии разряда силой 2С фиксирует момент полного разряда. Понижение температуры окружающей среды также приведет к потерям емкости, при 25°С емкость будет соответствовать номиналу, при 0°С ее значение будет составлять ~83 % от номинальной емкости, при -10°С — ~66 % и при -20°С — ~53 %.

Элемент Panasonic UR18650RX имеет небольшую емкость, но превосходные нагрузочные характеристики. Разряд силой тока 10 А (5С) приводит к минимально возможным потерям емкости с напряжением отсечки 3,0 В. Такие элементы предназначены для устройств с высокими токами нагрузки, например, для электроинструмента.

Разрядные характеристики литий-ионных аккумуляторов

Рисунок 2: Разрядные характеристики Panasonic UR18650RX. Показан разряд этого 1950 мАч элемента С-рейтингом 0,2С, 0,5С, 1С, 2С и фиксированной силой тока 10 А. Разрядка всеми вышеперечисленными значениями обеспечивает емкость на уровне 2000 мАч при пороговом напряжении отсечки 3,0 В. Данные элементы обладают умеренной емкостью, но в состоянии удовлетворить высокий ток нагрузки. При понижении температуры окружающей среды реальная емкость понизится до: при 25°С — 100% от номинала, 0°С — ~92%, -10°С — ~85%, -20°С — ~80%.

Оптимизированный под показатели мощности элемент способен обеспечить непрерывный разряд силой 10С. Это означает, что элемент типоразмера 18650 емкостью 2000 мАч может обеспечить непрерывное питание нагрузки силой тока 20 А (30 А – в случае, если это элемент Li-фосфатной технологии). Такая превосходная производительность достигается частично за счет снижения внутреннего сопротивления, а также за счет оптимизации площади поверхности активного вещества. Низкое сопротивление обеспечивает высокое значение электрического тока с минимальным повышением температуры. Эксплуатация при максимально допустимом разрядном токе нагревает элемент примерно до 50°С, тогда как максимально допустимая температура составляет 60°С.

Для удовлетворения нагрузочным характеристикам у производителей аккумуляторов есть два пути: использование оптимизированных под мощность элементов или увеличение размеров аккумулятора из элементов, “заточенных” под емкость. Подобный метод из увеличения количества элементов используется в аккумуляторных системах электромобиля Tesla, и хотя такая система обеспечит отличный показатель автономного времени работы, ее вес и стоимость будут значительно увеличены.

3. Сигнатура разрядки

Одним из уникальных свойств аккумуляторов на основе лития и никеля является способность обеспечения непрерывной высокой мощности, вплоть до полного исчерпания аккумулятора. Это свойство становится возможным благодаря быстрому электрохимическому восстановлению. Свинцово-кислотный аккумулятор является “медленным”, его можно сравнить с фломастером, которому для восстановления способностей после расхода краски необходимо некоторое время. И в то время как восстановление характеристик относительно быстрое при разрядке (например, при запуске двигателя стартерным аккумулятором), то вся медлительность химических реакций становится очевидной при зарядке, которая длится 14-16 часов. С увеличением возраста свинцово-кислотного аккумулятора скорость восстановления его характеристик становится только хуже.

Аккумулятор может разряжаться постоянной нагрузкой, скажем в 0,2С, как, например, происходит в фонарике, но многие другие устройства требуют кратковременных нагрузок, в два-три раза превышающих допустимый разрядный С-рейтинг. Примером такого импульсного потребления электричества может служить технология GSM (Global System for Mobile Communications), используемая в мобильных телефонах. GSM требует пикового значения силы тока в 2 А каждые 577 микросекунды. Такая специфичность работы выдвигает особые требования к небольшим аккумуляторам, к тому же, при высокой частоте импульсного энергопотребления, электрические батареи начинают вести себя как большие конденсаторы и их характеристики, соответственно, меняются.

Разрядные характеристики литий-ионных аккумуляторов

Рисунок 3: Разрядные импульсы GSM-приемника мобильного телефона. Импульсы частотой 577 микросекунд зависят от расстояния до ближайшей вышки и могут достигать 2 А.


Зарядные устройства Victron Energy (Голландия)

 

Phoenix Charger
Skylla-i
Skylla-TG
Зарядное устройство для свинцово-кислотных AGM аккумуляторов Зарядное устройство для яхты, катера и судна Skylla-i Victron Energy Профессиональное зарядное устройство для гелевых аккумуляторов
12/24В, 16-200А 24В, 80-500А 24/48В, 30-500А
Мощные профессиональные зарядные устройства для яхт, катеров и другого вида транспорта. Предлагаются однофазные и трехфазные зарядные устройства высокой мощности. Многостадийный адаптивный заряд с возможностью ручного управления.

С точки зрения долговечности, аккумуляторной батарее наиболее предпочтителен постоянный разрядный ток умеренной силы в сравнении с импульсной или одномоментной высокой нагрузкой. Рисунок 4 демонстрирует уменьшающуюся емкость NiMH аккумулятора при различных условиях разрядки — от “мягкого” постоянным током 0,2С до импульсного режима. Стоит отметить, что большинство электрохимических систем, в том числе и литий-ионная, будут демонстрировать похожее поведение с нагрузочными характеристиками, указанными на рисунке 4.

Разрядные характеристики литий-ионных аккумуляторов

Рисунок 4: Жизненный цикл никель-металл-гидридного аккумулятора при различных условиях нагрузки. NiMH лучше работает с постоянным разрядным током и аналоговыми устройствами, подключение цифровых устройств снижает срок службы. Li-ion ведет себя аналогичным образом.

На рисунке 5 анализируется количество полных циклов оптимизированного под емкостные показатели литий-ионного элемента при разрядке различными значениями С-рейтинга. При значении 2С аккумулятор подвергается значительному стрессу, ограничивая период снижения емкости до половины номинального значения всего лишь 450 циклами.

Разрядные характеристики литий-ионных аккумуляторов

Рисунок 5: Жизненный цикл оптимизированного под емкостные показатели литий-ионного элемента при различных условиях нагрузки. При высоких нагрузках износ абсолютно всех аккумуляторных батарей увеличивается. Но элементы, оптимизированные под мощностные показатели, являются более выносливыми и надежными в случае высоких нагрузок.

best-energy.com.ua

Нужна ли тренировка литиевых аккумуляторов? / Habr

Прошло уже достаточно времени с тех времен, когда Ni-Cd и Ni-Mh аккумуляторы безраздельно властвовали в мобильных устройствах, но с самого начала эпохи Li-ion и Li-pol все не утихают споры по поводу того, надо ли «тренировать» эти аккумуляторы сразу после покупки.
Доходит до смешного, в теме обсуждения ZP100 на china-iphone всем новичкам рекомендовали в приказном тоне пройти 10 циклов зарядки-разряда, а только потом приходить с вопросами о аккумуляторах.

Давайте попробуем разобраться, имеет ли такая рекомендация право на жизнь, или это рефлексы спинного мозга (за отсутствием головного, наверное) некоторых индивидуумов, у которых они остались со времен никелевых батарей.


Текст может и наверняка содержит орфографические, пунктуационные, грамматические и другие виды ошибок, включая смысловые. Автор будет благодарен за сведения о них (конечно, в приват, а еще лучше с помощью вот этого замечательного расширения), но не гарантирует их устранение.

О терминологии

  • А (Ампер(A), или миллиампер — мА, микроампер — мкА) — значение силы тока в проводницеке. Может быть как большим, так и маленьким. Ток в 100А может сваривать листы железа, но взяв в руки провода от БП 5В 100А, вы ничего не почувствуете, потому что никаких 100А через вашу кожу не пройдет — сопротивление тела слишком большое для прохождения тока.
  • В (Вольт(V), или милливольт — мВ, микровольт — мкВ) — значение напряжения. Большое напряжение создаст длинную искру, но при маленьком токе источника вас только треснет, но никак не превратит в горстку пепла. Пример — статическое электричество, напряжения составляет до 10кВ, а токи мизерные.
  • Ом (Омы(Ohm), или килоом — кОм, мегаом — МОм) — значение сопротивление. Именно высокое сопротивление вашего тела (приблизительно 15 кОм) позволяет вам держать провода из первого пункта. Проходя по проводу, имеющему сопротивление (а все провода имеют сопротивление, и чем провод дальше из провинции китая тоньше, тем оно выше), напряжение падает на определенную величину, которая зависит от силы тока. Поэтому для обогревателя нужен толстый провод, а для лампочки — тонкий, хоть напряжение в обоих случаях 220В. Применительно к аккумуляторам и батареям (да и вообще ко всем источникам тока), можно говорить о внутреннем сопротивлении. Это сопротивление не даст вам получить большой ток за малое время, хотя аккумулятор при коротком замыкании очень к этому стремится — возникающая искра при замыкании клемм — это как раз несколько ампер тока при напряжении меньше вольта. Связано это с тем, что скорость ионов внутри аккумулятора не очень велика. Вязнут, бедняжки, по колено в полимере
  • Вт (Ватт(W), или милливатт — мВт, дальше вы поняли, да?) — в простейшем представлении, это мощность постоянного тока, вычисляемая умножением вольт на амперы. К примеру, БП ноутбука, который выдает 3А при напряжении в 20В, и лабораторный блок питания, выдающий 3В, при токе в 20А, отдадут в нагрузку одинаковую мощность в 60Вт. Потребят из сети они больше, из-за того, что их КПД не 100% — часть энергии перейдет в тепло.
  • Вт·ч (Ватт-час) — мера энергии. Из названия должно быть понятно, что 1 Вт·ч — это энергия, которую кто-то получит (или отдаст), принимая (или отдавая) мощность в 1Вт в течении часа. Или 60Вт в течении минуты. Вот тот БП выше, он как раз отдает каждый час 60Вт·ч. Вот это «правильная» емкость, которая не дает информации о самом аккумуляторе, но дает полное представление о его емкости.
    Еще есть киловатт-часы, кВт·ч — их пишут в квитанциях. Если оставить БП включенным, он выжрет энергии за месяц на 60Вт·ч*24*30 т.е. примерно на 43кВт·ч, или на 73 рубля. Разумеется, то, что выдает блок питания на выходе(те 20В и 3А) должен кто-то потреблять, ну и о КПД не забываем, это я упростил.
  • А·ч (ампер-часы) — Заряд. Общепринято, хоть и ошибочно называется емкостью. Почему ошибочно? Потому что без напряжения, по одной цифре 5А·ч нельзя ничего понять — это говорит лишь о том, что например аккумулятор может выдать ток в 5 ампер в течении часа. Или один ампер в течении 5 часов. А вот сколько будет выдано энергии в течении этого часа — зависит от напряжения питания и от прожорливости потребителя. Проще говоря, А·ч это Вт·ч, из которых выдрали вольты(Вт — В*А, если В убрать, останется А). Казалось бы, что может быть проще — на аккумуляторе написано 2А·ч, 3.7В, умножай 2 на 3.7, получай 7.4Вт·ч и радуйся. Но есть нюанс(с). Вот он:

    Это график разряда литиевого аккумулятора, на котором видно, что напряжение снижается к концу разряда. А это означает, что простое умножение А·ч на В (которое сработало бы в случае с блоком питания, выдающим стабильное напряжение), дает значение энергии с очень большой погрешностью. Для того, чтоб узнать, сколько ватт-часов в аккумуляторе, можно, например, построить график мощности (которую можно получить умножением мгновенных значений тока и напряжения) а потом найти площадь под кривой этого графика:

    Это сложнее, но зато в результате мы получаем ватт-часы.
  • xC — просто удобное обозначения тока заряда или разряда аккумулятора. Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2*емкость аккумулятора)/h или (0.1*емкость аккумулятора)/h.
    К примеру, аккумулятор емкостью 720mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5*720mAh/h = 360мА
О чтении даташитов

В гугле был найден даташит на аккумулятор, состоящий из одной странички:

Расшифрую, что там написано.
Думаю, что такое Nominal capacity и Minimum capacity всем понятно — обычная емкость, и минимальная емкость. Обозначение 0,2 С означает что такой емкости он достигает, только если его разряжать током в 0.2 от его емкости — 720*0.2=144мА.
Charding voltage и Nominal Voltage — Напряжение зарядки и напряжение работы тоже просто и понятно.
А вот следующий пункт уже сложнее — Зарядка.
Method: CC/CV — Означает, что первую половину процесса зарядки надо поддерживать постоянный ток(он указан ниже, 0.5С стандартно — т.е. 350мА, и 1С максимально — 700мА). А после достижения напряжения на аккумуляторе 4.2в, надо установить постоянное напряжение, те же самые 4.2в.
Пункт ниже — Standart Discharge, Разряд. Предлагают разряжать током от 0.5С — 350мА и до 2С — 1400мА до напряжения 3в. Производители лукавят — на таких токах емкость будет ниже заявленной.
Максимальный ток разряда как раз и определяется внутренним сопротивлением. Но надо различать максимальный ток разряда и максимально-допустимый. Если первый может составлять 5А, и даже более, то второй жестко оговорен — не более 1,4А. Связано это с тем, что при таких больших токах разряда аккумулятор начинает необратимо разрушаться.
Дальше идет информация о весе и температуре работы: зарядка от 0 до 45 градусов, разрядка от -20 до 60. Температура хранения: от -20 до 45 градусов, обычно при заряде 40%-50%.
Время жизни обещают не менее 300 циклов(полный разряд-заряд током 1С) при температуре 23 градуса. Это не означает, что после 300 цикла аккумулятор выключится и больше не включится, нет. Просто производитель гарантирует, что 300 циклов емкость аккумулятора падать не будет. А дальше — как повезет, зависит от токов, температуры, условий работы, партии, положения луны и так далее.
О зарядке

Стандартный метод, которым заряжаются все литиевые аккумуляторы(li-pol, li-ion, lifepo, только токи и напряжения отличаются) это СС-CV, упоминавшийся выше.
В самом начале заряда поддерживаем постоянный ток. Обычно это делают схемой с обратной связью в зарядном устройстве — автоматически подбирается такое напряжение, чтобы ток, проходящий через аккумулятор, был равен необходимому.
Как только это напряжение становится равно 4.2 вольтам(для описываемого аккумулятора), больше поддерживать такой ток нельзя — напряжение на аккумуляторе возрастет слишком сильно(мы помним, что нельзя превышать рабочее напряжение у литиевых аккумуляторов), и он может нагреться и даже взорваться.
Но сейчас аккумулятор заряжен не полностью — обычно на 60%-80%, и для зарядки остальных 40%-20% без взрывов ток надо снизить.
Проще всего это сделать, поддерживая постоянное напряжение на аккумуляторе, и он сам возьмет такой ток, который ему необходим. При снижении этого тока до 30-10мА аккумулятор считается заряженным.
Для иллюстрации всего вышеописанного я раскрасил в фотошопе подготовил график заряда, снятый с подопытного аккумулятора:

В левой части графика, подсвеченной синим, мы видим постоянный ток 0.7А, в то время как напряжение постепенно поднимается с 3.8В до 4.2В. Также видно, что за первую половину заряда аккумулятор достигает 70% своей емкости, в то время как за оставшееся время — всего 30%
О технологии тестирования

В качестве подопытного был выбран вот такой аккумулятор:

К нему был подключен Imax B6(я писал про него вот тут):

Который сливал на компьютер информацию о заряде-разряде. Графики строились в LogView.
Потом я просто подходил раз в несколько часов и попеременно включал заряд-разряд.
О результатах

В результате кропотливой работы(а вы сами попробуйте тыкать зарядку на протяжении 2 недель) были получены два графика:

Как понятно из его названия, он показывает изменение емкости аккумулятора на протяжении первых 10 циклов. Она немного плавает, но колебания составляют около 5% и не имеют тенденции. В целом, емкость аккумулятора не изменяется. Все точки сняты при разряде током 1С(0.7А), что соответствует активной работе смартфона.
Две из трех точек в конце графика — показывают, как изменяется емкость при низкой температуре аккумулятора. Последняя — как изменяется емкость при разряде большим током. Об этом следующий график:


Показывает, что чем больше ток разряда — тем меньше энергии можно получить с аккумулятора. Хотя, вот хохма, даже на самом мизерном токе в 100мА аккумулятор по емкости не соответствует даташиту. Все врут.

Хотя нет, тест аккумулятора от Mugen Power на 1900mAh для Zopo ZP100 показал вполне честные почти-два-ампера:

А вот китайский аккумулятор на 5000mAh набрал всего 3000:

О выводах

  1. Тренировка литиевых аккумуляторов, состоящих из одной банки, бессмысленна. Не вредна, но тратит циклы работы аккумуляторов. В мобильных устройствах тренировку нельзя даже оправдать работой контроллера — параметры аккумулятора одинаковы, не меняются в зависимости от модели и времени. Единственное, на что может влиять недостаточный разряд — на точность показаний индикатора заряда (но не на время работы), но для этого достаточно одной полной разрядки раз в полгода.
    Еще раз. Если у вас плеер, телефон, рация, кпк, планшет, дозиметр, мультиметр, часы или любой другой мобильный девайс, использующий аккумулятор Li-Ion или Li-Pol(если он съемный, на нем будет написано, если он не съемный — то 99% это литий) — «тренировка» длиннее одного цикла бесполезна. Один цикл тоже, скорее всего, бесполезен.
    Если у вас аккумулятор для управляемых моделей, то первые несколько циклов надо разряжать малыми токами(малыми, хе-хе. Для них малые — это 3-5С. Это вообще-то полтора ампера на 11 вольтах. А рабочие токи там до 20С). Ну, кто пользуется этими аккумуляторами, тот знает. А всем остальным это не пригодится, разве что для общего развития.
  2. В некоторых случаях, при использовании батарей с несколькими банками полный разряд-заряд может увеличить емкость. В батареях ноутбуков, если производитель поскупился на умный контроллер батареи, который не балансирует банки в последовательном соединении при каждом заряде, полный цикл может увеличить емкость на следующую пару циклов. Происходит это за счет выравнивания напряжения на всех банках, что приводит к их полному заряду. Несколько лет назад мне попадались ноутбуки с такими контроллерами. Сейчас не знаю.
  3. Не верьте надписям на этикетках. Особенно китайским. В прошлом топике я приводил ссылку, в которой огромный тест китайских батарей не выявил ни одной, емкость которой соответствовала надписи. НИ ОДНОЙ! Всегда завышают. А если не завышают, гарантируют емкость только в тепличных условиях и при разряде малым током.
  4. Держите аккумулятор в тепле. Смарт в кармане джинс будет работать немного дольше, чем в наружном кармане куртки. Разница может составлять 30%, а зимой и того больше.
  5. Подписывайтесь на меня. Сделать это можно в моем профиле(кнопка «подписаться»).

habr.com

Все особенности литий ионных аккумуляторов, их эксплуатации и зарядки – в одной статье! — Об электровелосипедах подробно — Блог — Статьи

Li-Ion аккумуляторы

Li-Ion аккумуляторы успешно используются в различных портативных устройствах. Востребованы они и при оснащении электроприводом транспортных средств. Аккумуляторные батареи этой группы не терпят превышения напряжения при заряде. Поэтому в целях безопасности они используются совместно с системой контроля и управления – BMS. Такие системы используются для ограничения тока заряда на границе 95% и степени разряда на значении 15–20%. Это важно для продления срока эксплуатации источников питания, поскольку при глубоком разряде литиевая АКБ теряет способность заряжаться.

Особенности литий ионных аккумуляторов зависят от содержащегося в них материала катода. По этому критерию семейство Li-Ion батарей подразделяется на 3 основных класса:

  1. LiCoO2 – имеют высокую удельную энергию, выдерживают средние нагрузки и отличаются небольшим сроком эксплуатации.
  2. LiMn2O4 – выдерживают высокие токи заряда и разряда, но служат относительно недолго и имеют большую удельную энергию.
  3. LiFePO4 – обладают увеличенным сроком службы, и низкую скорость саморазряда.

В таблице приведены характеристики и особенности литиевых аккумуляторов, с указанием усредненных значений параметров.

Тип Li-Ion батареи

Удельная плотность энергии, Втч/кг

Количество циклов разряда-заряда (до 80% разряда)

Время быстрой зарядки, ч

Номинальное напряжение в элементе, В

Напряжение отсечки при зарядке, В/эл., 1С

Напряжение отсечки при разряде, В/эл., 1С

LiCoO2

150–190

500–1000

2–4

3,6

4,2

2,7–3

LiMn2O4

100–135

500–1000

<1

3,7

4,2

2,7–3

LiFePO4

90–120

1000–2000

<1

3,2

3,6

2,5


Особенности Li-Ion аккумуляторов

Литий-ионные аккумуляторные батареи имеют:

  • низкую терпимость к перезарядке и глубокому разряду;
  • малое значение саморазряда – при комнатной температуре меньше 10% в месяц, обычно в 1-й месяц 46%, затем меньше;
  • незначительную потерю емкости за год – 5–10%;
  • температуру зарядки – от 0 до +45 С;
  • температуру разрядки (эксплуатации) от -20 до +60 °С;
  • рабочее напряжение – от 2,8 до 4,2 В;
  • требование к наличию защитного контура – у большинства Li-Ion аккумуляторов (кроме LiFePO4) нижняя граница 2,8 и верхняя 4,2 В.

Литий ионные аккумуляторы

Особенности зарядки литий ионных аккумуляторов

Основные особенности зарядки Li-ion аккумуляторов заключаются в следующем:

  1. Такие АКБ необходимо заряжать в комбинированном режиме CC/CV. Вначале – при стабильном токе (значением от 0,2С до 1С) до напряжения, зависящего от производителя батареи (обычно 4,2 В). Дальнейшая зарядка осуществляется при стабильном значении напряжения.
  2. Зарядка Li-Ion аккумуляторов током 1С длится 1,5 часа, а после достижения напряжения отсечки происходит плавное снижение зарядного тока примерно до 3% от начального значения.
  3. Нельзя заряжать литиевые АКБ при морозе.

Хранить Li-Ion батареи рекомендуется с уровнем заряда 40 75%, при температуре около 5 С. Хранение в прохладном месте (но не ниже 0 °С) значительно уменьшает саморазряд. Длительность хранения таких устройств колеблется от 2 до 5 лет. Стоит учесть, что литиевые АКБ подвержены старению – даже если они не эксплуатируются, а просто хранятся на полке, со временем их свойства ухудшаются.

Подробнее о том, как работают литий-ионные аккумуляторные батареи, читайте здесь.

www.voltbikes.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *