Принцип работы литий ионный аккумулятор: Как устроены литий-полимерные аккумуляторы и принцип их работы

Содержание

Как устроены литий-полимерные аккумуляторы и принцип их работы

Как устроены литий-полимерные аккумуляторы и принцип их работы

Литий-полимерный аккумулятор (литий-ионный полимерный аккумулятор) — это усовершенствованная конструкция литий-ионного аккумулятора. В качестве электролита используется полимерный материал. Используется в мобильных телефонах, цифровой технике, радиоуправляемых моделях.

В начале 90-х годов, когда промышленное использование литий-ионных аккумуляторов уже во всю набирало обороты, были разработаны и первые литиевые аккумуляторы в форме пакетов — литий-полимерные аккумуляторы (обозначение «Li-Pol» или «Li-Po»).

Таким образом, литий-полимерные аккумуляторы стали более поздней разновидностью литий-ионных аккумуляторов. Но если в литий-ионных аккумуляторах электролит применяется жидкий, то у литий-полимерных собратьев это уже полимерный состав, по консистенции — гель. Благодаря полимерной основе, аккумуляторы данного типа обладают более высокой удельной энергоемкостью, чем другие.

Именно по этой причине сегодня литий-полимерные аккумуляторы особенно широко внедрены во множество мобильных устройств, где малый вес крайне важен (гаджеты, радиоуправляемые игрушки и т. д.)

Типичный литий-полимерный аккумулятор содержит в своей конструкции четыре основные части: положительный электрод (анод), отрицательный электрод (катод), сепаратор и электролит. В качестве сепаратора может выступать такой полимер, как микропористая полиэтиленовая или полипропиленовая пленка. Поэтому даже если электролит практически и является жидкостью, полимерный компонент в аккумуляторе неизменно присутствует.

Положительный электрод, в свою очередь, может быть разделен на три части: литий-переходный материал (оксид лития-кобальта или литий-оксид марганца), проводящая добавка и полимерное связующее — поливинилиденфторид. Что касается отрицательного электрода, то он содержит тоже три части, только вместо оксидов на нем присутствует углерод (графит).

Принцип действия литий-полимерного аккумулятора, как и принцип действия аккумулятора литий-ионного основан на обратимом встраивании (интеркаляции и деинкаляции) ионов лития в материал положительного и отрицательного электродов, при этом проводящей средой для ионов лития служит электролит, а микропористый сепаратор нужен здесь для того, чтобы препятствовать соприкосновению противоположных электродов друг с другом.

Сепаратор, таким образом, исключает миграцию частиц самих электродов, пропуская лишь ионы лития. В разряженном состоянии напряжение между электродами находится в диапазоне от 2,7 до 3 вольт, а в заряженном достигает 4,2 вольт (для аккумулятора на основе оксида литий-кобальта). Для литий-железофосфата (разновидность литий-ионного аккумулятора) эти значения будут иными — от 1,8 до 2,0 вольт в разряженном состоянии и от 3,6 до 3,8 вольт в заряженном.

Для каждого аккумулятора характерные значения рабочих напряжений указываются в документации, кроме того каждый аккумулятор должен быть оснащен защитной схемой, не допускающей выхода напряжения за пределы допустимого диапазона. Если же ячейки собираются в батареи будучи соединены последовательно, то обязательно наличие балансирующего контроллера, который будет удерживать заряд каждой ячейки на приемлемом уровне.

Литий-полимерные аккумуляторы традиционно отличаются от обычных литий-ионных аккумуляторов гибким, а не жестким каркасом. В итоге ячейка не только оказывается на 20% легче, но также имеет колоссальное преимущество, которое заключается в возможности производить аккумуляторы практически любой желаемой формы (для ноутбуков, планшетов и прочих мобильных устройств это крайне важно). Кроме того уровень саморазряда литий-полимерных аккумуляторов составляет всего около 5% в месяц.

Наконец, следует отметить количество рабочих циклов, которое у литий-полимерных аккумуляторов достигает 900. А при разрядных токах в 2С (удвоенное значение номинальной емкости) емкость бытовых аккумуляторов данного типа снижается лишь на 20% за все время жизни. Для специальных же применений, с нетипично большими рабочими токами, разрабатываются специальные литий-полимерные аккумуляторы, способные безболезненно отдавать в нагрузку токи на порядок превышающие величину номинала.

Ранее ЭлектроВести писали, что растущий спрос на аккумуляторы провоцирует кризис. Главные мировые поставщики аккумуляторов — это южнокорейские гиганты Samsung и LG.

Политика Сеула привела к тому, что за последний год использование батарей на внутреннем рынке выросло.

По материалам electrik.info

Как работает литиевая батарея — подробное устройство

Обновленная статья от: 10.11.2020


Литий-ионные аккумуляторы – универсальный тип элементов питания. Они используются в смартфонах, фонариках, портативной технике, специнструменте, источниках 

бесперебойного питания. Литий-ионные батареи обеспечивают автономное питание складской и клининговой техники, электромобилей, гольфкаров, инвалидных колясок, гироскутеров, самокатов, велосипедов на электротяге и многих других устройств.

Источники питания на основе лития отличаются высокой энергоемкостью при относительно малых размерах и массе. Дополнительными их преимуществами выступают:

  • большой ресурс – более 1000 полных циклов заряд-разряд;
  • малый саморазряд – не более 5–10 % в год;
  • высокая токоотдача;
  • широкий диапазон допустимых температур – от -20 до +60 °С при работе, от 0 до +45 °С при подзарядке;
  • простота и удобство использования.

Литиевый аккумулятор – устройство и принцип работы

В структуре Li-ion аккумулятора есть катод из производных лития на алюминиевой фольге и графитовый анод на фольге из меди. В качестве производных лития используются различные соединения: LiCoO2, LiMn2O4, LiFePO4, LiNiO2, LiMnRON, LiC6, LiMnO2, Li4Ti5O12 и др. Между катодом и анодом находится пористый сепаратор, пропитанный электролитом с функциями проводника. Заряд переносят ионы лития, легко встраиваемые в кристаллическую решетку пористого углерода и вызывающие соответствующую химическую реакцию.

Конструкция из электродов и находящегося между ними сепаратора сворачивается в виде рулона и помещается в герметичную оболочку из стали, алюминия или полимерного материала. При этом электроды подсоединяются к токосъемникам. В итоге получаются Li-ion элементы цилиндрической или призматической формы – в зависимости от принципа сворачивания фольги. Самый распространенный типоразмер Li-ion аккумуляторов в форме цилиндра – 18650.

Как работает Li-ion аккумулятор

Принцип действия литий-ионного аккумулятора заключается в создании необходимых условий для перемещения ионов лития между катодом и анодом:

  1. При подаче на электроды напряжения ионы лития отрываются от катода, переходят через сепаратор к графитовому аноду и встраиваются в его молекулярную структуру. В результате протекает реакция окисления, и аккумулятор заряжается.
  2. При подаче нагрузки ионы лития перемещаются обратно к катоду. Углеродистая пластинка на медной фольге становится «минусом», а производные лития на алюминии – «плюсом».

Задачи и функции BMS платы

Слабым местом Li-ion аккумуляторов считается их чувствительность к перезарядам и глубоким разрядам. Чтобы напряжение элементов автоматически поддерживалось в безопасном диапазоне, батарея оснащается BMS платой контроля и защиты. Она автоматически размыкает выходные ключи – отключает АКБ от нагрузки при критическом разряде и от сети при полном заряде.

БМС плата оберегает элементы питания и от короткого замыкания. В таких ситуациях напряжение на элементах питания резко просаживается, и мгновенно срабатывает защита от глубокого разряда. Тем самым модуль защиты продлевает срок службы АКБ.

Основой BMS платы выступает микросхема. В ней есть полевые транзисторы, используемые для раздельного управления защитой на протяжении заряда и разряда ячеек. Плата защиты следит, чтобы напряжение на каждой ячейке не превышало 4,2 В и не опускалось ниже 2,3 В. Также в схеме обычно присутствует датчик, замеряющий уменьшение напряжения на полевых транзисторах. Функции измерительного шунта выполняет переходное сопротивление транзисторов. В ряде плат дополнительно используется детектор токовых перегрузок.

Как работает контроллер заряда в литиевой батарее

Контроллер заряда – важная составляющая зарядного устройства, которая обеспечивает правильный режим подзарядки. Для литиевых элементов это режим CC/CV – вначале осуществляется зарядка при неизменном токе, а затем – при стабильном напряжении.

Контроллер ограничивает зарядный ток и контролирует объем энергии, поступающей на ячейки в единицу времени. Избыточную энергию он рассеивает в виде тепла. При достижении порога срабатывания 4,2 В контроллер переключается в режим стабилизации напряжения и плавно уменьшает ток заряда.

Режимы работы литиевых АКБ

Есть 2 основных режима использования литиевых АКБ:

  1. Буферный – например, в современных источниках бесперебойного питания. Батарея в таком случае постоянно подпитывается от электросети, а при перебоях в электроснабжении – отдает накопленный заряд подключенному к ней оборудованию. Когда электроснабжение от сети восстанавливается, АКБ снова подзаряжается и находится в режиме постоянной готовности к дальнейшему использованию.
  2. Циклический – подразумевает чередование фаз заряд-разряд, когда после пассивной фазы восстановления заряда следует продолжительная фаза активной работы. В таком режиме работают аккумуляторные батареи электровелосипедов и других видов персонального электротранспорта, погрузчиков, поломоечных машин, электромобилей, мотолодок, мобильных кофемашин и другой техники. Срок службы таких АКБ измеряется не годами, а количеством циклов глубокого разряда (до 80%) и последующего заряда.

Литий-ионные батареи успешно используются и в буферном, и в циклическом режиме. Если эксплуатация АКБ подразумевает жесткие условия и частые глубокие разряды, лучше всего с такими задачами справляются литий-железо-фосфатные батареи (LiFePO4). В частности, они используются для питания лодочных электромоторов, складской и клининговой техники, е-байков и других видов электротранспорта.

Старение и деградация литиевых АКБ

В результате циклического заряда-разряда литиевые аккумуляторы постепенно «стареют» – ионы лития не всегда возвращаются в свое исходное положение, состояние катода меняется, в системе накапливаются продукты окисления. В итоге аккумуляторная батарея медленно и безвозвратно утрачивает часть своей емкости.

Считается, что при потере 30% исходной емкости жизненный цикл батареи завершается. При потере емкости на 50% батарея подлежит утилизации. Рабочий ресурс батареи определяется как количество полных циклов заряда-разряда до тех пор, когда емкость АКБ снизится на 20%. В среднем ресурс Li-ion аккумуляторов составляет 1000 циклов, у моделей вида LiFePO4 – более 2000, а у литий-титанатных – более 20 000.

Рекомендации по использованию

Чтобы продлить срок службы Li-ion батарей, нужно:

  1. Следовать рекомендациям производителя по их эксплуатации.
  2. Не превышать рекомендованный зарядный ток. Оптимальным током заряда считается значение, равное 50% номинальной емкости батареи. Так, для АКБ емкостью 10 Ач оптимальный зарядный ток составляет 5 А. Исключение – современные литий-титанатные модели. Они допускают токовые нагрузки до 10С.
  3. Избегать перезаряда, глубокого разряда батарей, их длительного хранения в разряженном состоянии, механических повреждений, перегрева и переохлаждения.

Используйте литиевые АКБ правильно, и они долго будут радовать вас отличными рабочими характеристиками.

Предлагаем для ознакомления обзор электрических фэтбайков – электровелосипедов с толстыми колесами.

Литий-ионный аккумулятор: устройство, принцип работы, характеристики

Сложно представить себе жизнь современного человека без мобильного телефона, планшета, ноутбука, mp3 плеера, колонки и прочих переносных портативных гаджетов. Но вряд ли можно было бы представить себе их работу без качественного источника питания. Одним из наиболее распространенных вариантов для электроснабжения переносных устройств является литий-ионный аккумулятор. Как устроен и чем примечателен такой аккумулятор, мы рассмотрим в этой статье.

Устройство и принцип работы

Литий, как химический элемент давно известен способностью легко отдавать заряд за счет одного электрона расположенного на внешней орбите. Однако в соединениях литий стабилизируется, и его соли плохо вступают в реакцию. В  Li-Ion аккумуляторах задача применения свойств этого химического элемента для питания электрических потребителей решается за счет конструктивных особенностей.

Рис. 1. Устройство литий-ионного аккумулятора

Конструктивно литий-ионный аккумулятор состоит из следующих частей:

  • Положительно заряженный электрод – выполняется из алюминиевой фольги. Как правило, он выполняется из трех слоев, первый из которых представляет собой алюминий, а другие два – это порошковые или гелиевые напыления. В состав покрытия включаются проводящие основы и углеродистые структуры.
  • Отрицательно заряженный электрод – композитный элемент изготавливаемый на основе медной фольги, которая покрывается наноструктурированными солями лития. Которые представлены соединениями лития с железом или кобальтом, их  наносятся на медную  поверхность посредством проводящего клея.
  • Электролит – предназначен для наполнения пространства между анодом и катодом. В ходе эксплуатации литий-ионного аккумулятора электролит пропускает положительные ионы лития, но являются непроходимым препятствием для отрицательно заряженных электронов. Как правило, жидкий электролит выполняется на основе литиевых солей.
  • Сепаратор или разделитель – применяется для отделения анода от катода, позволяет избежать необратимой химической реакции в случае внутреннего короткого замыкания пластин или при прорастании дендритов. Чаще всего выполняется из пористого листового полиэтилена, находящегося в слое электролита.

В соответствии с п.3.6 ГОСТ Р МЭК 62660-1-2014 под литий-ионным аккумулятором следует понимать такой аккумулятор, у которого при заряде от катода ионы лития переходят в анод, а в случае разряда через нагрузку перемещаются обратно. На этапе изготовления источника питания система положительного и отрицательного электрода находится в стабильном состоянии.

Рис. 2. Изначально система литий-ионного аккумулятора в стабильном состоянии

Как только к обкладкам будет приложено зарядное напряжение, под его воздействием начнется процесс выделения электронов из атомов лития, с образованием положительно заряженных ионов.

Рис. 3. Под воздействием зарядного напряжения из атомов выделятся электроны

Электроны начнут притягиваться к медному электроду, но не смогут проникнуть через толщу электролита. Поэтому элементарные заряженные частицы начнут перемещаться по замкнутой цепи.

Рис. 4. Электроны по замкнутой цепи перейдут от катода к аноду

В то время как положительно заряженные ионы лития смогут беспрепятственно проникнуть через электролит и перейдут в пористый графитовый слой. Таким образом, происходит накопление заряда в литий-ионном аккумуляторе, процесс продолжается до насыщения катодной зоны.

Рис. 5. Ионы лития переместятся через электролит

В итоге получается такое состояние литий-ионного аккумулятора, при котором отрицательный электрод обладает определенным зарядом, но его состояние крайне нестабильно. Скопившиеся под воздействием постороннего источника питания ионы лития и электроны уравновешивают друг друга.

Рис. 6. Заряженное состояние литий-ионного аккумулятора

Такой баланс заряда в литий-ионном аккумуляторе сохраняется до тех пор, пока к его выводам не подключат какую-либо нагрузку.

При подключении любого электрического прибора для электронов, расположенных в отрицательно заряженном электроде, появиться путь для перемещения в направлении катода.

Рис. 7. При подключении нагрузки электроны переместятся обратно к катоду

Электроны будут перемещаться по внешней электрической цепи, а положительно заряженные ионы лития пройдут сквозь электролит литий-ионного аккумулятора. Направленное движение отрицательно заряженных ионов и создает электрический ток. По мере перемещения заряженных частиц от отрицательного электрода к положительному, аккумулятор будет разряжаться, а для восстановления энергии, его потребуется подзарядить снова.

Характеристики

В эксплуатации литий-ионного аккумулятора опираются на его технические параметры. К основным характеристикам батарей данного типа относят:

  • Плотность энергии – измеряется в Вт*ч/кг, для литий-ионных аккумуляторов, чаще всего, находится в пределах от 90 до 120.
  • Удельная мощность – определяет количество энергии в единице веса, составляет порядка 1 – 1,8 кВт/кг.
  • Процент саморазряда – определяет количество растрачиваемой аккумулятором энергии за период времени. Для литий-ионных моделей составляет 2 – 3% в месяц. При условии нахождения батареи в комнатной температуре саморазряд составляет только 7% в год.
  • Допустимый диапазон температур – для литий-ионных аккумуляторов, чаще всего составляет от  — 30 до +50°С, но в некоторых моделях  может варьировать в пределах от – 60 до +70°С.
  • Число циклов – указывает количественное выражение для возможности разряда и последующего заряда до выхода  литий-ионного аккумулятора со строя. В зависимости от модели и конструктивных особенностей составляет от 2 до 5тысяч циклов. А при 0,5 – 1 тысяче, как правило, теряется порядка 20% начальной емкости.
  • Минимальное и максимальное напряжение – для литий-ионных аккумуляторов наименьшая величина составляет в пределах 2,2 – 2,5В, а наибольшая составляет 4,25 – 4,35В.    
  • Время заряда – при оптимальном режиме составляет около 2 – 4 часов.

Преимущества и недостатки

В последнее время литий-ионные аккумуляторы заняли свою весомую нишу в сфере независимых источников питания и продолжают вытеснять другие модели. Такой успех объясняется рядом весомых преимуществ:

  • Обладают высокой энергетической плотностью, в сравнении с щелочными, кислотными, никель-кадмиевыми и никель-металлогидридными. 
  • В сравнении с другими видами, один элемент характеризуется куда большей величиной напряжения, которую тот способен выдать.
  • Характеризуются довольно большим количеством циклов заряда и разряда, благодаря чему могут похвастаться более длительным сроком эксплуатации.
  • Может функционировать в достаточно широком температурном диапазоне.
  • В сравнении с другими типами аккумуляторов, не содержит веществ, представляющих  угрозу экологии.

Однако, на ряду с преимуществами, литий-ионные аккумуляторы характеризуются и некоторыми недостатками. Так, в случае несоблюдения основных режимов заряда или эксплуатации  батарея может не только выйти со строя, но и загореться. В случае понижения температуры менее допустимого предела, емкость аккумулятора может снизиться до 20%. При избыточном заряде литий-ионный быстро выходит со строя.

Особенности эксплуатации

В случае неправильной эксплуатации литий-ионные аккумулятор быстро выходят со строя. Как могли заметить некоторые владельцы мобильных телефонов, такая батарея часто вздувается, что мешает нормальному закрытию крышки.

Рис. 8. Вздутие литий-ионной батареи

Подобная ситуация является следствием выделения большого количества газов, которые и раздувают корпус Li-Ion батареи. В то же время, при правильной эксплуатации, источник питания прослужит в 10 раз дольше.

Одним из важнейших правил для литий-ионных источников питания является соблюдение умеренного температурного режима. Не допускается как чрезмерный перегрев, к примеру, оставлять моблиьный телефон на пляже под воздействием прямых солнечных лучей, возле обогревателей или в автомобиле на палящем солнце. В равной степени, как и резкие переохлаждения. В случае выявления чрезмерного нагрева в ходе заряда, необходимо прекратить процедуру и вынуть литий-ионную батарею для охлаждения.

В случае выявления испорченной и уже вздутой батареи, ни в коем случае не следует пытаться ее проколоть или отремонтировать. Лучше замените е на новую в целях собственной безопасности, но внимательно следите за соблюдением основных режимов и правильным зарядом.

Особенности зарядки

От правильного заряда зависит продолжительность работы литий-ионного аккумулятора и величина  емкости, в сравнении с заводскими характеристиками. Так, следует отметить следующие особенности:

  • Не стоит допускать полного разряда – хоть это и не однозначное утверждение, но постоянное использование накопленной в аккумуляторе электроэнергии на 100% очень быстро приведет к изнашиванию элементов. Но, здесь существует небольшая оговорка, один раз в три месяца, такую процедуру необходимо выполнять для сохранения верхнего и нижнего предела.
  • Литий-ионные аккумуляторы обладают пусть и незначительным, но эффектом памяти. Поэтому заряжать их лучше полностью, так как постоянный недостаток заряда будет снижать емкость.
  • Несмотря на наличие защиты от перезаряда практически во всех литий-ионных батареях, не стоит заряжать их более, чем предусмотрено заводом изготовителем.
  • Для заряда обязательно используйте оригинальные блоки питания, так как применение нетиповых устройств может отрицательно сказаться на сроке службы литий-ионных аккумуляторов.

Список использованной литературы

  • Кедринский И.А., Яковлев В.Г. «Li-ионные аккумуляторы» 2002
  • Медведев Б.С., Налбандян В.Б., Гутерман В.Е. «Материалы литий-ионных аккумуляторов» 2007
  • Попова C.С., Денисов А.А., Денисова Г.П. «Химические источники тока. Литий — ионные аккумуляторы пленочной конструкции» 2009
  • Мельничук О. В. «Особенности заряда и разряда литиевых аккумуляторных батарей и современные технические средства управления этими процессами» 2016

Литий-ионные технологии продления срока службы

Литий-ионные аккумуляторные батареи радикально меняют рынок промышленных электрических погрузчиков. И неудивительно: по своим выдающимся характеристикам и потрясающей добавленной ценности мощные энергоносители существенно превосходят обычные свинцово-кислотные АКБ. Благодаря продолжительной работе литий-ионные аккумуляторные батареи помогут вам опередить конкурентов, повышая эффективность складских операций и обработки товаров. Боле того, небольшое время зарядки и отсутствие необходимости в обслуживании гарантируют непрерывность работы. Обладая длительным сроком службы, литий-ионные батареи обеспечат вам максимум преимуществ. На литий-ионные батареи собственного производства компания Jungheinrich дает 5 лет гарантии при 10000 часов эксплуатации. Это лучшее предложение на рынке. Литий-ионные аккумуляторы Jungheinrich — залог успеха в Вашей конкурентной борьбе.
 

5 лет без забот. Гарантировано.

Давая 5 лет гарантии на литий-ионные аккумуляторы, мы подтверждаем их долгую безукоризненную работу независимо от часов эксплуатации.

Встроенный контент требует вашего подтверждения

К сожалению, содержимое этой страницы недоступно из-за ваших текущих настроек cookie.

Пожалуйста, разрешите «маркетинговые» cookie для отображения контента.

Преимущества литий-ионных аккумуляторов

Высокая мощность, быстрая зарядка, отсутствие потребности в обслуживании и долговечность — узнайте, как литий-ионные АКБ помогут Вам быть впереди конкурентов.

Подробно

Быстрый возврат к работе.

Невероятно быстрая зарядка.

Литий-ионные аккумуляторы всегда заряжены и готовы к работе даже в несколько смен. Промежуточный заряд длительностью всего 30 минут обеспечит батарее на 24 В заряд до 50 % емкости. Чтобы зарядить наполовину аккумулятор на 80 В, достаточно всего 53 минут. Полная зарядка батареи на 24 В занимает 80 минут, а на 80 В — 105 минут. Технологии ускоренного и промежуточного заряда, например, в перерывах и во время спонтанных пауз, гарантируют непрерывную готовность техники, что повышает гибкость ежедневных складских операций.  

Максимальная мощность в любое время.

Неизменно высокие рабочие характеристики.

Литий-ионные АКБ обладают более высокой производительностью по сравнению со свинцово-кислотными аккумуляторами. Более глубокий разряд и постоянные характеристики напряжения гарантируют, что даже при низком заряде литий-ионная АКБ может выдать больше мощности, чем свинцово-кислотные аккумуляторные батареи. При каждом торможении батарея набирает заряд, а высокая общая эффективность позволяет аккумулировать до 20 % больше энергии. Кроме того, обмен данными между батареей и зарядным устройством гарантирует эффективную и быструю зарядку.

Всегда готовы к работе.

Без вынужденных простоев.

Литий-ионные аккумуляторы всегда готовы к работе. Им не нужен отдых. Они не требуют обслуживания и не выделяют вредных газов. Это значит, что Вам не придется тратить время и деньги на обслуживание аккумуляторных батарей или дополнительную инфраструктуру. С литий-ионными аккумуляторными батареями вынужденные простои останутся в прошлом.

Работают в три раза дольше.

Благодаря продолжительному сроку службы.

Подобно хорошему спринтеру, литий-ионные АКБ эффективны на любом этапе соревнований. Потому что они работают в три раза дольше, чем традиционные аккумуляторы. Выдающаяся выносливость и более высокая общая эффективность защитят Ваши инвестиции за счет сокращения расходов на электроэнергию.

Д-р Ларс Бржоска (Lars Brzoska)

Председатель Совета директоров

«На сегодняшний день большинство используемой в мире подъемно-погрузочной техники с литий-ионными аккумуляторами выпущены под маркой Jungheinrich». 

Максимальный результат с лучшей командой.

Идеально синхронизированная система.

Чтобы спортсмен мирового класса выложился на полную, ему нужна надежная команда. То же самое относится и к литий-ионным АКБ. Полного раскрытия потенциала можно добиться лишь в том случае, если все элементы системы работают согласованно. Компания Jungheinrich — единственный производитель складской техники, который предлагает Вам комплексную взаимосвязанную систему, в которой АКБ, зарядное устройство и погрузчик эффективно взаимодействуют друг с другом, значительно снижая потребности в электроэнергии. Подобный уровень эффективности стал закономерным следствием того, что на сегодняшний день Jungheinrich — единственная в мире компания, занимающаяся разработкой и вводом в эксплуатацию электрических погрузчиков с литий-ионными аккумуляторами собственного производства. Суть нашей командной работы заключается в том, что мы всегда готовы оказать поддержку на каждом этапе Вашего проекта, в котором используются литий-ионные АКБ. Вне зависимости от того, что требуется в данный момент: заменить АКБ на одной машине или перевести на литий-ионные АКБ целый парк техники. Наши консультанты будут рады помочь Вам на любом этапе процесса: от планирования до введения в эксплуатацию.

Обратитесь к нам уже сегодня!

Идеальная согласованность на пути к успеху.

Комплексная система Jungheinrich.
У Jungheinrich есть все, что связано с литий-ионными АКБ:
аккумуляторы (1), зарядные устройства (2), техника (3) и поддержка (4).

Аренда вместо покупки.

Переоснастите Ваш парк погрузочной техники и воспользуйтесь преимуществами литий-ионных АКБ и зарядных устройств в рамках комплексной программы аренды Li-Ion Performance Rental. Это позволит снизить затраты и одновременно быстро и легко повысить производительность Ваших электроштабелеров.

Подробнее о программе аренды литий-ионных аккумуляторов

Универсальное зарядное устройство SLH 300 позволяет легко заряжать литий-ионные и свинцово-кислотные аккумуляторы.

Новатор в сфере технологий литий-ионных АКБ.
Серийное производство готовой к эксплуатации подъемно-погрузочной техники с 2011 года.

В сфере электрической мобильности для складской логистики компания Jungheinrich уверенно завоевала лидерство и добилась непревзойденных успехов в разработке технологий для литий-ионных АКБ. Уже в 2011 году электротележка EJE 112i стала первой в своем роде моделью на литий-ионных батареях, готовой к серийному производству. С тех пор подразделение Jungheinrich Energy and Drive Systems (EDS) последовательно совершенствует эту технологию, непрерывно пополняя линейку складской техники с литий-ионными АКБ. Сегодня практически все модели техники Jungheinrich могут оснащаться литий-ионными АКБ.

Встроенный контент требует вашего подтверждения

К сожалению, содержимое этой страницы недоступно из-за ваших текущих настроек cookie.

Пожалуйста, разрешите «маркетинговые» cookie для отображения контента.

Безопасность при достижении целей — в любое время.

Литий-ионные АКБ Jungheinrich отличаются высоким уровнем безопасности.

Литий-ионные аккумуляторы Jungheinrich гарантируют безопасность работ в любых условиях. Наши АКБ изготовлены с использованием самых надежных компонентов для аккумуляторов (литий-железо-фосфат). Они нетоксичны и не выделяют вредных газов. Благодаря развитому набору функций разработанная нами система управления АКБ контролирует каждый элемент, плавно выключая АКБ при отклонениях в работе. Транспортировку и утилизацию осуществляет наша собственная сервисная служба. Это означает максимальную безопасность людей и техники.

Новый выносливый профессионал для повышения скорости обработки грузов.

ETV 216i — первый в мире штабелер с выдвижной мачтой, оборудованный литий-ионным аккумулятором.
ETV 216i — наша последняя новинка в линейке техники, оснащенной литий-ионной АКБ. Это первый в мире штабелер с выдвижной мачтой и встроенным литий-ионным аккумулятором. Благодаря высокой мощности и неизменной производительности этот выносливый профессионал заметно повысит эффективность и грузооборот Вашего склада. Революционное обновление дизайна также способствует улучшению эргономики и повышению безопасности при одновременном повышении производительности Вашего склада.

Подробнее о ETV216i

Молодой спортсмен в слаженной команде.

EFG с литий-ионным аккумулятором.
Теперь почти весь парк техники Jungheinrich готов к установке литий-ионных АКБ. В том числе наши штабелеры с противовесом EFG. Теперь они выходят на старт не только с традиционными свинцово-кислотными аккумуляторами, но и с мощными литий-ионными АКБ 80 В (500 Ач). Они долговечны, быстро заряжаются и не требуют технического обслуживания. С литий-ионным аккумулятором EFG легко справится с увеличением грузооборота и повышением энергоэффективности.

Подробнее о EFG

Максимальная производительность комплектования.

EKS с литий-ионным аккумулятором (48 В).

Все больше единиц серийной напольной подъемно-погрузочной техники оборудуется литий-ионными АКБ. Теперь вертикальные комплектовщики заказов EKS серии 3 могут оборудоваться инновационными литий-ионными АКБ 48 В, позволяющими повысить производительность, безопасность и энергоэффективность техники. Это стало возможным благодаря быстрой зарядке, отсутствию необходимости в обслуживании и очень длительному сроку службы.

Подробнее о EKS


Как увеличить пропускную способность склада?

На старт с литий-ионными аккумуляторами.

Литий-ионные аккумуляторные батареи – Особенности интерфейса и менеджмента ЛИАБ – ПАО Сатурн

Обеспечение надежности и безопасности ЛИАБ

Защита от перезаряда и переразряда внешне обеспечивается электронным устройством, абсолютно надежным в управлении.

Внутреннее КЗ предотвращается конструктивно: обертыванием (пакетированием) электродов сепараторами и тем, что при этом между электродами находится трехслойный сепаратор, который при достижении критической температуры теряет пористость (заплавляется) и останавливает электрохимический процесс.

Исключение из цепи отказавших или аномально деградировавших аккумуляторов выполняется применением байпасных переключателей.

Основные требования, которые предъявляются к байпасному переключателю для литий-ионной аккумуляторной батареи для космического аппарата, это надежность, минимальные энергетические потери, минимальная масса, сохранение неразрывности цепи ЛИАБ при переключении и механическая и радиационная стойкость.

Схема подключения байпасного переключателя и временная диаграмма работы переключателя обеспечивает сохранение неразрывности при переключении цепи соединения аккумуляторов в аккумуляторной батарее.

Таким образом, отказ любого элемента не приводит к отказу ЛИАБ. Надежность ЛИАБ обеспечивается также всеобъемлющей квалификацией (в том числе ресурсными испытаниями) и тщательным контролем при изготовлении.

Как заряжать литий ионные аккмуляторы?

Как заряжать литий ионный аккумулятор, чтобы значительно продлить срок его службы и добиться длительной эффективной работы? Соблюдение простых правил эксплуатации, рекомендованных производителем, позволит продлить срок жизни батареи питания и избежать больших затрат на дорогостоящую покупку. Принцип работы литий-ионных батарей отличается от никель-кадмиевых и других устройств, поэтому и требования к циклам заряда и разряда будут совсем другими.

Основные правила зарядки аккумуляторов

Одна из главных особенностей: литий-ионные аккумуляторы не требуется полностью заряжать и разряжать. В отличие от никель-кадмиевых элементов питания, такие батареи не имеют эффекта памяти, следовательно при неполной зарядке их емкость не уменьшается, и продолжительность автономной работы не сокращается. Более того, полная разрядка приводит к сокращению срока работы аккумулятора, продолжать использовать ноутбук нежелательно уже при 20%-ной отметке.

Можно перечислить несколько основных правил правильной зарядки и эксплуатации литий-ионных аккумуляторов:

  • Нельзя хранить долгое время разряженную батарею. Если разряженный аккумулятор пролежал на полке несколько месяцев, его можно выбрасывать: зарядить его заново уже не получится. Это одна из самых распространенных причин, по которым литий-ионные батареи полностью выходят из строя.
  • Нежелательно постоянно поддерживать аккумулятор на зарядке во время работы ноутбука. Если он используется в качестве стационарного компьютера дома, на время работы можно вынимать аккумулятор и использовать только сеть от розетки. При этом несколько раз в месяц батарею необходимо подключать для полноценной зарядки и разрядки.
  • Оптимальный уровень заряда для хранения аккумулятора – 30-50%. При таком уровне батарея сама практически не теряет заряд и сохраняет свои свойства в течение длительного времени.
  • Нельзя допускать перегрева и переохлаждения батареи питания. Ее нежелательно оставлять на открытом солнце или вблизи обогревателей, нельзя включать ноутбук на улице при температуре ниже нуля. И то, и другое приводит к ускоренному износу, и скоро придется покупать новый аккумулятор.
Литий-ионные батареи любого типа рекомендуется подзаряжать только оригинальными зарядными устройствами. Это касается как ноутбуков, так и смартфоном или планшетов. Если блок питания вышел из строя, необходимо приобрести новый той же марки и с теми же характеристиками.

Как увеличить срок работы аккумулятора?

Правильно зарядить литий-ионный аккумулятор – значит обеспечить ему длительную автономную работу и долгую работоспособность. Стандартный срок эксплуатации для батарей такого типа составляет от 400 до 600 циклов зарядки и разрядки, однако правильная эксплуатация с соблюдением всех рекомендаций способна увеличить этот показатель до 1000 циклов. Заботиться о батарее питания будет намного проще, если поставить на ноутбук специальные утилиты, позволяющие контролировать уровень зарядки литий-ионного аккумулятора и степень его изношенности, а также своевременно закрывать все ненужные программы.

Для увеличения времени автономной работы необходимо правильно экономить энергию. При временном прекращении работы ноутбук нужно переводить в режим гибернации – это значительная экономия заряда батареи. Также нужно отключать все невостребованные в данный момент функции, закрывать лишние программ и не допускать слишком большого списка автозагрузки. Если батарея все же вышла из строя, не стоит пытаться разбирать ее самостоятельно и пытаться ремонтировать.


Какой аккумулятор лучше? Литий-ионный или литий-полимерный?

Неотъемлемый элемент современной повседневной жизни – это, конечно, портативные зарядные устройства. И если аккумулятор некачественный, то об эффективности и безопасности не может быть речи. Все, кто производят зарядные устройства, применяют в конструкции пару видов аккумуляторов. Это литий-ионный и литий-полимерный.

Сразу отметим, что отличие между литий-ионным и литий-полимерным типами аккумуляторов есть, и оно существенное, но только когда полимерный материал является электролитом.

Однако, забегая наперед, нужно сказать следующее: если покупаешь смартфон, планшет или ноутбук, то тип аккумулятора, чтобы там ни было указано в маркировке — Li-Ion или Li-Po, меньше всего сказывается на времени работы и характеристиках девайса в целом.

ВАЖНО! Поэтому вам лучше просто выбрать самую емкую батарею. Ко всему есть резон ознакомиться с отзывами, которые оставили пользователи.

Особенности литий-ионных аккумуляторов

С самого начала модели на базе лития делали с использованием кобальта и марганца. Они были основными элементами, то есть активным электролитом.

Батареи литий-ионного типа, которые выпускают в настоящее время, уже не такие. В них немало конструктивных изменений. Применяемое вещество не влияет на продуктивность. Она зависит от того, как размещены элементы в блоке, каков их порядок.

Составными частями современного аккумулятора Li-Ion являются электроды и сепаратор. Применяются медь и алюминий. Аноды – из меди. А для катодной основы применяют фольгу из алюминия.

Внутреннее соединение анода и катода обеспечивается с помощью специальных клемм-токосъемников. А электролитная пропитка массы сепаратора формирует среду, которая благоприятна для того, чтобы обслуживать заряд. Положительные заряды ионов лития производят запуск химических реакций, формируют связи и обеспечивают выход энергии.

ВАЖНО! Принцип действия источника питания на литий-ионной базе подходит для сравнения с работой полноформатной гелевой аккумуляторной батареи.

Особенности литий-полимерных батарей

Надо признать, что литий-ионным моделям не под силу выполнить большинство современных задач. А потому их потихоньку стали вытеснять полимерные элементы. Батареи Li-ion не обеспечивали высокий уровень безопасности. А еще их покупка обходилась недешево.

Нужно было избавиться от этих недостатков, устранить проблемы эксплуатации, добиться большей эффективности батареи. Вот почему разработчики пошли по пути смены электролита. Они отказались пропитывать пористый сепаратор в конструкции батареи. Они решили использовать полимерные электролиты.

Толщина литий-полимерного элемента – 1 мм. Это предоставляет возможность сделать компактными размеры аккумулятора. После того, как жидкие электролиты заменили полимерными пленками, большой риск того, что батарея воспламенится, был исключен. И батареи стали безопасными.

Полимерно-литиевые аккумуляторные устройства имеют такую конструкцию, которая никак не допускает, чтобы в ней был электролит. Будь то жидкость или гель. Можно наглядно представить, в чем разница технологий. Для этого необходимо только изучить принцип работы современных автомобильных питающих устройств.

ВАЖНО! Жидкостные электролиты исключили из повседневной практики. Сделано это в целях безопасности. Однако в аккумуляторных батареях для автомобилей до последнего времени применяли пористые структуры с пропиткой.

С внедрением полимерно-литиевых элементов предполагалась уже твердотельная основа. Их характерным отличием по сравнению с литий-ионными аккумуляторами стал процесс, когда пластины активного вещества контактируют с литием и не допускают того, чтобы во время циклирования образовались дендриты. Благодаря этой особенности есть защита аккумуляторных элементов не только от возгорания, но и от взрыва.

Чем отличаются эти аккумуляторы друг от друга?

Если взять все известные смартфоны, планшеты, ноутбуки, смарт-часы и прочие портативные гаджеты, то самый подходящий аккумулятор подобрать можно уже на этапе проектирования и инженерного конструирования. В последнее время производители приложили немало усилий для того, чтобы внедрить самые современные технологии, позволяющие сберегать энергию.

Иногда у разработчиков получается достичь цикл автономности максимально длительный. Однако в угоду концептуальных особенностей разрабатываемого продукта (скажем, для того, чтобы иметь тонкий корпус или огромную камеру и при этом не увеличивать габариты) даже самым крутым системам экономии расхода заряда порой не суждено быть реализованными.

Вот почему покупателям приходится выбирать подходящие для конкретных целей характеристики.

ВАЖНО! Любителям путешествовать есть смысл выбрать длительный срок службы батареи. Им можно пожертвовать элегантным внешним видом. Тому, кто любит класть телефон на стол в люксовом ресторане, нужен такой аксессуар, который работает меньше, зато подчеркивает статус пользователя.

Тип аккумулятора — это часть инженерного расчета под выбранную концепцию. И тут нужно выбирать между конструкцией, которая проще и дешевле, или той, которая сложнее, но дороже.

Эксперты «Battery University» установили, что в современных гаджетах все же редко можно встретить литиевые батареи, которые полностью базируются на полимере. Преимущественно встречаются литий-ионные полимерные батареи. А в них используют ламинированную оболочку, а не жесткие корпуса, как у обычных литий-ионных батарей.

Преимущественно литий-полимерной батареей называют тот литий-ионный аккумулятор, который имеет эластичную полимерную оболочку с компактными габаритами.

Достоинства обычной литий-ионной (Li-Ion) батареи:

— Плотность высокая
— Эффект памяти отсутствует
— Стоимость низкая

Недостатки стандартной литий-ионной (Li-Ion) батареи:

— Может вздуваться и разрушаться
— Может самовоспламеняться
— Со временем изнашивается

ВАЖНО! Данный тип аккумулятора (Li-Ion) применяется в таких устройствах, как iPhone 4S, Apple MacBook Air 11, Apple iPod Photo, iPod Video и в прочих устройствах.

Достоинства литий-полимерной (Li-Poly/Li-Po) батареи:

— Эластичная и прочная
— Компактная и низкопрофильная
— Риск утечки электролита снижен

Недостатки литий-полимерной (Li-Poly/Li-Po) батареи:

— В производстве дороже
— Изнашивается быстрее
— Поставки неразвиты (логистика)

ВАЖНО! Данный тип литиевого аккумулятора (Li-Po/Li-Poly) применяется, в частности, в смартфонах Xiaomi Redmi 5; Redmi Note 4x, как и во многих айфонах.

Продолжительность службы

Аккумуляторы, и литий-ионные, и литий-полимерные, быстро стареют. Они могут обеспечить примерно 900 полных циклов зарядки, а потом они уже не годятся для дела. И неважно при этом, насколько активно использовали девайс. Когда батарею долго не применяли вообще, то все равно ресурс ее использования сократится.

ВАЖНО! Уже через год ресурс емкостей существенно уменьшается. А через 2-3 года батарея совсем выходит из строя. Этот недостаток присущ всем литиевым аккумуляторам. И если выбираешь более долговечную модель, то обрати внимание на репутацию производителя и учитывай отзывы на конкретные модели.

Разница в дополнительной защите

Чем отличаются Li-ion и Li-Pol аккумуляторы? При рассмотрении этого вопроса нужно обращать внимание на встроенные защитные системы.

Модели, которые работают на полимерно-литиевой основе, нуждаются в применении дополнительных функций внутренней защиты. Дело в том, что они нередко портятся из-за того, что элементы перегорают. И это все из-за внутреннего напряжения разных рабочих участков.

Для того чтобы сделать устройство безопасным от несанкционированных перезарядов, и от того, чтобы не перегревались детали и не перегорали, в конструкции применяют специальную стабилизирующую систему и механизм, который ограничивает ток.

Так безопасность литий-полимерных моделей становится выше. Однако это ведет к существенному повышению стоимости аккумулятора, поскольку есть необходимость применять защитные элементы.

В конструкции используются электролитические компоненты в гелевой формации, но лишь частично. Элементы питания комбинированные нашли применение в большинстве портативных устройствах. Они очень восприимчивы к перепадам температуры. И потому нуждаются в том, чтобы правила эксплуатации строго соблюдались.

ВАЖНО! Аккумулятор на полимерной базе подходит для применения в девайсах, где нагрев в диапазоне 60-100 градусов.

Внутреннюю часть производители заключают в корпус, который обладает теплоизолирующими свойствами. Понятно, что данные аккумуляторы подходят для применения там, где жаркий климат. В условиях, когда режим температуры не соответствует требованиям эксплуатации, элементы, у которых полимерная составляющая, используются в качестве резервных.

Специфика зарядки разных аккумуляторов

Вам понадобится, как минимум, три часа для того, чтобы пополнить заряд литий-полимерного аккумулятора. Весь процесс будет протекать так, что блок не нагреется.

Предусматривается пара этапов наполнения. Первый этап происходит до того, как будет установлен пиковый режим. А он поддерживается до той поры, когда зарядка не достигнет семидесяти процентов. Если режим напряжения нормальный, то набирается и остаточный заряд в 30 процентов.

Существует строгий график подзарядки. Нужно дождаться полной разрядки и проводить процедуру через каждые 500 часов применения девайса. Данный режим позволяет поддерживать постоянный объем наполнения.

Обращаем внимание на то, что во время зарядки каждый разъем должен быть подключен корректно. Размыкания допускать нельзя. Элементы Li-Pol очень чувствительны к перегрузкам, превышенным показателям тока, а также механическим ударам и переохлаждению. Нужно контролировать герметичность твердотельных элементов.

ВАЖНО! Зарядка элементов Li-ion осуществляется примерно по таким же принципам, как и полимерных. Однако они более чувствительны и менее надежны, когда мы говорим о безопасности.

Оба типа аккумуляторов затрачивают примерно одно и то же время на зарядку. Однако полимерный элемент более «капризный» к качеству точки энергоснабжения.

Как работает литий-ионный аккумулятор?

Представьте себе мир без литий-ионных батарей (часто называемых литий-ионными батареями или LIB ). Нужна помощь? Мобильные устройства не будут выглядеть так, как сейчас. Представьте себе огромные, тяжелые сотовые телефоны и ноутбуки. Также представьте, что обе эти вещи настолько дороги, что их могут себе позволить только очень богатые люди. Вы представляете 80-е годы. Страшно, правда?

Знаете ли вы?

Литий-ионные батареи

были впервые произведены и произведены компанией SONY в 1991 году.

Литий-ионные батареи стали огромной частью нашей мобильной культуры. Они обеспечивают питание большей части технологий, которые использует наше общество.

Из чего состоит литий-ионный аккумулятор?

Батарея состоит из нескольких отдельных ячеек , которые соединены друг с другом. Каждая ячейка содержит три основные части: положительный электрод (катод ), отрицательный электрод (анод ) и жидкий электролит .

Части литий-ионного аккумулятора (© Let’s Talk Science, 2019 г. , на основе изображения ser_igor с iStockphoto).

Литий-ионные батареи, подобно сухим щелочным батареям, используемым в часах и пультах дистанционного управления от телевизора, обеспечивают питание за счет движения ионов. Литий в своей элементарной форме чрезвычайно реактивен. Вот почему в литий-ионных батареях не используется элементарный литий. Вместо этого литий-ионные батареи обычно содержат оксид лития-металла, такой как оксид лития-кобальта (LiCoO 2 ).Это поставляет литий-ионы. В катоде используются оксиды лития-металла, а в аноде — литий-углеродные соединения. Эти материалы используются, потому что они допускают интеркаляцию. Интеркаляция означает, что молекулы могут что-то в них вставлять. В этом случае электроды могут легко перемещать ионы лития в свою структуру и выходить из нее.

Каков химический состав литий-ионных батарей?

Внутри литий-ионного аккумулятора протекают окислительно-восстановительные реакции (Redox).

Восстановление происходит на катоде. Здесь оксид кобальта соединяется с ионами лития с образованием оксида лития-кобальта (LiCoO 2 ). Половина реакции:

CoO 2 + Li + + e → LiCoO 2

Окисление происходит на аноде. Здесь соединение интеркаляции графита LiC 6 образует графит (C 6 ) и ионы лития. Половина реакции:

LiC 6 → C 6 + Li + + e

Вот полная реакция (слева направо = разрядка, справа налево = зарядка):

LiC 6 + CoO 2 ⇄ C 6 + LiCoO 2

Как работает подзарядка литий-ионного аккумулятора?

Когда литий-ионный аккумулятор в мобильном телефоне питает его, положительно заряженные ионы лития (Li +) перемещаются от отрицательного анода к положительному катоду.Они делают это, перемещаясь через электролит, пока не достигнут положительного электрода. Там они хранятся. С другой стороны, электроны движутся от анода к катоду.

Что происходит в литий-ионной батарее при разряде (© Let’s Talk Science, 2019 г., на основе изображения ser_igor с iStockphoto).

Иллюстрация — текстовая версия

Когда батарея используется, ионы лития текут от анода к катоду, а электроны движутся от катода к аноду.

Когда вы заряжаете литий-ионный аккумулятор, происходит прямо противоположный процесс. Ионы лития возвращаются от катода к аноду. Электроны движутся от анода к катоду.

Что происходит с литий-ионным аккумулятором при зарядке (© Let’s Talk Science, 2019 г., на основе изображения ser_igor с iStockphoto).

Иллюстрация — текстовая версия

Когда аккумулятор заряжается, ионы лития текут от катода к аноду, а электроны перемещаются от анода к катоду.

Пока ионы лития переходят от одного электрода к другому, существует постоянный поток электронов. Это дает энергию для работы вашего устройства. Так как этот цикл может повторяться сотни раз, этот тип батареи перезаряжаемый .

Знаете ли вы?

Иногда литий-ионные батареи называют «батареями для кресел-качалок». Это потому, что ионы лития «качаются» между электродами.

Что делает литий-ионные батареи подходящими для мобильных технологий?

Все просто. Литий-ионные аккумуляторы имеют самую высокую плотность заряда среди всех сопоставимых систем. Это означает, что они могут дать вам массу энергии, не будучи очень тяжелыми.

Это по двум причинам. Во-первых, литий является наиболее электроположительным элементом. Электроположительность — это мера того, насколько легко элемент может отдавать электроны для образования положительных ионов. Другими словами, это мера того, насколько легко элемент может производить энергию.Литий очень легко теряет электроны. Это означает, что он может легко производить много энергии.

Литий также самый легкий из всех металлов. Как вы уже знаете, в качестве электродов в литий-ионных батареях используются интеркаляционные материалы, а не металлический литий. Тем не менее, эти батареи весят намного меньше, чем батареи других типов, в которых используются такие металлы, как свинец или никель.

Есть ли риски при использовании литий-ионных батарей?

Эти батареи впечатляют, но у них есть свои недостатки.Самая большая жалоба заключается в том, что они довольно быстро изнашиваются независимо от того, используете вы их или нет. Обычный литий-ионный аккумулятор прослужит около 2–3 лет, прежде чем его потребуется заменить. Это может обойтись дорого! Производство и утилизация литий-ионных батарей также оказывает большое влияние на окружающую среду, поэтому чем дольше эти батареи могут прослужить, тем лучше.

Как вы узнали, литий чрезвычайно реактивен. Когда производители производят литий-ионные батареи, они должны принимать определенные меры предосторожности, чтобы их можно было безопасно использовать.Однако вы, возможно, слышали о некоторых электронных устройствах, таких как ноутбуки или сотовые телефоны, которые загорелись из-за своих батарей. Хотя это может быть хорошим предлогом, чтобы не сдать эссе на английском вовремя, это довольно опасная ситуация. По соображениям безопасности литий-ионные батареи включают сепаратор. Это предотвращает соприкосновение электродов элементов батареи друг с другом. Но если этот разделитель будет порван или поврежден, электроды могут соприкоснуться. Это может вызвать сильное перегревание. Если в результате этого нагрева образуется искра, легко воспламеняющийся электролит может загореться.

Как только в одной камере возникает пламя, оно может быстро распространиться на другие. И прежде чем вы это заметите, ваш ноутбук представляет собой лужу расплавленного пластика. Накопление тепла также может вызвать очень быстрое повышение давления в вашем ноутбуке и БУМ!

Посмотрите, что происходит при коротком замыкании литий-ионного аккумулятора (1:13 мин.).

Однако не стоит особо беспокоиться. Эти события очень редки. На самом деле литий-ионные батареи очень безопасны. Кроме того, прямо сейчас проводится множество исследований по улучшению каждой части этих батарей.Например, исследователи создали жидкий электролит, который при ударе превращается в твердое тело. Это поможет предохранить батареи от перегрева или возгорания в случае их повреждения! Вскоре литий-ионные батареи, вероятно, станут еще безопаснее, прослужат дольше и будут стоить еще дешевле.

Знаете ли вы?

Большинство электромобилей работают на литий-ионных батареях. Мы начинаем видеть все больше и больше автомобилей, которые подключаются к сети вместо того, чтобы заправляться бензином!

Основной принцип работы литий-ионного (Li-ion) аккумулятора [1].

Контекст 1

… при разрядке ионы лития перемещаются от анода к катоду через электролит, генерируя электрический ток, и во время зарядки устройства ионы лития высвобождаются катодом и затем уходят. обратно к аноду. На рисунке 1 показан основной принцип работы литий-ионного аккумулятора. Поскольку электролит является ключевым компонентом аккумуляторов, он влияет на электрохимические характеристики и безопасность аккумуляторов. …

Контекст 2

… батареи показали хорошую циклируемость даже при повышенных температурах до 55 ° C за счет лучшей термической стабильности. На рисунке 10 показаны испытания на воспламеняемость GPE-LE с EC / DMC и GPE-SN-IM, доказывающие, что GPE-SN-IM является гораздо более безопасным электролитом для литий-ионных аккумуляторов. Смесь полиакрилонитрила (PAN) / поли (винилового спирта) (PVA) на основе мембранных гелевых полимерных электролитов с соотношением PVA / PAN 0: 100, 10:90, 20:80 и 40:60, обозначенных как BM-0. , БМ-1, БМ-2 и БМ-3 соответственно [43]. …

Контекст 3

… Тест ячеек показал сохранение емкости 58%, 1%, 94%, 96% и 40% для сепаратора Celgard 2320, BM-0, BM-1, BM-2 и BM-3, соответственно, после 200 циклы в размере 1С. На рисунке 11 показаны изображения мембран, нагретых от 25 ° C до 100 ° C до 160 ° C. Celgard 2320 сильно усадился при 160 ° C, в то время как BM-0, BM-1, BM-2 и BM-3 показали незначительное изменение размеров из-за мембраны PAN, которая обладает температурой плавления более 300 ° C. …

Контекст 4

… аккумуляторные батареи с гелевым электролитом показали хорошие электрические характеристики, безопасность, цикличность и способность выдерживать ток. Испытания на горение проводились с использованием обычного карбоната, 1 M LiPF6 в жидком электролите EC / DMC / DEC (об. / Об. / Об. = 1/1/1) и IPN-GPE, как показано на рисунке 12. Низкая воспламеняемость IPN -GPE делает его более безопасным электролитом для литий-ионных аккумуляторов. …

Контекст 5

… стабильность при циклическом воздействии батарей LiFePO4 / 10% LAGP / Li была улучшена, поскольку на литиевом аноде не образовывались дендриты.На рисунке 13 показаны испытания на воспламеняемость и циклические характеристики батарей. Fu et al. разработали изгибаемую гибкую полимерно-электролитную мембрану (PEM) на основе сшиваемого предшественника полиуретана, диметакрилата полиэтиленгликольбискарбамата (PEGBCDMA), который был термостойким и огнестойким [49].

Контекст 6

… емкость 128 мАч · г -1 и значительно улучшенный кулоновский КПД 96% при 0,1 ° C после 100 циклов для LiNi0,5Mn1.5O4 / Li4Ti5O12 было достигнуто, как показано на рисунке 14. Рисунок 14. …

Контекст 7

… достигнуто, как показано на рисунке 14. Рисунок 14. Разрядная емкость и кулоновская эффективность LiNi0.5Mn1. 5O4 / Li …

Контекст 8

… провел сравнительное исследование, варьируя количество Mg (OH) 2, добавляемого в электролит. На рис. 15 показаны испытания на воспламеняемость при различных мас.% Добавок в электролите. Как также видно из Фиг.15, композитный гелевый полимерный электролит с 40 мас.% …

Контекст 9

… 15 показывает испытания на воспламеняемость при различных весовых% добавок в электролите. Как также можно видеть на Фигуре 15, композитный гелевый полимерный электролит с 40 мас.% Mg (OH) 2 показал более высокую разрядную емкость при токе заряда / разряда 2C / 2C после 200 циклов по сравнению с 20 мас. % Или 0 мас.%. …

Контекст 10

… батарея имела широкий диапазон рабочих температур от −10 ° C до 90 ° C. На рисунке 16 показан тест на горение, проведенный на ZIE для демонстрации функции безопасности.Это подтвердило высокую термостойкость электролита. …

Контекст 11

… который показал сохранение емкости до 92,2% при плотности тока 0,5 ° C после 100 циклов. На рисунке 17 показаны испытания на воспламеняемость различных электролитов. Добавление 0,5% добавки диэтил (тиофен-2-илметил) фосфоната (DTYP) к базовому электролиту помогло улучшить сохранение емкости высоковольтного литий-ионного элемента с использованием LiNi0,5Mn1,5O4 …

Контекст 12

… Новый электролит также помог снизить время самозатухания электролита с 88 до 77 с [58]. На рисунке 18 показаны испытания на воспламеняемость и циклические характеристики батарей с электролитом DTYP и без него. Добавка в электролит из фторированного производного фосфазена, этокси- (пентафтор) циклотрифосфазена (PFN), которая значительно улучшила характеристики батареи из литий-никель-марганцевого оксида (LiNi0,5Mn1,5O4) . ..

Как работают литий-ионные батареи ?

Как работают батареи

Батареи — это устройства, преобразующие химическую энергию в электрическую.Перезаряжаемые батареи, также известные как аккумуляторы, могут принимать и накапливать электрическую энергию и при необходимости выделять ее. Это означает, что их можно разрядить и снова зарядить обратимым процессом. Одноразовые электрические батареи поставляют электричество Форму энергии, возникающую в результате движения заряженных частиц (электронов) по проводнику … к внешней цепи, пока они не разрядятся.

Литий-ионные батареи могут хранить в три-четыре раза больше энергии на единицу массы, чем батареи, использующие другие технологии

Батареи содержат два электрода, погруженные в электролит — проводящую жидкость или твердое тело — и соединенные за пределами электролита проводящим проводом.При разряде отрицательный электрод (анод) высвобождает электроны, которые движутся по проводу и поглощаются положительным электродом (катодом). Это движение электронов создает электрический ток, который затем может быть преобразован в энергию. В физике мощность — это количество энергии, поставляемой системой в единицу времени. Проще говоря, мощность можно рассматривать как выход энергии … двигатель или электронное устройство. Чтобы уравновесить электрон, Материя состоит из атомов. Атом состоит из ядра, состоящего из протонов (положительно заряженных частиц) и нейтронов (нейтральный заряд)… обмена положительные ионы проходят через электролит между двумя электродами. Когда аккумулятор снова заряжается от внешнего источника электричества, этот процесс меняется на противоположный.

Различные типы аккумуляторных батарей

В аккумуляторных батареях

используются комбинации материалов, которые могут легко и надолго обмениваться электронами и положительными ионами. В автомобилях с двигателями внутреннего сгорания чаще всего используются свинцово-кислотные аккумуляторные батареи, которые содержат отрицательный электрод из свинца, положительный электрод из оксида свинца и электролит, состоящий из серной кислоты и воды. Другие материалы, используемые в батареях, включают никель, кадмий, натрий и серу 1 .

Ученые особенно заинтересовались литием для батарей, поскольку это очень легкий металл (третий элемент в периодической таблице после водорода. Самый простой и легкий атом, самый распространенный элемент во Вселенной. и гелий). Атомы лития могут легко высвободить один из своих трех электронов, создавая положительно заряженные ионы Li +. Изначально производители использовали металлический литий для отрицательного электрода, который излучает электроны.Однако они заметили, что повторяющиеся циклы использования и перезарядки изменили металл. Чтобы избежать этого, катоды в настоящее время часто изготавливают из оксида кобальта и небольшого количества лития с графитовым анодом. Электролит состоит из солей лития в растворителе, а это означает, что он содержит очень много ионов лития. Отсюда и название «литий-ионный аккумулятор».

Литий-ионные элементы

Основной компонент литий-ионной батареи представляет собой элемент, который немного похож на слоеное тесто, с алюминиевой пластиной для сбора тока, за которой следуют катод, электролит, анод и, наконец, медная пластина (см. Диаграмму) .

Когда аккумулятор заряжается, ионы лития Li + покидают положительный электрод (катод) и накапливаются в отрицательном электроде (аноде). Когда он разряжается для образования электрического тока, ионы Li + движутся в противоположном направлении 2 .

Эти элементы, каждая с напряжением в несколько вольт, могут быть сгруппированы вместе в различных количествах, в зависимости от емкости, необходимой для питания сотового телефона или автомобильного аккумулятора.

Преимущества и недостатки

Литий-ионные батареи имеют высокую плотность энергии Количество энергии, запасенной в объекте, выраженное в ватт-часах на килограмм (1 Втч / кг = 3.6 кДж / кг) … , что означает, что они могут хранить в три-четыре раза больше энергии на единицу массы, чем батареи, использующие другие технологии. Они быстро заряжаются и могут использоваться снова и снова, выполнив не менее 500 циклов разрядки / зарядки при 100%.

Однако они подвержены риску внезапного возгорания и выделения токсичных газов из-за перегрева электролита выше 100 ° C, известного как тепловой разгон. Это привело к тому, что в последние годы производители отозвали тысячи сотовых телефонов и планшетов.В 2013 году в самолете Боинг 787 загорелась батарея после приземления.

Исследования показали, что перегрев чаще всего вызывается коротким замыканием, вызванным неправильной сборкой или ударами. В результате от производителей теперь требуется строгое соблюдение технологических процессов и установка литий-ионных батарей, которые они производят, с электронной системой управления батареями (BMS), которая отключает питание при обнаружении аномалии.

Кроме того, производители изучают инновационные технологии, которые могут помочь предотвратить перегрев, например твердые электролиты из ультратонких полимерных пленок.

На рынке аккумуляторных батарей доминируют азиатские компании, что можно рассматривать как геополитический риск, учитывая стратегическое значение этого оборудования для мировой экономики. Еще одна проблема — крайне неравномерное распределение ресурсов лития по всему миру, что может привести к экологическим осложнениям при их добыче. См. Отчет по редким металлам.

(1) Сравнение батарей — Lycée Eiffel (на французском языке)

(2) Посмотреть анимацию BASF

, чтобы знать принцип работы литий-ионной батареи и ее новейшие приложения

Сегодня литий-ионные батареи невероятно популярны.Вы можете найти их в ноутбуках, КПК, сотовых телефонах и i Pods. Они так популярны, потому что представляют собой самые мощные аккумуляторные батареи. Литий-ионные батареи ежедневно обеспечивают жизнь миллионам людей. В этом блоге мы узнаем о работе литий-ионного аккумулятора.

Рабочий литий-ионный аккумулятор

Перезаряжаемая литий-ионная батарея состоит из одного или нескольких отсеков для выработки энергии, называемых элементами. Каждая ячейка состоит из трех компонентов: положительного электрода, отрицательного электрода и электролита.

Положительный электрод подключается к положительной или + клемме аккумулятора. Отрицательный электрод подключается к отрицательной клемме или -. И химическое вещество под названием электролит между ними.

Положительный электрод обычно изготавливается из химического соединения, называемого оксидом лития-кобальта (LiCoO2) или фосфатом лития-железа (LiFePO4). Отрицательный электрод обычно изготавливается из углерода (графита). Электролит варьируется от одного типа аккумулятора к другому.

Электролит переносит положительно заряженные ионы лития от анода к катоду. Движение ионов лития создает свободные электроны на аноде, что создает заряд на положительном токосъемнике. Затем электрический ток течет от коллектора тока через запитываемое устройство (сотовый телефон, компьютер и т. Д.) К коллектору отрицательного тока. Сепаратор блокирует поток электронов внутри батареи.

Пока батарея разряжается и выдает электрический ток, анод выпускает ионы лития на катод, создавая поток электронов от одной стороны к другой. При подключении устройства происходит обратная реакция: катод выделяет ионы лития, а анод их принимает. Так работает литий-ионный аккумулятор.

В этом аккумуляторе плотность энергии и удельная мощность являются наиболее распространенными характеристиками аккумулятора. Как правило, плотность энергии измеряется в ватт-часах на килограмм (Втч / кг) и представляет собой количество энергии, которое батарея может хранить по отношению к ее массе. Плотность мощности измеряется в ваттах на килограмм (Вт / кг) и представляет собой мощность аккумулятора по отношению к его массе.

Вы также можете посмотреть это видео.

Преимущества литий-ионного аккумулятора

Сегодня литий-ионные батареи популярны, потому что они имеют ряд важных преимуществ перед конкурирующими технологиями:

  • Как правило, они намного легче, чем другие типы аккумуляторных батарей того же размера.
  • Они держат свою ответственность. Литий-ионный аккумулятор теряет всего около 5 процентов своего заряда в месяц.
  • Высокая удельная энергия и высокие нагрузки с силовыми элементами
  • Длительный цикл и увеличенный срок хранения; бесплатная поддержка. Они могут выдерживать сотни циклов зарядки / разрядки.
  • Высокая производительность, низкое внутреннее сопротивление, хороший кулоновский КПД
  • Простой алгоритм зарядки и достаточно короткое время зарядки
  • Низкий саморазряд (менее половины от NiCd и NiMH)

Ограничения литий-ионной батареи

  • Требуется схема защиты для предотвращения теплового разгона при нагрузке
  • Разлагается при высокой температуре и при хранении под высоким напряжением
  • Быстрая зарядка невозможна при отрицательных температурах (<0 ° C, <32 ° F)
  • Требования к транспортировке при отгрузке больших партий
  • Они чрезвычайно чувствительны к высоким температурам.Тепло приводит к тому, что литий-ионные аккумуляторные батареи разлагаются намного быстрее, чем обычно.

Применение литий-ионной батареи

Литиевые батареи

имеют длинный список реальных приложений помимо запуска приложений на вашем телефоне. От жизненно необходимого медицинского оборудования до роскошных яхт, литиевые батареи обеспечивают безопасность и надежность как самого необходимого, так и комфорта современной жизни.

  • ИБП или аварийное резервное питание

Он отличается от генератора или другого резервного источника питания.Он обеспечивает почти мгновенное питание для запуска (или безопасного отключения) оборудования, к которому он подключен.

  • Надежные и легкие судовые характеристики

    Модернизация вашей лодки с помощью долговечной перезаряжаемой литиевой батареи дает вам годы надежного запуска двигателя при небольшой массе традиционной свинцово-кислотной батареи. Независимо от того, требуется ли вам приводить в действие небольшой троллинговый двигатель, литиевые батареи надежны и надежны.

  • Надежный электромобиль RV

Литий-ионные аккумуляторы обеспечивают надежное, стабильное и продолжительное питание.Лучшее решение, чтобы чувствовать себя комфортно и безопасно исследовать удаленные места. Благодаря малому весу и размеру литий-ионные аккумуляторы обеспечивают повышенную эффективность вашего транспортного средства для отдыха или электромобиля.

  • Системы охранной сигнализации в удаленных населенных пунктах

Эти батареи идеальны для систем удаленного мониторинга благодаря длительному сроку службы и небольшому размеру. Кроме того, они не теряют мощность из-за саморазряда в то время, когда ваша система неактивна. Литиевые батареи имеют скорость саморазряда, которая в 10 раз ниже, чем у свинцово-кислотных батарей

.

Литий-ионные аккумуляторные батареи лучше всего подходят для солнечных батарей из-за их быстрой зарядки.Солнечные панели производят зарядку с низким сопротивлением, что и требуется для литиевых батарей. Кроме того, литиевые батареи заряжаются быстро, что позволяет максимально использовать потенциал солнечной энергии от каждого дня солнечного света.

  • Свобода личности с мобильным оборудованием

От электрических инвалидных колясок до лестничных подъемников — многие люди зависят от надежных мобильных технологий, чтобы жить независимой жизнью. Литий-ионные аккумуляторы — идеальный выбор для мобильного оборудования, поскольку они предлагают индивидуальный размер, более длительный срок службы, быструю зарядку, низкую скорость саморазряда и увеличенное время работы.

  • Используется в переносных блоках питания

Перезаряжаемые литиевые батареи хорошо известны тем, что служат источником питания для наших телефонов и новейших легких портативных компьютеров. Они также переносят движения и перепады температуры, а также сохраняют свою мощность во время использования.

Надеюсь, этот блог поможет вам понять работу литий-ионной батареи и ее применения. Мы в Robu.in надеемся, что вам было интересно, и что вы вернетесь к другим нашим образовательным блогам.

ДОЛЖЕН ПРОЧИТАТЬ СООБЩЕНИЯ В БЛОГЕ НА БАТАРЕЕ

Литий-ионные батареи | PhysicsCentral

Доставка заряда

Литий-ионные аккумуляторы

уже питают ваш мобильный телефон и ноутбук, и вскоре они могут питать ваш автомобиль. Но что это за батареи и что делает их намного лучше обычных щелочных батарей?

Чтобы ответить на этот вопрос, важно понимать, как работают батареи. Батарея — это устройство, которое накапливает электрическую энергию и затем может доставлять эту энергию с помощью легко управляемой электрохимической реакции.

Схема литий-ионного элемента. Перепечатано с разрешения HowStuffWorks.com

Батарея обычно состоит из ряда ячеек, вырабатывающих электричество. Каждая ячейка состоит из трех основных компонентов: анода, катода и электролита. Когда анод и катод соединены электрическим проводником, таким как провод, электроны текут от анода через провод к катоду, создавая электрический ток, а электролит проводит положительный ток в виде положительных ионов или катионов. Материалы, используемые для каждого из этих компонентов, определяют характеристики батареи, включая ее емкость — или общее количество энергии, которое она может доставить — и ее напряжение — или количество энергии на электрон. Представьте, что аккумулятор похож на резервуар с водой, которую сливают из шланга. Объем бака — это емкость аккумулятора, а давление в шланге — это его напряжение.

Литий-ионный аккумулятор от мобильного телефона.

Материалы анода и катода выбираются так, чтобы анод отдавал электроны, а катод принимал их.Тенденция материала отдавать или принимать электроны обычно выражается как стандартный электродный потенциал объекта. Разница между электродными потенциалами катода и анода определяет напряжение всей ячейки. Анод и катод разделены электролитом, который представляет собой жидкость или гель, проводящий электричество. Когда анод и катод затем соединяются друг с другом через провод, анод вступает в химическую реакцию с электролитом, в которой он теряет электроны, создавая катионы или положительные ионы — процесс, называемый окислением. Электроны и катионы встречаются на катоде, где они подвергаются химической реакции, называемой восстановлением. Вместе весь процесс известен как окислительно-восстановительная реакция. Электроны перемещаются по проводу от анода к катоду, потому что они имеют более высокую энергию в аноде, чем в катоде. Когда электроны проходят через такое устройство, как электрическая лампочка, энергия батареи используется для работы. Химические реакции в батарее могут длиться некоторое время, но не вечно. В конце концов они истощают или разъедают анод и катод, оставляя недостаточно материала для продолжения реакций.

Литий-оксид кобальта состоит из слоев лития (показаны здесь как пурпурные сферы), которые лежат между пластинами, образованными атомами кобальта и кислорода (показаны здесь как соединенные красные и синие сферы).

В литий-ионной батарее ион лития — это катион, который перемещается от анода к катоду. Литий (Li) легко ионизируется с образованием Li + плюс один электрон. Электролит обычно представляет собой комбинацию солей лития, таких как LiPF 6 , LiBF 4 или LiClO 4 , в органическом растворителе, таком как эфир.Графит (углерод) чаще всего используется в качестве анода, а оксид лития-кобальта (LiCoO 2 ) является наиболее распространенным катодным материалом. Эта комбинация дает общее напряжение 3,6 В (В), что более чем в два раза больше, чем у стандартной щелочной батареи AA. Это дает литий-ионным батареям намного лучшее соотношение энергии к объему или удельной энергии, чем у обычных щелочных батарей или других обычных перезаряжаемых батарей, таких как никель-металлгидридные. Отчасти это связано с тем, что литий является третьим по величине элементом после водорода и гелия, и, таким образом, ион лития может нести положительный заряд в очень небольшом пространстве.Однако важно иметь в виду, что даже литий-ионные батареи во много раз менее энергоемкие, чем такие вещества, как моторное топливо или продукты питания, которые хранят энергию в химических связях. Увеличение количества энергии, которое может быть упаковано в батарею заданного объема, является одной из основных проблем, стоящих сегодня перед производителями батарей.

Литий-ионные батареи

, в отличие от стандартных щелочных батарей AA и AAA, можно заряжать, выполняя анодную и катодную реакции в обратном порядке. Обычно это делается с помощью зарядного устройства, которое подключается к мощному источнику электроэнергии, например к сетевой розетке или автомобильному прикуривателю.Возможность многократной перезарядки без большой потери емкости — еще одно важное преимущество литий-ионного аккумулятора. Представьте, что вам приходилось покупать новый аккумулятор для мобильного телефона каждые несколько дней!

Зарядка и разрядка. Перепечатано с разрешения рисунка 2 из: «Батареи и электрохимические конденсаторы», Абруна, Кия и Хендерсон, Physics Today , декабрь 2008 г. Авторское право 2008 г., Американский институт физики.

Несмотря на все эти преимущества, литий-ионные аккумуляторы не идеальны. Возможно, вы заметили, что количество заряда, которое может выдержать аккумулятор вашего мобильного телефона и ноутбука, уменьшается через несколько лет. Литий-ионные батареи со временем развивают повышенное внутреннее сопротивление, что снижает их способность передавать ток. Кроме того, литий-ионные аккумуляторы уязвимы для ряда потенциальных проблем, включая перегрев на аноде (возможно, из-за тепла от устройства, которое питает аккумулятор) и выработка кислорода из-за перезарядки на катоде. Сложите эти две проблемы вместе, и вы получите хорошие условия для пожара — именно то, что случилось с несколькими несчастными владельцами ноутбуков.

Изображение, показывающее внутреннюю часть литий-ионного аккумулятора с защитными устройствами. Любезно предоставлено ZDNet UK.

Сегодня литий-ионные батареи производятся с защитой для ограничения зарядного напряжения и отключения батареи, если температура становится слишком высокой. Другие меры предосторожности позволяют удалить воздух в случае повышения давления и предотвратить слишком глубокую разрядку, после которой аккумулятор не может быть перезаряжен. Эта защитная схема делает батарею безопасной, но она также уменьшает долю батареи, которая используется для хранения энергии, а также медленно разряжает батарею, даже когда устройство выключено.Ряд исследовательских групп занимаются улучшением этих и других аспектов литий-ионной батареи, и в будущем эта трудолюбивая батарея появится во все большем количестве устройств, включая электромобили, о которых мы так много слышим. эти дни.

Исследования

Большая часть недавних усилий по улучшению литий-ионных аккумуляторов была сосредоточена на разработке анодных или катодных материалов, которые могут удерживать больший заряд в заданном объеме, что приводит к более высокой плотности энергии. Многочисленные исследовательские группы сосредоточены на замене графитового анода кремнием, который потенциально может хранить до десяти раз больше текущей емкости.Обратной стороной является то, что кремниевые пленки имеют тенденцию расширяться при поглощении ионов лития во время зарядки и снова сжиматься при высвобождении ионов лития во время разряда, что приводит к измельчению и разрушению анода и короткому сроку службы батареи. Недавно группа под руководством И Цуй из Стэнфордского университета использовала кремниевые нанопроволоки для создания анода, который не имеет этого недостатка. На рисунке 3 представлены изображения этих нанопроволок с ионами лития и без них, полученные с помощью сканирующего электронного микроскопа (SEM).

Рис. 3. Морфология и электронные изменения Si ННК в результате реакции с Li. Из «Высокопроизводительные аноды литиевых батарей с использованием кремниевых нанопроволок». Чан и др. Nature Nanotechnolog, 3, 31 — 35 (2008).

Другая идея, которая привлекла значительное внимание, — использование фосфата лития-железа (LiFePO 4 ) в качестве катода. Несмотря на то, что он имеет немного меньшую емкость и значительно меньшую проводимость по сравнению с оксидом лития-кобальта, фосфат железа дешевле и менее химически активен.Тем не менее-Мин Чан и его коллеги из Массачусетского технологического института (MIT) работают над тем, чтобы это изменить. В 2002 году они показали, что путем «легирования» (добавления примесей) фосфата железа они могут достичь гораздо более высокой проводимости, чем считалось возможным ранее. А в 2004 году команде Чанга удалось использовать очень маленькие (менее 100 нанометров) частицы фосфата железа для улучшения емкости и проводимости катода.

Шарообразная модель фосфата лития-железа, в которой атомы лития синие, атомы железа серые, атомы фосфора желтые, а атомы кислорода красные.Из «Электропроводящие фосфооливины в качестве электродов-аккумуляторов лития». S Cung, J. Bloking и Y. Chiang. Nature Material , том 1, октябрь 2002 г.

Chiang также участвовал в исследованиях передовых технологий сборки. Группа исследователей недавно использовала вирусы для сборки катодов литий-ионных аккумуляторов из очень тонких проводов из золота и оксида кобальта. Вирусы и другие биологические системы способны распознавать молекулы и собираться в организованные структуры, что делает их идеальными для инженерии микроскопических батарей.Как и в случае кремниевых анодов, описанных выше, эти новые катоды используют большую площадь поверхности нанопроволок, что обеспечивает большую емкость для заряженных частиц.

Изображение с помощью туннельного электронного микроскопа (ПЭМ) нанопроволок Co3O4, созданных на основе вирусов. «Синтез и сборка нанопроволок для электродов литий-ионных батарей с помощью вирусов». Нам и др., Science, , 12 мая 2006 г., том 312, стр. 886.

Другие исследовательские группы занимаются новыми электролитическими материалами. Как упоминалось ранее, современные литий-ионные батареи со временем теряют емкость, в основном из-за химических реакций между электролитами и электродами.Мохит Сингх из начинающей компании SEEO разрабатывает новый электролит на основе полимеров, которые представляют собой молекулы, состоящие из длинных цепочек повторяющихся структурных единиц. Сингх объединил структурно стабильный полимер с полимером, который хорошо проводит ионы, чтобы создать слой электролита, который является более тонким и менее химически активным, чем те, которые используются сегодня. Хироюки Нисиде из Университета Васеда в Токио разрабатывает полностью органическую гибкую батарею с электродами, состоящими из цепочек органических молекул, а не металлов. Это поможет избежать проблем, связанных с некоторыми металлами, включая ограниченную доступность и удаление отходов. По сравнению с сегодняшними литий-ионными батареями, Nishide предлагает возможность для более быстрой зарядки и разрядки и более длительного срока службы в обмен на, по крайней мере, на данный момент, более низкую плотность заряда.

Фотография гибкого полимерного аккумулятора Nishide. От Такео Суги, Хироки Охширо, Шухей Сугиты, Кеничи Ояидзу и Хироюки Нисиде, адв. Mater. в печати (adma200803073).

Схема, показывающая реакции зарядки и разрядки.От Такео Суги, Хироки Охширо, Шухей Сугиты, Кеничи Ояйдзу и Хироюки Нисиде, адв. Mater. в печати (adma200803073).

Какими бы материалами не были выбраны электроды и электролиты, ясно одно: для обеспечения энергоэффективного будущего, о котором мы все мечтаем, батареи будущего, как и многие многообещающие технологии, будут зависеть от инженерных технологий нанометрового уровня, которые все еще изобретается.

Ссылки

HowStuffWorks
Как работают литий-ионные батареи

Battery University
Отличный веб-сайт, посвященный батареям.

Science @ Berkeley Lab
Батареи будущего II

YouTube
Как это сделано: литий-ионные батареи

Tech-On
Li-Ion аккумуляторные батареи безопаснее

Science Daily
Новый аккумулятор на основе нанопроволоки удерживает в 10 раз больше заряда существующих аккумуляторов

Обзор технологий
Литий-ионные батареи повышенной емкости

Лес медных стержней диаметром около 100 нанометров создает гораздо большую площадь поверхности для электродов батарей большой емкости.Первоначально опубликовано в «Высокоскоростные электроды на основе Cu с наноархитектурой на основе Fe3O4 для литий-ионных аккумуляторов»
P.L. Таберна, С. Митра, П. Пойзот, П. Саймон * и Дж.М. Тараскон, Nature Materials , 5 (2006) 567-573

Наноструктурированные анодные материалы для литий-ионных аккумуляторов: принцип, последние достижения и перспективы на будущее

rsc.org/schema/rscart38″> Как наиболее часто используемые устройства для преобразования и хранения потенциальной энергии, литий-ионные батареи (LIB) были тщательно исследованы в широком диапазоне областей, включая информационные технологии, электрические и гибридные транспортные средства, аэрокосмическую промышленность, и т. Д. Обладая привлекательными свойствами, такими как высокая плотность энергии, длительный срок службы, небольшой размер, малый вес, небольшое количество эффектов памяти и низкое загрязнение, LIB были признаны наиболее вероятным подходом, который будет использоваться для хранения электроэнергии в будущем. Этот обзор начнется с краткого введения в принципы заряда-разряда и показатели оценки производительности. Будут рассмотрены преимущества и недостатки нескольких широко изучаемых анодных материалов, включая углерод, сплавы, оксиды переходных металлов и кремний, а также интеркаляцию лития.Будут рассмотрены механизм и методы синтеза, а также стратегии повышения производительности батареи за счет интересных структурных решений. Наконец, будут обсуждены несколько вопросов, требующих дальнейшего изучения, после чего будет дан краткий обзор перспектив и перспектив месторождения LIB.

Эта статья в открытом доступе

Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуй снова?

Из чего сделаны литиевые батареи и каковы их плюсы и минусы?

Литиевые батареи, впервые предложенные в 1970-х годах и коммерчески производимые Sony в 1991 году, теперь используются в мобильных телефонах, самолетах и ​​автомобилях. Несмотря на ряд преимуществ, которые привели их к все большему успеху в энергетической отрасли, литий-ионные батареи имеют некоторые недостатки и являются темой, которая вызывает много дискуссий.

А что такое литиевые батареи и как они работают?

Из чего сделаны литиевые батареи?

Литиевая батарея состоит из четырех основных компонентов. Он имеет катод, который определяет емкость и напряжение аккумулятора и является источником ионов лития.Анод позволяет электрическому току проходить через внешнюю цепь, и когда батарея заряжена, ионы лития накапливаются в аноде.

Электролит состоит из солей, растворителей и добавок и служит проводником для ионов лития между катодом и анодом. Наконец, есть разделитель, физический барьер, разделяющий катод и анод.

Плюсы и минусы литиевых батарей

Литиевые батареи

имеют гораздо более высокую плотность энергии, чем другие батареи.Они могут иметь до 150 ватт-часов (Втч) энергии на килограмм (кг), по сравнению с никель-металлогидридными батареями при 60-70 Вт / кг и свинцово-кислотными батареями при 25 Вт / кг.

У них также более низкая скорость разряда, чем у других, они теряют около 5% своего заряда за месяц по сравнению с никель-кадмиевыми (NiMH) батареями, которые теряют 20% за месяц.

Однако литиевые батареи также содержат воспламеняющийся электролит, который может вызвать небольшие возгорания батарей. Именно это привело к печально известному возгоранию смартфонов Samsung Note 7, что вынудило Samsung свернуть производство и потерять 26 миллиардов долларов в рыночной стоимости.Следует отметить, что этого не произошло с крупномасштабными литиевыми батареями.

Литий-ионные батареи также дороже в производстве, поскольку их производство может стоить почти на 40% дороже, чем никель-кадмиевые батареи.

Конкуренты

Литий-ионный аккумулятор

сталкивается с конкуренцией со стороны ряда альтернативных аккумуляторных технологий, большинство из которых находятся в стадии разработки. Одна из таких альтернатив — аккумуляторы, работающие на морской воде.

Тематические отчеты
Вы беспокоитесь о темпах инноваций в вашей отрасли?
В отчете

GlobalData по темам TMT за 2021 год рассказывается все, что вам нужно знать о революционных технологических темах и о том, какие компании лучше всего могут помочь вам в цифровой трансформации вашего бизнеса.

Узнать больше

Разрабатываемые Aquion Energy, они состоят из соленой воды, оксида марганца и хлопка для создания чего-то, что производится с использованием «обильных, нетоксичных материалов и современных недорогих производственных технологий». Из-за этого они являются единственными батареями в мире. сертифицированы по принципу «от колыбели до колыбели».

Подобно технологии Aquion, «Blue Battery» AquaBattery использует смесь соли и пресной воды, протекающей через мембраны для хранения энергии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *