Схема контроллера литий ионного аккумулятора – Контроллер заряда в li-ion аккумуляторе: предназначение схемы

Содержание

Схема контроллера литий-ионного аккумулятора

Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора

Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC. Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки («банки») на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути «мозг» контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 — ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 — это MOSFET-транзисторы.

Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.

Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection Voltage — VOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release Voltage – VOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от переразряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection Voltage — VODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.

Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).

Тут есть весьма интересное условие. Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V  (Overdischarge Release Voltage — VODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за «смерть» аккумулятора. Вот лишь маленький пример.

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер — G2NK (серия S-8261), сборка полевых транзисторов — KC3J1.

Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.

При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.

Чтобы контроллер вновь подключил аккумулятор к «внешнему миру», то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (

VODR).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить «банку» аккумулятора, чтобы контроллер опять включил транзистор разряда — FET1?

Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе 

DW01-PG2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда — Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время — несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. 

Именно этим методом удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это 

более 9 часов! Вот столько может длиться «восстановительная» зарядка.

Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

 

Источник

< Предыдущая   Следующая >

bsh1.ru

Мощная LI-ION батарея своими руками

Приветствую, Самоделкины!

Как-то недавно у автора возникла необходимость в мощной литий-ионной батареи. В данной статье подробно рассмотрим, как правильно собирается батарея из литий-ионных банок стандарта 18650, короче, все по канонам. Думаю, будет интересно. В данном случае будем собирать батарею с напряжением 14,8В.


Чтобы получить литиевую батарею с таким напряжением, необходимо соединить последовательно 4 банки лития 18650. Для увеличения общей емкости, параллельно к каждой банке подключим еще по точно такой же. Все аккумуляторные банки в данном примере были взяты из старой батареи ноутбука. Автору повезло, и он по дешевке купил полностью рабочий аккумулятор, где было аж 8 банок.

Аккумуляторы, кстати, одни из лучших в своем роде, panasonic как никак. Выбор б/ушных банок в данном проекте обусловлен только тем, что они просто были в наличии у автора. Если же вы планируете собирать аккумулятор для серьезных дел, например, для электротранспорта, естественно предпочтение отдавайте новым, и желательно высоко токовым аккумулятором.

Их можно конечно же купить в Китае, например, заказать на сайте магазина Aliexpress, но советую прежде всего изучить ассортимент в местных магазинах, так как цены иногда могут даже не отличаться от китайских или же отличие может быть незначительным и к тому же ждать посылку не придется.

Так как автор решил использовать не новые аккумуляторы, а б/у, поэтому все банки прошли этап полного заряда с последующим разрядом.


Данная процедура необходима для выявления емкости аккумуляторов. И тут автору повезло, так как при разрядном токе в 1А, емкость почти всех аккумуляторов составила около 2300 мАч. Внутреннее сопротивление банок тоже было примерно одинаковым. Таким образом, общая емкость нашего аккумулятора будет около 4600 мАч при напряжении 14,8В. А в полностью заряженном состоянии, это напряжение будет доходить до 16,8В.

Затем необходимо очистить контакты банок от следов старой контактной сварки. Для этого автор использовал свой любимый подручный инструмент, который он ранее изготовил собственными руками.



Собственно, для этой цели понадобился сам инструмент, а так же специальная насадка для него.

Ранее, специально этого проекта, с Китая были заказаны пластиковые ячейки, которые применяются для сборки батарей с применением аккумуляторных банок стандарта 18650. Извлекаем ячейки из пакета, и соединяем между собой следующим образом:

Далее в отверстия каждой пластиковой ячейки устанавливаем по одному литий-ионному аккумулятору стандарта 18650.



Аккумуляторные банки будем соединять друг с другом при помощи никелевых шин, которые имеют следующие параметры:

Сперва необходимо нарезать никелевую шины на небольшие кусочки нужной длины. Затем приступаем к сварке.

Автор сваривал банки своим самопальным аппаратом для контактной сварки, который он ранее изготовил именно для таких целей.

Подключаем сварочный аппарат, электроды прижимаем к никелевой шине в месте необходимого контакта. Тут все довольно просто, ничего сложного.

Установлены банки таким образом, чтобы контакты для тока съема (или плюс и минус батареи), выходили с одной стороны, что очень удобно.

Аккумуляторные банки дополнительно необходимо зафиксировать, то есть склеить между собой. Это нужно для того, чтобы исключить обрыв точек сварки в случае долговременных вибраций аккумулятора, в общем, чтобы банки не шатались. В идеале для этого желательно использовать герметик. Но автор решает воспользоваться термоклеем. Горячим клеем, при помощи специального клеевого пистолета, проклеиваем места между аккумуляторов.


Проверим, все ли сделали правильно. Для этого подключаем измерительный инструмент (в данном случае мультиметр) и проверяем наличие напряжения на выводах только что собранной аккумуляторной батареи.

Прибор показывает 16.66В. Так и должно быть.
Теперь возьмем контроллер заряда.



Он выполняет несколько функций, в их числе защита аккумулятора от коротких замыканий, а также перезаряда и глубокого разряда. Данная плата как раз предназначена для 4 аккумуляторных банок. Ток срабатывания защиты данной платы составляет 30А. Автор его снизил в 2 раза (до 15А), убрав один из датчиков тока.

Теперь поработаем паяльником. Для начала необходимо облудить контакты нашей батареи.

Затем зачищаем провода от изоляции и их тоже необходимо облудить.




Далее размещаем плату контроллера заряда на подготовленное специально для нее место и припаиваем контакты аккумулятора к соответствующим контактам платы.






Затем приматывает плату контроллера заряда аккумулятора непосредственно к аккумуляторным банкам с помощью скотча.

Получаем единую конструкцию.

Проверяем.


Все работает. Вот так легко и просто можно собирать аккумуляторы с необходимым напряжением на выходе. Кстати, аккумуляторы, которые использовались автором, не являются высоко токовыми. Каждую банку можно разрядить токами не более 5А. С учетом того, что каждый блок у нас состоит из двух параллельно соединенных банок, получается, что такую аккумуляторную батарею можно разряжать током около 10А, а при 15 амперах уже сработает защита.

Благодарю за внимание. До новых встреч.

Видеоролик автора:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Полный обзор платы заряда Li-Ion аккумуляторов — ЭЛЕКТРОНИКА — Обзоры

Товар  можно купить тут

Всем радиолюбителям отлично знакомы платы заряда для одной банки li-ion аккумуляторов. Она пользуется большим спросом из за малой цены и неплохих выходных параметров. 
 

 

Применяется для зарядки ранее указанных аккумуляторов от напряжения 5 Вольт. Подобные платки находят широкое применение в самодельных конструкциях с автономным источником питания в лице литий-ионных аккумуляторов. 


Выпускают эти контроллеры в двух вариантах — с защитой и без. Те, что с защитой стоят чуток дорого. 

Защита выполняет несколько функций 

1) Отключает  аккумулятор при глубоком разряде, перезаряде,  перегрузке и к.з. 

 

Сегодня мы очень детально проверим эту платку и поймем соответствуют ли обещанные производителем параметры реальным, а также устроим иные тесты, погнали. 
Параметры платы приведены ниже 

А это схемы, верхняя с защитой, нижняя — без 

Под микроскопом заметно, что плата весьма неплохого качества. Двухсторонний стеклотекстолит, никаких «сополей», присутствует шелкография, все входы и выходы промаркированы, перепутать подключение не реально, если быть внимательным. 

 

 


Микросхема может обеспечить максимальный ток заряда в районе 1 Ампера, этот ток можно изменить подбором резистора Rх (выделено красным). 

А это  табличка выходного тока в зависимости от сопротивления ранее указанного резистора. 

 


Микросхема задает конечное напряжение зарядки  (около 4,2Вольт) и ограничивает ток заряда. На плате имеется два светодиода, красный и синий (цвета могут быть иными)  Первый горит в процессе заряда, второй когда аккумулятор полностью заряжен. 

Имеется Micro USB разъем, куда подается напряжение 5 вольт. 

Первый  тест. 
Проверим выходное напряжение, до которого будет заряжаться аккумулятор, оно должно быть в от 4,1 до 4,2В

 

Все верно, претензий нет. 

Второй тест
Проверим выходной ток, на этих платах по умолчанию выставлен максимальный ток, а это около 1А. 
Будем нагружать выход платы до тех пор, пока не сработает защита, этим имитируя большое потребление на входе или разряженный аккумулятор. 

Максимальный ток близок к заявленному, идем дальше. 

Тест 3
На место аккумулятора подключен лабораторный блок питания на котором заранее выставлено напряжение в районе 4-х вольт. Снижаем напряжение до тех пор пока защита не отключит аккумулятор, мультиметр отображает выходное напряжение.  

 

Как видим , при 2,4-2,5 вольтах напряжение на выходе пропало, т.е защита свое отрабатывает. Но это напряжение ниже критического, думаю 2,8 Вольт было бы самое оно, в общем не советую разряжать аккумулятор до такой степени, чтобы сработала защита. 

Тест 4
Проверка тока срабатывания защиты. 
Для этих целей была использована электронная нагрузка, плавно увеличиваем ток. 

Защита срабатывает на токах около 3,5 Ампер (отчетливо видно в ролике) 

Из недостатков замечу только то, что микросхема безбожно нагревается и не спасает даже теплоемкая плата, к стати — сама микросхема имеет подложку для эффективной теплоотдачи и эта подложка припаяна к плате, последняя играет роль теплоотвода. 

 

Добавить думаю нечего, все прекрасно видели, плата является отличным бюджетным вариантом, когда речь идет о контроллере заряда для одной банки Li-Ion аккумулятора небольшой емкости.  
Думаю это одна из самых удачных разработок китайских инженеров, которая доступна всем  из-за ничтожной цены. 
Счастливо оставаться !

www.kit-shop.org

Схемы Подключения Литиевых Аккумуляторов — tokzamer.ru

Правило 6. На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.


Имеется функция предварительного заряда см. Вариант зарядки от USB можно собрать, например, на такой печатной плате.

Очевидно, аккумулятор в 2 раза меньшей емкости при токе в 2 ампера примет столько же энергии, что и аккумуляторы большей емкости, но рост напряжения на нем будет идти примерно втрое быстрее. В качестве светодиодов нужно брать только светодиоды красного свечения, так как они обладают самым малым прямым напряжением при работе.
TP4056 — Модуль заряда Li-ion аккумуляторов c контроллером заряда

Однако, освещение вопроса зарядки литиевых аккумуляторов было бы неполным, если бы не был упомянут еще один этап заряда — т.

Работает очень просто.

Об этом Гайвер снял видео, поэтому не тратьте время, посмотрите его, там об этом максимально досконально.

Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.


Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Это связано с тем, что для литиевых аккумуляторов является крайне нежелательным их длительное нахождение под повышенным напряжением, которое обычно обеспечивает ЗУ то есть 4.

Переделка батареи шуруповерта Диолд 18 В на Li-Ion 4S 16,8 В

Заголовок по умолчанию

Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Все этапы заряда литий-ионного аккумулятора включая этап предзаряда схематично изображены на этом графике: Превышение номинального зарядного напряжения на 0,15В может сократить срок службы аккумулятора вдвое.

Правило 1. Если Вы авторизуетесь на сайте в качестве пользователя, Вы будете получать уведомления о новых материалах на сайте.

И что делать бедному радиолюбителю?

Резистор R1 задает максимальное значение зарядного тока. Вот, например, схема платы защиты от аккумулятора BP-6M, которыми снабжались старые нокиевские телефоны: Если говорить об , то они могут выпускаться как с платой защиты так и без нее.


Плюс имеется индикатор процесса заряда, а также индикация окончания зарядки.

Мощность резистора R1 — не менее 1 Ватт.

Ток заряда составляет — мА, это значение ограничено внутренними цепями микросхемы LP зависит от производителя. А вот параллельно соединять аккумуляторы разной емкости допустимо.
Последовательное подключение аккумуляторов

Читайте дополнительно: Пуэ кабельные линии до 1 кв

Есть два варианта соединения аккумуляторов, последовательное и параллельное.

Давайте рассмотрим как это нужно делать. На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2.

В основном батареи собирают последовательно-параллельно, а сами сборки служат для промежуточного или резервного хранения электроэнергии Известны и повсеместно применяются 3 варианта соединения отдельных аккумуляторов в батарею: последовательное, параллельное и смешанное или комбинированное. Последовательное соединение: При последовательном соединении элементов складываются и величины их внутренних сопротивлений. Тогда она будет выглядеть вот так согласитесь, проще некуда: пара резисторов и один кондер : Один из вариантов печатной платы доступен по этой ссылке.

Балансир включает стабилитрон TLA и транзистор односторонней прямой проводимости BDI 40 Отличные балансиры включены в схему зарядных устройств для литиевых аккумуляторов, которыми широко пользуются. Она будет определять напряжение на каждой ячейке и отключит всю сборку, если какая-то разрядится первой. MCP Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX

Если разобрать аккумулятор от мобильного телефона, мы обнаружим внутри вот такое нехитрое устройство: Это и есть плата защиты аккумулятора. Данная схема полноценно реализует двухэтапный процесс заряда литиевых аккумуляторов — сначала зарядка постоянным током, затем переход к фазе стабилизации напряжения и плавное снижение тока практически до нуля.

Вряд ли. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда?


Теперь допустим, что мы разряжаем эту же последовательную цепь. И можно подключать аккумулятор. Вручную трудно выставлять и поддерживать на обычном блоке питания указанные выше режимы, поэтому лучше всё-таки использовать специальные микросхемы, предназначенные для автоматизации процесса заряда схемы смотрите в этом разделе.

Параллельное соединение батарей с формулами Параллельное соединение осуществляется путем коммутации однополюсных выводов источников тока: плюсовой и минусовой выводы предыдущего аккумулятора соединяются с одноименными выводами последующего. При равных емкостях объединяемых аккумуляторов, для нахождения емкости батареи достаточно умножить количество составляющих батарею аккумуляторов на емкость одного аккумулятора в сборке. На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2. Одновременно с этим создаются все предпосылки для перегрева и разгерметизации. Сразу предупредим, что зарядка этого типа аккумуляторов является довольно опасной, если сделать это неправильно.

Подобная схема приведена в следующем варианте. Вот как эта плата установлена в литий-ионный АКБ. Тогда она будет выглядеть вот так согласитесь, проще некуда: пара резисторов и один кондер : Один из вариантов печатной платы доступен по этой ссылке. Аккумулятор разрядился ниже 2,5V. Единственное, что он не умеет делать автоматически, это принимать решение о полной зарядке аккумулятора и отключаться.
Плата защиты LI-ION — КАК ЭТО РАБОТАЕТ?

Содержание / Contents

Именно этот способ использует компания Sony во всех своих зарядниках.

При параллельном соединении пяти аккумуляторов получаем емкость равную мАч.

Во-первых есть ассортимент специализированных микросхем.

Зарядка при помощи лабораторного блока питания Если в вашем распоряжении имеется блок питания с защитой ограничением по току, то вы спасены! То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

При увеличении емкости аккумуляторных батарей увеличиваются и токи. Что бы получить 11,1 В нужно соединить последовательно три батареи. Если в ваш аккумулятор встроена плата защиты, о которых речь шла чуть выше, то все упрощается.

Вот таким образом: Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 R4 добиваемся зажигания светодиода в нужный нам момент. Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, предотвращающие глубокий разряд. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Если заряжаете 3s — берёте три телефонных зарядки и подключаете каждую к одному модулю.

Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Ну а транзистор TIP41 можно заменить любым другим с подходящим током коллектора.

В таких случаях для комплектования батареи применяется параллельное соединение аккумуляторов. Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА.
Самый дешёвый способ зарядки аккумуляторов с балансировкой

tokzamer.ru

Схема контроллера литий-ионного аккумулятора

Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора

Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC. Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки («банки») на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути «мозг» контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 — ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 — это MOSFET-транзисторы.

Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.

Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection Voltage — VOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release Voltage – VOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от переразряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection Voltage — VODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.

Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).

Тут есть весьма интересное условие. Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V  (Overdischarge Release Voltage — VODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за «смерть» аккумулятора. Вот лишь маленький пример.

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер — G2NK (серия S-8261), сборка полевых транзисторов — KC3J1.

Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.

При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.

Чтобы контроллер вновь подключил аккумулятор к «внешнему миру», то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить «банку» аккумулятора, чтобы контроллер опять включил транзистор разряда — FET1?

Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-PG2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда — Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время — несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. 

Именно этим методом удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов! Вот столько может длиться «восстановительная» зарядка.

Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

 

Источник

< Предыдущая   Следующая >

bsh1.ru

Схема контроллера литий-ионного аккумулятора

Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора

Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC. Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки («банки») на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути «мозг» контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 — ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 — это MOSFET-транзисторы.

Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.

Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection Voltage — VOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release Voltage – VOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от переразряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection Voltage — VODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.

Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).

Тут есть весьма интересное условие. Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V  (Overdischarge Release Voltage — VODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за «смерть» аккумулятора. Вот лишь маленький пример.

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер — G2NK (серия S-8261), сборка полевых транзисторов — KC3J1.

Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.

При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.

Чтобы контроллер вновь подключил аккумулятор к «внешнему миру», то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить «банку» аккумулятора, чтобы контроллер опять включил транзистор разряда — FET1?

Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-PG2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда — Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время — несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. 

Именно этим методом удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов! Вот столько может длиться «восстановительная» зарядка.

Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

 

Источник

< Предыдущая   Следующая >

bsh1.ru

LTC4054 Контроллер заряда литиевых аккумуляторов / Деталька / Сообщество EasyElectronics.ru

Недавно возникла необходимость в зарядном устройстве для литиевых аккумуляторов. Покупать готовое решение не хотелось, тем более под рукой была плата от старого нерабочего телефона Samsung X100 с этой микросхемой на борту. Ее также можно найти и на платах от других моделей телефонов Samsung(C100, С110, Х100, E700, E800, E820, P100, P510).

Микросхема выпускается в небольшом, но удобном для пайки корпусе. Маркировка «LTH7» или «LTADY», разницы в них нет, это один и тот же контроллер.


Вдаваться в мельчайшие подробности работы с микросхемой вроде мудреных формул с зависимостью от таких параметров, как температурное сопротивление печатной платы, я не буду. Опишу только самые необходимые особенности.
  • Ток заряда до 800мА(по крайней мере, так указано в даташите)
  • Оптимальное напряжение питания от 4,3 до 6 вольт
  • Индикация заряда
  • Защита от КЗ на выходе
  • Защита от перегрева(снижение тока заряда при температуре больше 120 градусов)
  • Минимальное число дополнительных деталей в схеме

Индикация: на первую ножку можно просто повесить светодиод, который будет гореть во время заряда, а можно встроить цепь заряда в цифровое устройство и следить за ее состоянием с помощью микроконтроллера.

Ток заряда: задается резистором между пятым выводом микросхемы и землей по формуле I=1000/R, где I-ток заряда в амперах, R-сопротивление резистора в омах.
Внимание! Не стоит сразу ставить высокий ток заряда, лучше начинать подбирать сопротивление с меньших токов и следить за температурой микросхемы. Она имеет свойство весьма ощутимо греться.
Я остановился на сопротивлении 3 килоома, ток ~300мА, во время заряда плата теплая, но не горячая.

Теплоотвод: микросхема выполнена в очень маленьком корпусе, от которого все же необходимо отводить тепло. Возможности поставить ее на радиатор нет, поэтому производитель советует оставлять на печатной плате вокруг нее большое количество меди(особенно на земле), использовать по возможности более широкие дорожки.

Плату сделал под разъем MiniUSB и SMD компоненты.

Зарядное устройство испытано на аккумуляторах от телефонов, работает стабильно.

Даташит
В архиве ниже печатная плата(SprintLayout).

we.easyelectronics.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *