Саморазряд литий ионных аккумуляторов: Саморазряд li-ion аккумуляторов или какая емкость останется в аккумуляторах через 6 месяцев

Саморазряд li-ion аккумуляторов или какая емкость останется в аккумуляторах через 6 месяцев

Сколько mAh останется в li-ion аккумуляторе после его долго хранения или другими словами — как сильно происходит саморазряд аккумуляторов?

Мы решили провести небольшой опыт — взяли три аккумулятора 18650 разных моделей, сняли их характеристики (кривая разряда и емкость), зарядили их и убрали в дальний ящик. Через 6 месяцев мы их достали и измерили какая емкость в  них осталась.

В тесте участвовали:

  • Sanyo NCR18650BF
  • Panasonic NCR18650B
  • Samsung INR18650-25R

Sanyo и Panasonic являются низкотоковыми аккумуляторами, Samsung INR18650-25R — высокотоковая модель.

Содержание

Sanyo NCR18560BF

Новый аккумулятор сразу после заряда отдал 3341mAh и 12,03wh. Потом аккумулятор был заряжен до 4,2 Вольт и через 6 месяцев хранения отдал 3186mAh и 11,43wh. Что составляет 95,4 % по емкости (mAh) и 95,0% по энергии (wh) от первоначальных значений. Напряжение на аккумуляторе через 6 месяцев снизилось до 4,14 Вольт. Таким образом, в процессе хранения аккумулятор потерял всего лишь около 5% своего заряда. Очень хороший результат.

Саморазряд аккумулятора Sanyo NCR18650BF

Panasonic NCR18650B

Новый аккумулятор сразу после заряда отдал 3280mAh и 11,78wh. Потом аккумулятор был заряжен до 4,2 Вольт и через 6 месяцев хранения отдал 3098mAh и 11,07wh. Что составляет 94,5 % по емкости (mAh) и 94,0% по энергии (wh) от первоначальных значений. Напряжение на аккумуляторе через 6 месяцев снизилось до 4,12 Вольт. В процессе хранения Panasonic NCR18650B потерял всего лишь около 6% своего заряда. Тоже отличный результат.

Саморазряд аккумулятора Panasonic NCR18650B

Samsung INR18650-25R

Новый аккумулятор сразу после заряда отдал 2563mAh и 9,37wh. Потом аккумулятор был заряжен до 4,2 Вольт и через 6 месяцев хранения отдал 2297mAh и 8,31wh. Что составляет 89,6 % по емкости (mAh) и 88,6% по энергии (wh) от первоначальных значений. Напряжение на аккумуляторе через 6 месяцев снизилось до 4,09 Вольт. В процессе хранения Samsung INR18650-25R потерял немного больше 10% своего первоначального заряда.

Саморазряд аккумулятора Samsung INR18650-25R

Выводы

Низкотоковые аккумуляторы типа NCR имеют достаточно низкий саморазряд и за полгода хранения в заряженном состоянии при комнатной температуре теряют всего около 5% емкости. Высокотоковые аккумуляторы типа INR имеют гораздо более сильный саморазряд.

Саморазряд li-ion аккумуляторов 18650

Литий-серные аккумуляторы для будущих космических программ / Хабр На сегодняшний день, аккумуляторы в космических программах используются в основном как резервные источники питания, когда аппараты находятся в тени и не могут получать энергию от солнечных батарей, или в скафандрах для выхода в открытый космос. Но используемые сегодня типы аккумуляторов (Li-ion, Ni-H
2
) имеют ряд ограничений. Во-первых, они слишком громоздкие, так как предпочтение отдаётся не энергоёмкости, а безопасности, в результате множественные защитные механизмы уменьшению объёма совсем не способствуют. И во-вторых, современные аккумуляторы имеют температурные ограничения, а в будущих программах, в зависимости от местоположения, температуры могут варьироваться в диапазоне от -150 °C до +450 °C.

Источник

К тому же, не стоит забывать и повышенный радиационный фон. В общем, будущие аккумуляторы для космической отрасли должны быть не только компактными, долговечными, безопасными и энергоёмкими, но и работать при высоких или низких температурах, а также в условиях повышенного радиационного фона. Естественно, на сегодняшний день такой волшебной технологии не существует. Но тем не менее, существуют перспективные научные разработки, которые пытаются приблизится к требованиям для будущих программ. В частности, хотелось бы рассказать про одно направление в исследованиях, которое поддерживается NASA в рамкам программы Game Changing Development (GCD).

Так как совместить все вышеперечисленные технические характеристики в одной батарейке-задача трудновыполнимая, главная цель NASA на сегодняшний день-получить более компактные, энергоёмкие, и безопасные аккумуляторы. Как же достигнуть этой цели?

Начнём с того, что для значительного увеличения энергоёмкости на единицу объёма необходимы батарейки с принципиально новыми материалами для электродов, так как возможности литий-ионных аккумуляторов (Li-ion) ограничены ёмкостями материалов для катода (около 250 мАч/г для оксидов) и анода (около 370 мАч/г для графита), а также пределами напряжений, в которых электролит стабилен. И одна из технологий, позволяющая увеличить ёмкость, используя принципиально новые реакции взамен интеркаляции на электродах- это литий-серные аккумуляторы (Li-S), анод которых содержит металлический литий, а в виде активного материала для катода используется сера. Работа литий-серного аккумулятора в чём-то похожа на работу литий-ионного: и там, и там в переносе заряда участвуют ионы лития. Но в отличии от Li-ion, ионы в Li-S не встраиваются в слоистую структуру катода, а вступают с ним в следующую реакцию:

2 Li + S -> Li2S

Хотя на практике, реакция на катоде скорее выглядит так:
S8 -> Li2S8 -> Li2S6 -> Li2S4 -> Li2S2 ->Li2S


Источник

Основное преимущество такого аккумулятора — высокая ёмкость, превышающая ёмкость литий-ионных аккумуляторов в 2-3 раза. Но на практике не всё так радужно. При повторных зарядках, ионы лития оседают на аноде как попало, образуя металлические цепочки (дендриты), которые в конце концов приводят к короткому замыканию. К тому же, реакции между литием и серой на катоде приводят к большим изменениям объёма материала (до 80%), так что электрод быстро разрушается, да и сами соединения с серой-плохие проводники, поэтому в катод приходится добавлять много углеродного материала. И последнее, самое главное- промежуточные продукты реакции (полисульфиды) постепенно растворяются в органическом электролите и «путешествуют» между анодом и катодом, что приводит к очень сильному саморазряду.

Но все вышеперечисленные проблемы пытается решить группа учёных из университета Мэриленда (UMD), которая и выиграла грант от NASA. Так как же учёные подошли к решению всех этих проблем? Во-первых, они решили «атаковать» одну из главных проблем литий-серных аккумуляторов, а именно, саморазряд. И вместо жидкого органического электролита, который, как было сказано выше, постепенно растворяет активные материалы, они использовали твёрдый керамический электролит, а точнее, Li

6PS5Cl, который достаточно хорошо проводит ионы лития через свою кристаллическую решётку.

Но если твёрдые электролиты решают одну проблему, они также создают и дополнительные трудности. К примеру, большие изменения объёма катода во время реакции могут привести к быстрой потере контакта между твёрдыми электродом и электролитом, и резкому падению ёмкости аккумулятора. Поэтому учёные предложили элегантное решение: они создали нанокомпозит, состоящий из наночастиц активного материала катода (LI

2S) и электролита (Li6PS5Cl), заключённых в углеродную матрицу.


Источник

Данный нанокомпозит имеет следующие преимущества: во-первых, распределение наночастиц материала, который меняется в объёме при реакции с литием, в углероде, объём которого практически не меняется, улучшает механические свойства нанокомпозита (пластичность и прочность) и уменьшает риск растрескивания. К тому же, углерод не только улучшает проводимость, но и не препятствует движению ионов лития, так как имеет также хорошую ионную проводимость. A за счёт того, что активные материалы наноструктурированы, литию не надо продвигаться на большие расстояния чтобы вступить в реакцию, и весь объём материала используется более эффективно. И последнее: использование такого композита улучшает контакт между электролитом, активным материалом, и проводящим углеродом.

В результате учёные получили полностью твёрдый аккумулятор с ёмкостью около 830 мАч/г. Конечно, говорить о запуске такого аккумулятора в космос пока рано, так как работает такая батарейка в течении всего 60 циклов зарядки/разрядки. Но в тоже время, несмотря на такую быструю потерю ёмкости, 60 циклов- это уже значительное улучшение по сравнению с предыдущими результатами, так как до этого твёрдые литий-серные аккумуляторы не работали больше 20 циклов. Также следует отметить, что подобные твёрдые электролиты могут работать в большом диапазоне температур (к слову, лучше всего они работают при температурах выше 100 °С), так что температурные ограничения такого аккумуляторы будут скорее обусловлены активными материалами, нежели электролитом, что выгодно отличает такие системы от аккумуляторов, использующих в виде электролита органические растворы.

история создания литий-ионных аккумуляторов / Блог компании Toshiba / Хабр

Перед тем как перейти к чтению, посчитайте, сколько устройств с аккумуляторами находится рядом с вами в радиусе нескольких метров. Наверняка, вы увидите смартфон, планшет, «умные» часы, фитнес-трекер, ноутбук, беспроводную мышь? Во всех этих устройствах установлены литий-ионные аккумуляторы — их изобретение можно считать одним из самых важных событий в области энергетики.

Легкие, ёмкие и компактные литий-ионные аккумуляторы способствовали буму портативной электроники, существование которой ранее было невозможным. Вот только гаджеты за последние 30 лет совершили фантастический технологический скачок, а современные литий-ионные аккумуляторы почти не отличаются от первых серийных образцов начала 1990-х годов. Кто и как изобрел литий-ионные перезаряжаемые батареи, какие составы в них используются и существует ли мировой заговор против «вечных» аккумуляторов? Рассказываем.

Легенда о первой батарейке


Между первой попыткой добыть электричество химическим способом и созданием литий-ионных аккумуляторов прошло, возможно, два тысячелетия. Существует неподтверждённая догадка, что первым рукотворным гальваническим элементом в истории человечества была «багдадская батарейка», найденная в 1936 году близ Багдада археологом Вильгельмом Кёнигом. Находка, датируемая II-IV веком до н. э., представляет собой глиняный сосуд, в котором находятся медный цилиндр и железный стержень, пространство между которыми могло заполняться «электролитом» — кислотой или щелочью. Современная реконструкция находки показала, что при заполнении сосуда лимонным соком можно добиться напряжения до 0,4 вольт.


«Багдадская батарейка» вполне похожа на портативный аккумулятор. Или чехол для папирусов? Источник: Ironie / Wikimedia


Для чего могла использоваться «багдадская батарейка», если до открытия электричества оставалась пара тысяч лет? Возможно, ее использовали для аккуратного нанесения золота на статуэтки методом гальванизации — тока и напряжения с «батарейки» для этого вполне хватает. Впрочем, это только теория, ибо никаких свидетельств об использовании электричества и этой самой «батарейки» древними народами до нас не дошло: позолоту в то время наносили методом амальгамирования, а сам необычный сосуд с тем же успехом мог быть всего лишь защищенным контейнером для свитков.

Теория небольшого взрыва


Русская поговорка «Не было бы счастья, да несчастье помогло» как нельзя лучше иллюстрирует ход работ над литий-ионными батареями. Без одного неожиданного и неприятного происшествия создание новых аккумуляторов могло бы задержаться на несколько лет.

Еще в 1970-х годах британец Стэнли Уиттингэм (Stanley Whittingham), работавший в топливно-энергетической компании Exxon, при создании перезаряжаемой литиевой батареи использовал анод из сульфида титана и литиевый катод. Первая перезаряжаемая литиевая батарея демонстрировала сносные показатели по току и напряжению, только периодически взрывалась и травила окружающих газом: дисульфид титана при контакте с воздухом выделял сероводород, дышать которым как минимум неприятно, как максимум — опасно. Помимо этого, титан во все времена был очень дорогим, а в 1970-е цена дисульфида титана составляла порядка $1000 за килограмм (эквивалент $5000 в наше время). Не говоря уже о том, что металлический литий на воздухе горит. Так что Exxon свернули проект Уиттингэма от греха подальше.

В 1978 году Коити Мидзусима (Koichi Mizushima), защитивший докторскую по физике, занимался исследовательской работой в Токийском университете, когда из Оксфорда ему пришло приглашение присоединиться к группе Джона Гуденафа (John Goodenough), занимавшейся поиском новых материалов для батарейных анодов. Это был очень многообещающий проект, так как потенциал литиевых источников питания уже был известен, но укротить капризный металл толком никак не удавалось — недавние эксперименты Уиттингэма показывали, что до начала серийного производства желанных литий-ионных батарей еще далеко.

В экспериментальных аккумуляторах использовались литиевый катод и сульфидный анод. Превосходство сульфидов над другими материалами в анодах задало Мидзусиме и его коллегам направление для поисков. Ученые заказали в свою лабораторию печь для производства сульфидов прямо на месте, чтобы быстрее экспериментировать с различными соединениями. Работа с печью закончилась не очень хорошо: в один день она взорвалась и вызвала пожар. Инцидент заставил команду исследователей пересмотреть свои планы: возможно, сульфиды, несмотря на их эффективность, были не лучшим выбором. Ученые сместили свое внимание в сторону оксидов, синтезировать которые было гораздо безопасней.

После множества тестов с различными металлами, в том числе железом и марганцем, Мидзусима обнаружил, что оксид литий-кобальта демонстрирует наилучшие результаты. Вот только использовать его надо не так, как до этого предполагала команда Гуденафа, — искать не материал, поглощающий ионы лития, а материал, который охотнее всего отдает ионы лития. Кобальт подходил лучше прочих ещё и потому, что отвечает всем требованиям по безопасности и к тому же повышает напряжение элемента до 4 вольт, то есть вдвое больше по сравнению с ранними вариантами батарей.

Применение кобальта стало важнейшим, но не последним шагом в деле создания литий-ионных аккумуляторов. Справившись с одной проблемой, ученые столкнулись с другой: плотность тока оказалась слишком мала, чтобы использование литий-ионных элементов было экономически оправданным. И команда, совершившая один прорыв, совершила и второй: при уменьшении толщины электродов до 100 микрон удалось повысить силу тока до уровня других типов аккумуляторов, при этом с удвоенным напряжением и емкостью.

Первые коммерческие шаги


На этом история изобретения литий-ионных батарей не заканчивается. Несмотря на открытие Мидзусимы, у команды Гуденафа ещё не было образца, готового к серийному производству. Из-за использования металлического лития в катоде во время заряда аккумулятора ионы лития возвращались на анод не ровным слоем, а дендритами — рельефными цепочками, которые, вырастая, вызывали короткое замыкание и фейерверк.

В 1980 году марокканский ученый Рашид Язами (Rachid Yazami) обнаружил, что графит отлично справляется с ролью катода, при этом он абсолютно пожаробезопасен. Вот только существующие в то время органические электролиты быстро разлагались при соприкосновении с графитом, поэтому Язами заменил их твердым электролитом. Графитовый катод Язами был вдохновлен открытием проводимости полимеров профессором Хидэки Сиракавой (Hideki Shirakawa), за что тот получил Нобелевскую премию по химии. А графитовый катод Язами до сих пор используется в большинстве литий-ионных аккумуляторов.

Запускаем в производство? И снова нет! Прошло еще 11 лет, исследователи повышали безопасность батарей, повышали напряжение, экспериментировали с разными материалами катода, прежде чем в продажу поступил первый литий-ионный аккумулятор.
Коммерческий образец был разработан Sony и японским химическим гигантом Asahi Kasei. Им стала батарея для пленочной любительской видеокамеры Sony CCD-TR1. Она выдерживала 1000 циклов зарядки, а остаточная емкость после такого износа была вчетверо выше, чем у никель-кадмиевого аккумулятора аналогичного типа.

Кобальтовый камень преткновения


До открытия Коити Мидзусимой литий-кобальтового оксида кобальт не был особо востребованным металлом. Его основные залежи были обнаружены на территории Африки в государстве, сейчас известном как Демократическая Республика Конго. Конго является крупнейшим поставщиком кобальта — 54% этого металла добывается здесь. Из-за политических потрясений в стране в 1970-х цена на кобальт взлетала на 2000%, но позже вернулась к прежним значениям.

Высокий спрос рождает высокие цены. Ни в 1990-х, ни в 2000-х годах кобальт не был одним из главных металлов на планете. Но что началось с популяризацией смартфонов в 2010-е! В 2000 году спрос на металл составлял примерно 2700 тонн в год. К 2010-му, когда по планете победно шагали iPhone и Android-смартфоны, спрос подскочил до 25000 тонн и продолжил расти год от года. Сейчас количество заказов превышает объем продаваемого кобальта в 5 раз. Для справки: более половины добываемого в мире кобальта идет на производство батарей.


График цен на кобальт за последние 4 года. Комментарии излишни. Источник: Elec.ru

Если в 2017 году цена за тонну кобальта составляла в среднем $24000, то с 2017 года она пошла круто вверх, в 2018 году достигнув пика на отметке $95500. Хоть в смартфонах используется всего 5-10 грамм кобальта, рост цен на металл отразился на стоимости устройств.

И это же одна из причин, почему производители электрокаров озаботились уменьшением доли кобальта в аккумуляторах автомобилей. Например, Tesla снизила массу дефицитного металла с 11 до 4,5 кг на одну машину, а в будущем планирует найти эффективные составы без кобальта вообще. Поднявшаяся аномально высоко цена на кобальт к 2019 году опустилась до значений 2015 года, но разработчики батарей активизировали работу по отказу или снижению доли кобальта.

В традиционных литий-ионных батареях кобальт составляет порядка 60% от всей массы. Используемый в автомобилях литий-никель-марганцевый состав включает от 10% до 30% кобальта в зависимости от желаемых характеристик батареи. Литий-никель-алюминиевый состав — всего 9%. Однако эти смеси не являются полноценной заменой оксиду литий-кобальта.

Проблемы Li-Ion


На сегодняшний день литий-ионные батареи различных типов — это лучшие аккумуляторы для большинства потребителей. Ёмкие, мощные, компактные и недорогие, они всё же имеют серьёзные недостатки, ограничивающие область использования.

Пожароопасность. Для нормальной работы литий-ионному аккумулятору обязательно нужен контроллер питания, предотвращающий перезаряд и перегрев. В противном случае батарея превращается в очень пожароопасную вещь, норовящую раздуться и взорваться на жаре или при заряде от некачественного адаптера. Взрывоопасность — пожалуй, главный недостаток литий-ионных аккумуляторов. Для повышения ёмкости внутри батарей уплотняется компоновка, из-за чего даже незначительное повреждение оболочки моментально приводит к пожару. Все помнят нашумевшую историю с Samsung Galaxy Note 7, в которых из-за тесноты внутри корпуса оболочка аккумулятора со временем перетиралась, внутрь проникал кислород и смартфон внезапно вспыхивал. С тех пор некоторые авиакомпании требуют перевозить литий-ионные батареи только в ручной клади, а на грузовых рейсах на упаковки с батареями лепят большую предупреждающую наклейку.


Разгерметизация — взрыв. Перезаряд — взрыв. За энергетический потенциал лития приходится платить мерами предосторожности

Старение. Литий-ионные батареи подвержены старению, даже если их не использовать. Поэтому купленный в качестве коллекционного нераспакованный смартфон 10-летней давности, например, самый первый iPhone, будет держать заряд значительно меньше из-за того самого старения батареи. Кстати, рекомендации хранить аккумуляторы заряженными до половины емкости имеют под собой основания — при полном заряде во время долгого хранения батарея гораздо быстрее теряет свою максимальную ёмкость.

Саморазряд. Накапливать в литий-ионных батареях энергию и хранить ее долгие годы — плохая идея. В принципе, все аккумуляторы теряют заряд, но литий-ионные делают этого особенно быстро. Если NiMH-ячейки теряют 0,08–0,33% за месяц, то Li-Ion-ячейки — по 2-3% в месяц. Таким образом, за год литий-ионных аккумулятор потеряет треть заряда, а через три года «сядет» до нуля. Справедливости ради скажем, что у никель-кадмиевых батарей всё ещё хуже — 10% в месяц. Но это совсем другая история.

Чувствительность к температуре. Охлаждение и перегрев сильно влияют на параметры такого аккумулятора: +20 °C градусов считаются идеальной температурой окружающей среды для литий-ионных батарей, если её уменьшить до +5 °C, то батарея отдаст устройству на 10% энергии меньше. Охлаждение ниже нуля забирает от емкости десятки процентов и к тому же влияет на здоровье аккумулятора: если пытаться его зарядить, например, от пауэр-банка — проявится «эффект памяти», а батарея безвозвратно потеряет емкость из-за образования на аноде металлического лития. При средних зимних российских температурах литий-ионная ячейка нефункциональна — оставьте телефон в январе на улице на полчаса, чтобы убедиться в этом.

Чтобы справиться с описанными проблемами, ученые экспериментируют с материалами анодов и катодов. При замене состава электродов одна большая проблема заменяется проблемами поменьше — пожаробезопасность влечет снижение жизненного цикла, а высокий ток разряда понижает удельную энергоемкость. Поэтому состав для электродов выбирается в зависимости от области применения аккумулятора.

Кто украл революцию?


Каждый год на новостных лентах появляются сообщения об очередном прорыве в деле создания чрезвычайно ёмких и выносливых аккумуляторов — вроде как, смартфоны будут работать по году без подзарядки, а заряжаться — за десять секунд. И где же та аккумуляторная революция, которую всем обещают учёные?

Часто в таких сообщениях журналисты передергивают факты, опуская какие-нибудь очень важные подробности. Например, у батареи с мгновенной зарядкой может оказаться очень низкая ёмкость, годная только для питания прикроватного будильника. Или напряжение не дотягивает и до одного вольта, хотя для смартфонов нужно 3,6 В. А ещё для получения путевки в жизнь аккумулятору нужно иметь низкую себестоимость и высокую пожаробезопасность. К сожалению, подавляющее большинство разработок уступало хотя бы по одному параметру, из-за чего «революционные» аккумуляторы так и не выходили за пределы лабораторий.


В конце 00-х Toshiba экспериментировала с перезаряжаемыми топливными ячейками на метаноле (на фото заправка батареи метанолом), но литий-ионные аккумуляторы всё равно оказались удобней. Источник: Toshiba

И, конечно, оставим в стороне теорию заговоров «производителям не выгодны бесконечные аккумуляторы». В наше время аккумуляторы в потребительских устройствах незаменяемые (вернее, поменять их можно, но сложно). 10-15 лет назад заменить испорченную батарею в мобильном телефоне было просто, но тогда источники питания и правда сильно теряли ёмкость за год-два активного использования. Современные литий-ионные аккумуляторы работают дольше, чем составляет средний жизненный цикл устройства. В смартфонах о замене батареи можно задумываться не ранее, чем через 500 циклов зарядки, когда она потеряет 10-15% емкости. И скорее сам телефон утратит актуальность, прежде чем аккумулятор окончательно выйдет из строя. То есть производители аккумуляторов зарабатывают не на замене, а на продаже батарей для новых устройств. Так что «вечная» батарейка в десятилетнем телефоне не нанесёт ущерба бизнесу.

Команда Гуденафа снова в деле


А что же стало с учеными группы Джона Гуденафа, совершившими открытие литий-кобальтового оксида и тем самым давшими жизнь эффективным литий-ионным аккумуляторам?

В 2017 году 94-летний Гуденаф заявил, что вместе с учеными Техасского университета разработал новый тип твердотельных аккумуляторов, которые могут хранить в 5-10 раз больше энергии, чем прежние литий-ионные батареи. Для этого электроды были сделаны из чистого лития и натрия. Обещана и низкая цена. Но конкретики и прогнозов о начале массового производства нет до сих пор. Учитывая долгий путь между открытием группы Гуденафа и началом серийного производства литий-ионных батарей, реальные образцы можно ждать лет через 8-10.

Коити Мидзусима продолжает исследовательскую работу в Toshiba Research Consulting Corporation. «Оглядываясь назад, я удивляюсь тому, что никто до нас не догадался использовать на аноде такой простой материал как оксид литий-кобальта. К тому моменту было испробовано множество других оксидов, поэтому, вероятно, если бы не мы, то в течение нескольких месяцев кто-нибудь другой совершил бы это открытие», — считает он.


Коити Мидзусима с наградой Королевского химического общества Великобритании, полученной за участие в создании литий-ионных аккумуляторов. Источник: Toshiba

История не терпит сослагательных наклонений, тем более что и сам господин Мидзусима признает, что прорыв в создании литий-ионных аккумуляторов был неизбежен. Но всё же интересно представить, каким был бы мир мобильной электроники без компактных и емких батарей: ноутбуки с толщиной в несколько сантиметров, огромные смартфоны, требующие зарядки два раза в день, и никаких умных часов, фитнес-браслетов, экшн-камер, квадрокоптеров и даже электромобилей. Каждый день ученые всего мира приближают новую энергетическую революцию, которая подарит нам более мощные и более компактные аккумуляторы, а вместе с ними — невероятную электронику, о которой мы пока можем только мечтать.

Как продлить жизнь (ресурс) литий-ионной аккумуляторной батареи / Хабр

Долго думал, как преподнести материал, и, в конце концов, решил, что его нужно подавать в виде отдельных фактов, касающихся жизни реальных литий-ионных батарей. Так что начнем…

Литий-ионные аккумуляторы больше страдают от процесса «старения» (ухудшение характеристик на протяжении времени), чем от циклирования. Это означает, что большинство аккумуляторов не может служить свыше 5 лет при обычных условиях эксплуатации (оптимистичный прогноз). Мораль такова — если покупаете литий-ионный аккумулятор, внимательно относитесь к дате изготовления — при полугодовой давности вы потеряете 10% от заявленого ресурса.

Старение батарей ускоряется при работе или хранении в жарких условиях – смотри таблицу для литий-кобальтовых аккумуляторов (для литий-марганцевых и литий-железных батарей результаты немного лучше)

Деградация характеристик литий-кобальтовых аккумуляторов всвязи с температурой хранения
Температура, °C 40% уровень заряда (рекомендуемый уровень заряда) 100% уровень заряда (поддерживается пользователями при работе)
0°C
98% через 1 год
94% через 1 год
25°C
96% через 1 год
80% через 1 год
40°C
85% через 1 год
65% через 1 год
60°C
75% через 1 год
60% через 3 месяца

Учитывая, что стандартом определения момента завершения жизни аккумулятора производителем является снижение его емкости до 80% от номинальной понятно, откуда появились 5 лет жизни (когда аккумулятор работает при температуре не выше 25°C и большинство времени находится в полуразряженном состоянии). Поэтому следует правильно огранизовывать охлаждение батарей при эксплуатации и заряжать аккумулятор непосредственно перед использованием, добиваясь среднего уровня заряда в процессе эксплуатации близкого к 40% (проверено на практике – при заряде батареи моего мобильного раз в 3-4 дня до 80-90% емкости и ношении его во внешнем кармане одежды – срок жизни уже достиг более 4х лет при сохранности емкости).

Следует учитывать температурный фактор и при эксплуатации литий-ионных аккумуляторов — разряд может осуществляться и при низких температурах (в зависимости от химии аккумулятора от -25°C до -10°C), но заряд должен производиться только при положительной температуре батареи.

Количество циклов заряда-разряда не так сильно влияют на ресурс литий-ионной батареи, как возраст и температурный фактор – при коротком времени циклирования (непрерывные циклы заряда/разряда током 0,5C ) и хорошем охлаждении литий-ионная батарея может выдержать от 1000 циклов (для литий-кобальтовых) до 2000-3000 циклов (для литий-марганцевых).

Превышение конечного напряжения после заряда с 4,2В до 4,35В повышает емкость аккумулятора на 10-15% при снижении времени жизни в 4-6 раз.

BMS (Battery Manegement System) — система управления батареей — электронный прибор, который обязательно ставится на каждую аккумуляторную банку в батарее для контроля процесса заряда-разряда батареи, продвинутые BMS также имеют логику для определения температуры, количества зарядов/разрядов, оценку вероятности выхода из строя аккумулятора. В основном, задача BMS заключается в контроле напряжения на аккумуляторе и шунтировании токов при достижении граничных пределов, также может контролироваться температура элемента. Для избегания выхода из строя литий-ионного аккумулятора при полной его разрядке необходимо немедленно зарядить его, иначе BMS не позволит начаться заряду когда напряжение на элементе упадет ниже определенного порога из-за саморазряда батареи по соображениям безопасности (проверено на практике – я было оставил свой наладонник на 3 недели в почти разряженном состоянии и потом, несмотря на поздние реанимационные мероприятия, душа аккумулятора благополучно отошла в лучший мир (я на это искренне надеюсь:)).

Существующие продвинутые мониторы состояния батарей в своих расчетах, скорее всего, используют уравнения Пекерта (Peukert). Однако, все не так просто: обычно потребляемый ток меняется во времени, бывают длительные перерывы в работе аккумулятора, а также константные значения емкости и экспоненты Пекерта меняются в процессе работы аккумулятора (и их приходится время от времени пересчитывать для получения реальных показаний монитора). Это особенно ярко видно на примере «цифрового эффекта памяти» в литий-ионных батареях для ноутбуков – при эксплуатации в условиях частичного заряда/разряда отмечается постепенное уменьшение времени работы от аккумуляторной батареи, из-за несоответствия оставшейся емкости, рассчитанной системой управления батареей, реальной. Эффект «цифровой памяти» нивелируется калибровкой батареи: полным зарядом с последующим полным разрядом аккумулятора раз в 30-50 циклов (ноутбуки без встроенной в BIOS Setup системы калибровки, необходимо разряжать при входе в настройки BIOS, после отключения из-за разряда аккумулятора сразу же зарядить).

Литий-ионные батареи плохо переносят низкие токи заряда и высокие токи разряда (замечание про высокие токи разряда не относистя к LiFePO4 аккумуляторам, которые могут переносить большие токи разряда, и, в меньшей степени для LiMnO2 и LiMn2O4). Для достижения максимальной длительности жизни необходимо использовать токи 0,5C (половина номинальной емкости) для заряда и разряда аккумулятора. Для LiCoO2 аккумуляторов нежелательно переходить предел в 1C для токов заряда и разряда (разряд при 2C приводит к сокращению жизни в 2 раза, при 3C – в 4 раза).

Cоблюдение всех указанных предосторожностей позволит достигнуть большого срока жизни (ресурса) вашего литий-ионного аккумулятора и он будет долго радовать вас своей емкостью и низким уровнем внутреннего сопротивления. Также каждые 6-12 месяцев появляются литий-ионные аккумуляторы на основе других химических соединений и внутренней конструкции – у них будут немножко (или множко) другие характеристики. К заявлениям производителей по поводу новых аккумуляторов нужно относиться с известной долей скептицизма, поскольку только опыт длительной эксплуатации может дать ответ на вопросы соответствия заявленных параметров реальным и проверить решения по поводу правильной экспуатации литий-ионных аккумуляторов.

Данная статья отмечает субъективный взгляд на проблему продления ресурса литий-ионных аккумуляторов. Цифровые данные взяты из проверенных источников (batteryuniversity.com — литий-ионные (lithium-ion) батареи, с сайтов производителей литий-ионных батарей — Valence, ThunderSky, Everspring), однако во время компиляции информации некоторые слишком оптимистичные заявления производителей батарей пришлось опустить или несколько исправить, если заметите ошибки — пишите.

Больше информации об различных типах аккумуляторных батарей вы сможете почерпнуть на сайте автора: http://sdisle.com/battery/

P.S. Меня очень удивило, что на хабрехабре нет поддержки индексов для текста (тег sub…/sub) — благодаря этому некоторые химические формулы в статье изображаются неверно:(.

Эксплуатация литий-ионных аккумуляторов / Хабр

Ранее тема обсуждалась в следующих постах:

Как продлить жизнь (ресурс) литий-ионной аккумуляторной батареи
Почему литий-ионные батареи умирают так рано?
5 практических советов по эксплуатации литий-ионных аккумуляторов
Допустимые диапазоны температур при заряде и разряде литий-ионных аккумуляторов

Далее приведены данные, полученные по результатам экспериментов над аккумуляторами различных производителей.

Особенности тестирования

Тесты на количество циклов проводились при разрядке током 1С, для каждого аккумулятора проводились циклы разрядки/зарядки до достижения 80% емкости. Такое число было выбрано исходя из сроков тесто и для возможного сравнения результатов впоследствии. Число полных эквивалентных циклов — до 7500 в некоторых тестах.
Тесты на срок службы проводились при различных уровнях заряда и температуре, каждые 40-50 дней проводились измерения напряжения для контроля разряда, длительность тестов составляла 400-500 дней.

Главной сложностью в экспериментах являются расхождения в заявленной емкости и реальной. Все аккумуляторы имеют емкость выше, чем заявленная, от 0,1% до 5%, что вносит дополнительный элемент непредсказуемости.

Наиболее часто использовались аккумуляторы NCA и NMC, но также тестировались литий-кобальт и литий-фосфатные аккумуляторы.

Немного терминов:
DoD — Depth of Discharge — глубина разряда.
SoC — State of Charge — уровень заряда.

Использование аккумуляторов

Количество циклов

На данный момент есть теория, что зависимость количества циклов, которые может выдержать аккумулятор от степени разряда аккумулятора в цикле имеет следующий вид (синим обозначены циклы разрядки, черным — эквивалентные полные циклы):

Данная кривая носит названия кривой Вёлера (Wöhler). Основная идея пришла из механики о зависимости числа растяжений пружины от степени растяжения. Начальное значение в 3000 циклов при 100% разряде батарей является средневзвешенным числом при разряде в 0,1С. Какие-то аккумуляторы показывают лучшие результаты, какие-то хуже. При токе 1С число полных циклов при 100% разряде падает с 3000 до 1000-1500 в зависимости от производителя.

В целом, данное соотношение, представленное на графиках, получило подтверждение по результатам экспериментов, потому целесообразным является зарядка аккумулятора при любой возможности.

Расчет суперпозиции циклов

При эксплуатации аккумуляторов возможна работа при одновременном наличии двух циклов (например, рекуперативное торможение в автомобиле):

Получается следующий комбинированный цикл:

Возникает вопрос, как это сказывается на эксплуатации аккумулятора, сильно ли уменьшается ресурс аккумулятора?

По результатам экспериментов комбинированный цикл показал результаты, как от сложения полных эквивалентных циклов двух независимых циклов. Т.е. относительная емкость аккумулятора в комбинированном цикле падала соответственно сумме разрядов на малом и большом циклах (линеаризованный график представлен ниже).

Влияние больших циклов разрядки более существенно, а значит подтверждается то, что аккумулятор лучше заряжать при каждой возможности.

Эффект памяти

Эффект памяти литий-ионных аккумуляторов по результатам экспериментов отмечен не был. При различных режимах его полная емкость все равно впоследствии не изменялась. В то же время есть ряд работ, которые подтверждают наличие данного эффекта в литий-фосфатных и литий-титановых аккумуляторах.
Хранение аккумуляторов

Температуры хранения

Тут никаких необычных открытий не было сделано. Температуры 20-25°C являются оптимальными (в обычной жизни) для хранения аккумулятора, если его не использовать. При хранении аккумулятора при температуре в 50°C деградация емкость идет практически в 6 раз быстрее.
Естественно более низкие температуры лучше для хранения, но в быту это означает специальное охлаждение. Так как температура воздуха в квартире, как правило, 20-25°C, то и хранение скорее всего будет при такой температуре.
Уровень заряда

Как показали испытания, чем меньше заряд тем медленнее идет саморазряд аккумулятора. Измерялась емкость аккумулятора, какой бы она была при его дальнейшем использовании после длительного хранения. Наилучший результат показали аккумуляторы, которые хранились с зарядом близким к нулю.
В целом хорошие результаты показали аккумуляторы, которые хранились не более чем с 60% уровнем заряда на момент начала хранения. Цифры отличаются от приведенных ниже для 100% заряда в худшую сторону (т.е. аккумулятор придет в негодность ранее, чем указано на рисунке):

Рисунок взят из статьи 5 практических советов по эксплуатации литий-ионных аккумуляторов
В то же время цифры для малого заряда более оптимистичны (94% после года при температуре 40°C для хранения при SOC 40%).
Так как 10% заряд непрактичен, так как время работы при таком уровне весьма маленькое, хранить аккумуляторы оптимально при SOC 60%, что позволит применить его в любой момент и не скажется критично на сроке его службы.
Основные проблемы результатов экспериментов

Никто не проводил тесты, которые можно считать на 100% достоверными. Выборка, как правило, не превышает пары тысяч аккумуляторов из миллионов произведенных. Большинство исследователей не могут представить достоверные сравнительные анализы по причинам недостаточной выборки. Также результаты этих экспериментов зачастую являются конфиденциальной информацией. Так что данные рекомендации не обязательно подходят к вашему аккумулятору, но могут считаться оптимальными.
Итоги экспериментов

Оптимальная частота зарядки — при каждой возможности.
Оптимальные условия хранения — 20-25°C при 60% заряде аккумулятора.
Источники

1.Курс «Battery Storage Systems», RWTH Aachen, Prof. Dr. rer. nat. Dirk Uwe Sauer
2.Memory effect in a lithium-ion battery, Tsuyoshi Sasaki, Yoshio Ukyo, Petr Novák
как устроены, виды, срок службы, принцип работы и хранение

Автор Aluarius На чтение 8 мин. Просмотров 460 Опубликовано

Литий-ионный аккумулятор – описание, история создания

Литий-ионный аккумулятор – источник тока, основанный на преобразовании химических реакций, происходящих внутри источника, в электрическую энергию. Данный тип батареи наиболее распространён в современной жизни, в большинстве своём из-за повсеместного использования в электронике: сотовых телефонах, цифровых фотоаппаратах, ноутбуках и так далее. Кроме этого, литиевые аккумуляторы ставят в электромобили.

Li-ion-Batery

Первое упоминание современных литиевых аккумуляторных батарей относится к 70-м годам XX века и связано с именем Майкла Стэнли Уиттингема. Будучи химиком в нефтяной компании «Exon», он создал источник тока, в котором в качестве анода использовался сульфид титана, а катод был литиевым. Первая батарея обладала напряжением 2,3 Вольт и способностью перезаряжаться, однако была пожароопасной и ядовитой. При взрыве, который мог случиться внезапно, литий вступал в контакт с воздухом и горел, а дисфульд титана выделял сероводород, вдыхание которого как минимум неприятно. Помимо этого, титан обладает и всегда обладал высокой стоимостью, и из-за всех этих факторов проект Уиттенгема был закрыт.

Литий-ионная батарея, несмотря на свои недостатки, казалась достаточно привлекательной для продолжения развития, однако требовалась замена анодного материала, чем в 1978 году занялся Джон Гуденаф. Спустя некоторое время он обнаружил, что кобальтит лития (оксид лития-кобальта) обладает лучшими характеристиками, касающимися безопасности использования, а также напряжением, достигающим 4 Вольта. Однако использование лития в качестве катодного материала становилось причиной короткого замыкания аккумулятора. В 1980 году Рашид Язами указал на графит и назвал его наиболее подходящим в качестве анода материалом.

Однако потребовалось ещё одиннадцать лет, чтобы созданная и усовершенствованная батарея появилась в продаже под брендом компании «Sony».

литий-ионный-аккумулятор

СПРАВКА: Разработчик коммерческой версии аккумулятора Акиро Ёсино, а также Уиттенгем и Гуденаф в 2019 году получили Нобелевскую премию в области химии за равноценный вклад в создание литиево ионных аккумуляторов.

Принцип действия

Работа литионных аккумуляторов основана на электрохимическом потенциале, суть которого заключается в способности металлов отдавать отрицательные заряды. При подключении электрической цепи на аноде источника тока происходит химическая реакция, сопровождаемая образованием на его поверхности свободных электронов. По законам физики освобождённые электроны стремятся к положительной стороне – катоду, чтобы восстановить баланс, однако от движения их удерживает электролит, находящийся между анодом и катодом. Тем самым отрицательные заряды вынуждены двигаться к положительным «в обход» – через всю электрическую цепь, создавая ток.

Положительные ионы, образовавшиеся на стороне анода после «побега» электронов, проходят через электролит к катоду, чтобы удовлетворить потребность в отрицательных зарядах. В момент, когда все электроны переместятся на отрицательный электрод, аккумулятор будет разряжен.

Процесс зарядки запускает электрическую энергию в цепь, тем самым запуская в батарее обратную реакцию – скопление электронов на аноде. После полного перезаряда батарейки её можно заново подключать к цепи.

ВНИМАНИЕ: даже находясь в режиме ожидания, аккумуляторы теряют часть заряда. При этом они обладают такой характеристикой как старение – постепенно приходящая неспособность удерживать первоначальное количество заряда.

Устройство li-ion аккумулятора

В li-ion аккумуляторах в качестве отрицательного электрода служит алюминиевая фольга с нанесённым поверх слоем оксида лития. Анодом выступает медная фольга, и на её поверхность наносится графит. Между электродами располагается пористый разделитель, пропитанный электролитом. Все компоненты ради уменьшения занимаемого ими объёма сворачиваются в цилиндр или в пакет и помещаются в полностью герметичный корпус. При этом анод и катод присоединяются к токоснимающим клеммам. Герметичность конструкции обуславливается недопустимостью вытекания электролита. Кроме этого нельзя, чтобы внутрь батареи попали пары воды или кислорода, иначе произойдёт реакция между попавшим веществом и электролитом или электродами, и аккумулятор выйдет из строя.

батарейка внутри

В батарейку в соображениях безопасности могут быть включены специальные элементы. Например, устройство, которое увеличит сопротивление аккумулятора при положительном температурном коэффициенте. А также устройство, которое в случае превышения давления газа допустимых значений разорвёт связь между катодом и положительной клеммой. Иногда корпус батареи может быть оснащён клапаном предохранения, основной задачей которого является сброс внутреннего давления в случае аварийной ситуации или нарушения эксплуатационных условий.

Некоторые особо важные источники таки могут обладать внешней электронной защитой, которая не позволяет перегреть или перезарядить батарейку, а также исключает возможность короткого замыкания.

По форме корпуса li-ion аккумуляторы делятся на цилиндрические и призматические, первые из которых изготавливаются путём сворачивания слоёв, из которых состоит батарея. Призматический тип аккумулятора li-ion, численно превосходящий из-за применения в ноутбуках и мобильных телефонах, создаётся путём плотного складывания пластин друг на друга.

Характеристики литиевых аккумуляторов

ИНТЕРЕСНО: собственные удельные характеристики обеспечили описываемым батареям лидирующие позиции среди всех выпускаемых химических источников тока.

Рабочее напряжение

Минимальное значение напряжения составляет 2,2-2,5 Вольт, а максимальное не превышает 4,25-4,35 Вольт. На данную характеристику в значительной степени влияет материал, используемый для электродов.

Ёмкость

На свойство батареи хранить заряд непосредственно влияет ток и температура, которая возникает при разряде. Вообще максимальная ёмкость аккумуляторов варьируется в широком диапазоне и зависит от типоразмера. Например, в наиболее распространённой батарее 18650 ёмкость обычно находится в пределах от 1000 до 3600 миллиампер-час.

СПРАВКА: 14500 аккумулятор, размеры которого сопоставимы с пальчиковой батарейкой (АА), также популярен среди пользователей и обладает номинальной ёмкостью 900 микроампер-час.

В общем, под ёмкостью подразумевается количество ионов лития, способных достигнуть анода или катода. Со временем после многочисленных зарядок электроды теряют свои свойства и могут вместить всё меньшее число зарядов, а аккумулятор тем временем не способен удерживать прежнее их количество. В результате батарея устаревает и постепенно утрачивает основополагающую функцию.

Li-ion

Рабочая температура

Предельные значения температуры находятся в диапазоне от -20°С до +50°С, однако работать в пограничных режимах аккумулятор долго не сможет, это скажется на его способности запасать энергию. Оптимальная температура для функционирования составляет примерно 20°С, а лучшие значения для хранения – от 0 до 10°С. При этом уровень заряда 30-50% считается наиболее щадящим для ёмкости при длительном хранении.

ВНИМАНИЕ: если температура упадёт до +4°С объём вырабатываемой батареей энергии уменьшится на 5-7% в соответствии с максимальным значением. Более низкие значения приведут к потери 40-50% ёмкости и преждевременному исчерпанию ресурса.

Саморазряд

Данная характеристика варьируется от 6% до 10% в год.

Количество циклов заряд-разряд

Батарея литиевая не имеет эффекта памяти, а срок её годности рассчитан в зависимости от количества циклов полной разрядки.

Процент оставшегося заряда, %Количество циклов зарядки
500
501500
752500
904700

Так, для увеличения срока службы аккумулятора стоит чаще его заряжать.

Разновидности аккумуляторов

Наиболее распространены следующие виды литий-ионных батарей:

  • Литий-кобальтовая. Популярный тип в ноутбуках, смартфонах и цифровых камерах. В состав входит катод из кобальтового оксида и графитовый анод. К преимуществам относят высокий показатель удельной энергоёмкости, а к недостаткам: низкий срок годности, ограниченную нагрузку и невысокую термическую стабильность.
  • Литий-маргенцевая. Основная область применения – электроинструменты, медицинское оборудование и электрические силовые устройства. Катод представляет собой литий-марганцевую шпинель, обеспечивающей низкое сопротивление.
  • Литий-никель-марганец-кобальт-оксидная. Сочетание металлов, входящих в состав, позволяет использовать сильные стороны каждого элемента. Применяется как в частных областях, так и в более крупных – промышленных, например, в системах безопасности и аварийного освещения.
  • Литий-железно-фосфатная. Популярный вариант для стационарных специализированных устройств. К преимуществам относят стойкость к неправильным условиям эксплуатации, высокую безопасность и термическую стабильность, а к минусам причисляют малое значение ёмкости.
  • Литий-никель-кобальт-алюминий-оксидная. Дороговизна оправдывается долговечностью и хорошими показателями энергоёмкости. Используют в промышленных целях и медицинском оборудовании.
  • Литий-титановая. Можно встретить в сфере уличного освещения и автомобильных агрегатах. Дорогие и обладают низкой удельной энергоёмкостью, однако имеют долгий срок годности, работают в широком температурном диапазоне, производительны и безопасны.

Особенности хранения и утилизации

Хранить li-ion аккумуляторы необходимо в следующих условиях:

  • Место хранения должно быть сухим и прохладным, причём батарейку следует предварительно извлечь из оборудования.
  • Оптимальная температура должна находиться в диапазоне от +1°С до +25°С. При этом допускается хранение в холодильнике, но сначала аккумулятор нужно обернуть непромокаемым и не пропускающим влагу материалом.
  • Заряд батарейки следует сохранить в районе 40%, это позволит избежать падения напряжения при саморазряде ниже допустимого.

utilizatciia-li-ion

После окончания срока годности использованный аккумулятор нужно сдать на переработку или утилизацию, причём этими вопросами занимаются специализированные службы, занимающиеся приёмом батарей.

Обычно процедура переработки включает в себя несколько этапов:

  • Разбор корпуса.
  • Избавление от электролита путём слива.
  • Очищение электродов.
  • Переработка корпуса и переплавление металлов.

ВАЖНО: литиевые батареи нельзя выбрасывать, как обычный мусор! Для их утилизации необходимо обращаться в специальные пункты сдачи.

Существует несколько способов для определения мест сбора использованных источников тока:

  • Проект RecycleMap от «Гринпис», позволяющий после выбора и объекта утилизации города найти пункты приёма.
  • Городской сайт администрации. На случай, если регион тщательно следит за подобным процессом.
  • Сайты с объявлениями. Частные организации и подрядчики выкладывают в интернет информацию о сборе батарей.
  • Магазины бытовой техники или крупные гипермаркеты. В последнее время в подобных местах стали появляться специальные контейнеры, куда можно выбросить неработающие батарейки.

Отличие аккумуляторов Li-ion от Ni-Cd аккумуляторов

Ёмкость литий-ионных источников тока значительно выше, чем тот же показатель у никель-кадмиевых аккумуляторов, вследствие чего требуется много меньшая по весу и габаритам батарея, чтобы обеспечить одно и то же время работы.

Также в процессе хранения ввиду низкой скорости саморазряда li-ion аккумуляторы разряжаются меньше, чем другие типы, и они более терпимы к постоянной зарядке, даже если заряд батареи не обнулён.

В плане экологичности рассматриваемые батарейки меньше вредят окружающей среде, чем никель-кадмиевые, как при изготовлении, так и в использовании материалов.

Однако по отношению к Ni-Cd аккумуляторами в литий-ионных используют более дорогостоящие технологии.

90000 Elevating Self-discharge — Battery University 90001 90002 90003 Learn about an often ignored characteristic of batteries 90004 90005 90006 All batteries are affected by self-discharge. Self-discharge is not a manufacturing defect but a battery characteristic; although poor fabrication practices and improper handling can increase the problem. Self-discharge is permanent and can not be reversed. Figure 1 illustrates self-discharge in the form of leaking fluid. 90005 90008 90009 90010 90011 90006 90005 90014 90011 90006 90003 Figure 1: Effects of high 90004 90003 self-discharge.90004 90005 90006 Self-discharge increases with age, cycling and elevated temperature. Discard a battery if the self-discharge reaches 30 percent in 24 hours 90023. 90024 90005 90006 90027 Courtesy of Cadex 90028 90005 90014 90031 90032 90033 90002 90035 The amount of electrical self-discharge varies with battery type and chemistry. Primary cells such as lithium-metal and alkaline retain the stored energy best, and can be kept in storage for several years.Among rechargeable batteries, lead acid has one of the lowest self-discharge rates and loses only about 5 percent per month. With usage and age, however, the flooded lead acid builds up sludge in the sediment trap, which causes a soft short when this semi-conductive substance reaches the plates. (See BU-804a: Corrosion, shedding and Internal Short) 90005 90006 The energy loss is asymptotical, meaning that the self-discharge is highest right after charge and then tapers off. Nickel-based batteries lose 10-15 percent of their capacity in the first 24 hours after charge, then 10-15 percent per month.Figure 2 shows the typical loss of a nickel-based battery while in storage. 90035 90005 90008 90009 90010 90011 90002 90005 90014 90031 90010 90011 90002 90003 Figure 2: Self-discharge as a function of time. 90004 90005 90002 The discharge is highest right after charge and tapers off. The graph shows self-discharge of a nickel-based battery. Lead- and lithium-based systems have a lower self-discharge. 90005 90002 90027 Courtesy of Cadex 90028 90005 90014 90031 90032 90033 90002 90035 NiMH and NiCd belong to rechargeable batteries that have the highest self-discharge; they need recharging before use when placed on a shelf for a few weeks.High-performance NiCd has a higher self-discharge than the standard versions. Furthermore, the self-discharge increases with use and age, of which crystalline formation (memory) is a contributing factor. Regular full discharge cycles keeps memory under control. (See BU-807: How to restore Nickel-based Batteries) 90005 90006 Li-ion self-discharges about 5 percent in the first 24 hours and then loses 1-2 percent per month; the protection circuit adds another 3 percent per month. A faulty separator can lead to elevated self-discharge that could develop into a current path, generating heat and, in an extreme case, initiate a thermal breakdown.In terms of self-discharge, lead acid is similar to Li-ion. Table 3 summarizes the expected self-discharge of different battery systems. 90035 90005 90070 90071 90010 90073 90006 Battery system 90005 90076 90073 90006 Estimated self-discharge 90005 90076 90031 90082 90009 90010 90011 90006 Primary lithium-metal 90005 90014 90011 90006 10% in 5 years 90005 90014 90031 90010 90011 90006 Alkaline 90005 90014 90011 90006 2-3% per year (7-10 years shelf life) 90005 90014 90031 90010 90011 90006 Lead-acid 90005 90014 90011 90006 5% per month 90005 90014 90031 90010 90011 90006 Nickel-based 90005 90014 90011 90014 90031 90032 90033.90000 90001 Lithium-ion Batteries Information — Battery University 90002 90003 It was not until the early 1970s that the first non-rechargeable lithium batteries became commercially available. Attempts to develop rechargeable lithium batteries followed in the 1980s but the endeavor failed because of instabilities in the metallic lithium used as anode material. 90004 Lithium is the lightest of all metals, has the greatest electrochemical potential and provides the largest specific energy per weight.Rechargeable batteries with lithium metal on the anode (negative electrodes) could provide extraordinarily high energy densities, however, cycling produced unwanted dendrites on the anode that could penetrate the separator and cause an electrical short. The cell temperature would rise quickly and approaches the melting point of lithium, causing thermal runaway, also known as «venting with flame.» 90005 90004 The inherent instability of lithium metal, especially during charging, shifted research to a non-metallic solution using 90007 lithium ions 90008.Although lower in specific energy than lithium-metal, Li-ion is safe, provided cell manufacturers and battery packers follow safety measures in keeping voltage and currents to secure levels. In 1991 року, Sony commercialized the first Li-ion battery, and today this chemistry has become the most promising and fastest growing on the market. Meanwhile, research continues to develop a safe metallic lithium battery in the hope to make it safe. 90005 90004 In 1994 it cost more than $ 10 to manufacture Li-ion in the 18650 * cylindrical cell delivering a capacity of 1,100mAh.In 2001, the price dropped to $ 2 and the capacity rose to 1,900mAh. Today, high energy-dense 18650 cells deliver over 3,000mAh and the costs have dropped further. Cost reduction, increase in specific energy and the absence of toxic material paved the road to make Li-ion the universally acceptable battery for portable application, first in the consumer industry and now increasingly also in heavy industry, including electric powertrains for vehicles. 90005 90004 In 2009 roughly 38 percent of all batteries by revenue were Li-ion.Li-ion is a low-maintenance battery, an advantage many other chemistries can not claim. The battery has no memory and does not need exercising to keep in shape. Self-discharge is less than half compared to nickel-based systems. This makes Li-ion well suited for fuel gauge applications. The nominal cell voltage of 3.6V can power cell phones and digital cameras directly, offering simplifications and cost reductions over multi-cell designs. The drawback has been the high price, but this leveling out, especially in the consumer market.90005 90014 90003 90016 Figure 1: Ion flow in lithium-ion battery 90017 90018 When the cell charges and discharges, ions shuttle between cathode (positive electrode) and anode (negative electrode). On discharge, the anode undergoes oxidation, or loss of electrons, and the cathode sees a reduction, or a gain of electrons. Charge reverses the movement. 90004 All materials in a battery possess a theoretical specific energy, and the key to high capacity and superior power delivery lies primarily in the 90007 cathode 90008.For the last 10 years or so, the cathode has characterized the Li-ion battery. Common cathode material are 90007 Lithium Cobalt Oxide 90008 (or Lithium Cobaltate), 90007 Lithium Manganese Oxide 90008 (also known as spinel or Lithium Manganate), 90007 Lithium Iron Phosphate, 90008 as well as 90007 Lithium 90008 90007 Nickel Manganese Cobalt 90008 (or NMC ) ** and 90007 Lithium 90008 90007 Nickel Cobalt Aluminum Oxide 90008 (or NCA). 90005 90004 Sony’s original lithium-ion battery used coke as the anode (coal product), and since 1997 most Li-ion batteries use graphite to attain a flatter discharge curve.Developments also occur on the anode and several additives are being tried, including silicon-based alloys. Silicon achieves a 20 to 30 percent increase in specific energy at the cost of lower load currents and reduced cycle life. Nano-structured 90007 lithium-titanate 90008 as anode additive shows promising cycle life, good load capabilities, excellent low-temperature performance and superior safety, but the specific energy is low. 90005 90004 Mixing cathode and anode material allows manufacturers to strengthen intrinsic qualities; however, an enhancement in one area may compromise something else.Battery makers can, for example, optimize specific energy (capacity) for extended runtime, increase specific power for improved current loading, extend service life for better longevity, and enhance safety for strenuous environmental exposure, but, the drawback on higher capacity is reduced loading ; optimization for high current handling lowers the specific energy, and making it a rugged cell for long life and improved safety increases battery size and adds to the cost due to a thicker separator.The separator is said to be the most expensive part of a battery. 90005 90004 Table 2 summarizes the characteristics of Li-ion with different cathode material. The table limits the chemistries to the four most commonly used lithium-ion systems and applies the short form to describe them. NMC stands for nickel-manganese-cobalt, a chemistry that is relatively new and can be tailored for high capacity or high current loading. Lithium-ion-polymer is not mentioned as this is not a unique chemistry and only differs in construction.Li-polymer can be made in various chemistries and the most widely used format is Li-cobalt. 90005 90018 90014 90047.90000 Lithium Ion »Electronics Notes 90001 90002 When looking at the possible usage of Lithium Ion, Li-Ion technology it is necessary to be aware of its advantages and disadvantages to make the most of its use. 90003 90004 90005 90006 Lithium Ion Battery Includes: 90007 90008 Li-ion technology Types of lithium ion battery Lithium polymer battery Li-ion charging Li-ion advantages & disadvantages 90009 90005 90011 Battery Technology Includes: 90012 Battery technology overview Battery definitions & terms NiCad NiMH Li-ion Lead acid 90009 90004 90005 The use of lithium ion, li-ion batteries has grown significantly in recent years.They offer some distinct advantages and improvements over other forms of battery technology. 90009 90005 However, like all technologies, lithium ion batteries have their advantages and disadvantages. 90009 90005 To gain the best from the li-ion battery technology, it is necessary to understand not only the advantages, but also the limitations or disadvantages of the technology. In this way they can be used in a manner that plays to their strengths in the best way. 90009 90005 With lithium ion battery technology advancing at a very swift rate, the disadvantages are being addressed and the overall technology is being improved.90009 90023 Power banks like these are based upon lithium ion technology 90024 Lithium ion battery advantages 90025 90005 There are many advantages to using a li-ion cell of battery. As a result the technology is being used increasingly for a huge number of widely varying applications. Everything from small electronic devices, through smartphones and laptops to vehicles and many other applications. 90009 90005 The advantages of Li-ion technology mean that these batteries are finding an increasing number of applications, and as a result a huge amount of development is being invested into them.90009 90005 The li-ion battery advantages include: 90009 90032 90033 90006 90011 High energy density: 90012 90007 The high energy density is one of the chief advantages of lithium ion battery technology. With electronic equipment such as mobile phones needing to operate longer between charges while still consuming more power, there is always a need to batteries with a much higher energy density. In addition to this, there are many power applications from power tools to electric vehicles.The much higher power density offered by lithium ion batteries is a distinct advantage. Electric vehicles also need a battery technology that has a high energy density. 90038 90033 90006 90011 Self-discharge: 90012 90007 One issue with many rechargeable batteries is the self discharge rate. Lithium ion cells is that their rate of self-discharge is much lower than that of other rechargeable cells such as Ni-Cad and NiMH forms. It is typically around 5% in the first 4 hours after being charged but then falls to a figure of around 1 or 2% per month.90038 90033 90006 90011 Low maintenance: 90012 90007 One major lithium ion battery advantage is that they do not require and maintenance to ensure their performance. 90005 Ni-Cad cells required a periodic discharge to ensure that they did not exhibit the memory effect. As this does not affect lithium ion cells, this process or other similar maintenance procedures are not required. Likewise lead acid cells require maintenance, some needing the battery acid to be topped up periodically.90009 90005 Fortunately one of the advantages of lithium ion batteries is that there is no active maintenance required. 90009 90038 90033 90006 90011 Cell voltage: 90012 90007 The voltage produced by each lithium ion cell is about 3.6 volts. This has many advantages. Being higher than that of the standard nickel cadmium, nickel metal hydride and even standard alkaline cells at around 1.5 volts and lead acid at around 2 volts per cell, the voltage of each lithium ion cell is higher, requiring less cells in many battery applications.For smartphones a single cell is all that is needed and this simplifies the power management. 90038 90033 90006 90011 Load characteristics: 90012 90007 The load characteristics of a lithium ion cell or battery are reasonably good. They provide a reasonably constant 3.6 volts per cell before falling off as the last charge is used. 90038 90033 90006 90011 No requirement for priming: 90012 90007 Some rechargeable cells need to be primed when they receive their first charge. One advantage of lithium ion batteries is that there is no requirement for this they are supplied operational and ready to go.90038 90033 90006 90011 Variety of types available: 90012 90007 There are several types of lithium ion cell available. This advantage of lithium ion batteries can mean that the right technology can be used for the particular application needed. Some forms of lithium ion battery provide a high current density and are ideal for consumer mobile electronic equipment. Others are able to provide much higher current levels and are ideal for power tools and electric vehicles. 90038 90079 90024 Lithium ion battery disadvantages 90025 90005 Like the use of any technology, there are some disadvantages that need to be balanced against the benefits.90009 90005 Although Lithium ion battery technology does have its disadvantages, this does not mean these can not be overcome or at least mitigated and excellent performance obtained. 90009 90005 Knowing the disadvantages means that work arounds can often be included int he design to reduce the effects of the shortcomings. 90009 90005 The li-ion battery disadvantages include: 90009 90032 90033 90006 90011 Protection required: 90012 90007 Lithium ion cells and batteries are not as robust as some other rechargeable technologies.They require protection from being over charged and discharged too far. In addition to this, they need to have the current maintained within safe limits. Accordingly one lithium ion battery disadvantage is that they require protection circuitry incorporated to ensure they are kept within their safe operating limits. 90005 Fortunately with modern integrated circuit technology, this can be relatively easily incorporated into the battery, or within the equipment if the battery is not interchangeable.Incorporation of the battery management circuitry enables li-ion batteries to be used without any special knowledge. They can be left on charge and after the battery is fully charged the charger will cut the supply to it. 90009 90005 The protection circuitry built into lithium ion batteries monitors a number of aspects of their operation. The protection circuit limits the peak voltage of each cell during charge as excessive voltage can damage the cells. They are typically charged in series as there is normally only one connection for a battery and therefore as different cells may require different levels of charge there is a possibility of one cell experiencing a higher than required voltage.90009 90005 Also the protection circuitry prevents the cell voltage from dropping too low on discharge. Again this can happen if one cell can store less charge than others on the battery and its charge becomes exhausted before the others. 90009 90005 A further aspect of the protection circuitry is that the cell temperature is monitored to prevent temperature extremes. The maximum charge and discharge current on most packs is limited to between 1 ° C and 2 ° C. That said, some do become a little warm on occasions when fast charging.90009 90038 90033 90006 90011 Ageing: 90012 90007 One of the major lithium ion battery disadvantages for consumer electronics is that lithium ion batteries suffer from ageing. Not only is this time or calendar dependent, but it is also dependent upon the number of charge discharge cycles that the battery has undergone. Often batteries will only be able to withstand 500 — 1000 charge discharge cycles before their capacity falls. With the development of li-ion technology, this figure is increasing, but after a while batteries may need replacing and this can be an issue if they are embedded in the equipment.90005 Lithium ion batteries also age whether they are in use or not. Despite the usage there is also a time related element to the reduction in capacity. When a typical consumer lithium cobalt oxide, LCO battery or cell needs to be stored it should be partially charged — around 40% to 50% and kept in a cool storage area. Storage under these conditions will help increase the life. 90009 90038 90033 90006 90011 Transportation: 90012 90007 This li-ion battery disadvantage has come to the fore in recent years.Many airlines limit the number of lithium ion batteries they take, and this means their transportation is limited to ships. 90005 For air travellers, lithium ion batteries often need to be in carry-on luggage, although with the security position, this may change from time to time. But the number of batteries may be limited. Any lithium ion batteries carried separately must be protected against short circuits by protective covers, etc. It is particularly important where some of the large lithium ion batteries like those used in large power banks.90009 90005 It is necessary to check before flying whether a large power bank can be carried or not. Sadly the guidance is not always particularly clear. 90009 90038 90033 90006 90011 Cost: 90012 90007 A major lithium ion battery disadvantage is their cost. Typically they are around 40% more costly to manufacture than Nickel cadmium cells. This is a major factor when considering their use in mass produced consumer items where any additional costs are a major issue. 90038 90033 90006 90011 Developing technology: 90012 90007 Although lithium ion batteries have been available for many years, it can still be considered an immature technology by some as it is very much a developing area.This can be a disadvantage in terms of the fact that the technology does not remain constant. However as new lithium ion technologies are being developed all the time, it can also be an advantage as better solutions are coming available. 90038 90079 90005 Although not necessarily an advantage or disadvantage, it is probably worth mentioning that lithium ion batteries should be stored in a cool place slows the ageing process of lithium-ion (and other chemistries). Manufacturers recommend storage temperatures of around 15 ° C.In addition, the battery should be partially charged during storage. Manufacturers typically recommend a charge level of around 40% to 50%. 90009 90005 Li-ion battery technology has very many distinct advantages. Accordingly the technology is widely used, and this is only set to increase. Understanding the advantages as well as the disadvantages or limitations enables the best use to be made of the battery technology. 90009 90005 90006 More Electronic Components: 90007 90008 Resistors Capacitors Inductors Quartz crystals Diodes Transistor Phototransistor FET Memory types Thyristor Connectors RF connectors Valves / Tubes Batteries Switches Relays 90008 90006 90011 Return to Components menu.. . 90012 90007 90009.90000 KENTLI Ultra low self discharge 16 slot polymer li ion lithium batteries charger + 16 pcs PLIB li ionAA / AAA battery | battery charger | aaa batterybatteries battery charger 90001 90002 90003 90002 90003 90002 We are factory direct supply, wholesale and retail, welcome to contact us! 90003 90002 90003 90002 KENTLI Features: 90003 90002 90003 90002 High energy, long cycle life, no memory effect, fast charging, ultra low self-discharge, light weight, 90003 90002 90003 90002 environmental pollution 90003 90002 90003 90002 Specifications: 90003 90002 90003 90002 Brand: KENTLI 90003 90002 90003 90002 Condition: new 90003 90002 90003 90002 Battery type: polymer lithium li-ion 90003 90002 90003 90002 Size: aa aaa 90003 90002 90003 90002 Nominal voltage: 1.5V 90003 90002 90003 90002 Nominal capacity: 2000mAh (aa) and 650mAh (aaa) 90003 90002 90003 90002 Weight: 19g / pc (aa) and 9g / pc (aaa) 90003 90002 90003 90002 90003 90002 Attention: 90003 90002 90003 90002 DO NOT dispose in fire or heat. 90003 90002 90003 90002 DO NOT puncture, damage, and disassemble. 90003 90002 90003 90002 DO NOT mix fresh batteries with used batteries. 90069 90070 90071 90072 90073 90003 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *