Как зарядить литий ионный аккумулятор: Схемы самодельных зарядок для литий-ионных аккумуляторов (18650, 14500 li-ion), как правильно заряжать литий-полимерные АКБ

Содержание

Как правильно заряжать литий-ионные и литий-полимерные

Как, по вашему мнению, правильно заряжать литий-ионные и литий-полимерные аккумуляторы в гаджетах, электроинструментах и электромобилях?


  1. 1. Часто подключать к заряднику и заряжать понемногу;
  2. 2. Заряжать как можно реже и стараться на максимум до 100%.

Теме сто лет в обед и только ленивое околотехническое издание не написало заметку, как зарядить телефон, чтобы долго работал. Предлагаем поставить точку с опорой на научные факты.



Как правильно заряжать батарею — часто и понемногу или редко и на максимум?

С точки зрения бытового использования вы можете забыть об этом вопросе и делать так, как вам лично удобнее.


По плану производителей, важнее всего максимальный комфорт пользователя. То есть при эксплуатации не стоит даже задумываться о технических нюансах в течение всего запланированного срока службы — от двух до пяти лет в среднем для большинства моделей портативной электроники.


Гаджеты защищены от неправильной зарядки

С телефонами и электромобилями, ноутбуками и планшетами, смарт-часами и прочими гаджетами на литий-ионных и литий-полимерных батареях для пользователя не должно быть никакой разницы — часто заряжать или редко, понемногу или на максимум.

Мы в своё время пошли немного дальше и сделали узкоспециализированные рекомендации, как зарядить телефон, чтобы долго работал. Каждый совет имеет за собой инженерные исследования, опубликованные в Battery University и на прочих профессиональных профильных сайтах вроде All-Electronics.de или Energy University.

В этих рекомендациях есть уточнения, которые помогут немного продлить срок службы аккумуляторов и уберечь их от неполадок.



1. Новый телефон

Если вы только что купили свежую модель смартфона (или планшета — у них одинаковая химия в аккумуляторе), то уберечься от ошибок поможет специально проработанная инструкция. Главное запомнить, что любой новый гаджет на Li-Ion- и Li-Poly-батареях первым делом заряжают, а не разряжают.




2. Новый аккумулятор в телефоне

После замены аккумулятора правила немного отличаются, ведь процесс изготовления, тестирования и поставки элемента питания вне корпуса телефона уже другие и здесь тоже есть на что обратить внимание. Например, не лишним будет «потренировать» двумя-тремя циклами заряд-разряд.




3. Все гаджеты на Li-Ion и Li-Poly

Для прочей мобильной электроники в целом действуют те же самые «телефонные» правила: для смарт-часов, для квадрокоптеров, для наушников, всевозможных компонентов умного дома (тот самый интернет вещей или IoT, о котором все говорят) и других гаджетов. На всякий случай собрали все эти знания в одном месте.




4. Чем заряжать, как и когда?

В этой статье мы разобрали массу популярных вопросов, которые вы нам задаёте в группе Neovolt Вконтакте о зарядниках. Можно ли пользоваться телефоном во время зарядки, есть ли вред от быстрой зарядки, какой адаптер выбрать, какой для машины от USB-прикуривателя и так далее. Этот материал мы часто перечитываем сами, когда что-то забывается.




5. Зарядка по ночам без присмотра

Заслуживающая отдельного внимания тема, которая волнует и нас самих. Как понять ответ многих инженеров и специалистов на эту тему: «Можно, но не нужно». То есть можно оставить, но чем тогда закончится, если «не нужно» так делать? Прояснили, чем всё грозит при недолгом оставлении или на пару недель, и почему производители разрешают надолго оставлять подключённый к розетке телефон.




6. До скольки процентов заряжать?

Если честно, то эта статья идеализирована — как раз о максимальной (теоретической) заботе об аккумуляторе, когда вы сможете продлить его срок службы так сильно, как никто другой в этом мире. Общее правило зарядки 20%-80% здесь расписано по пунктам.




7. Так ли страшна разрядка в ноль?

Пожалуй, самый популярный вопрос за всю историю нашей компании Neovolt, которой, между прочим, уже больше 12 лет. Насколько опасно разряжать гаджеты до полного выключения (или даже «потом включить, он ещё немного поработает и опять выключится»)? На самом деле неопасно. В каких случаях это полезно, в каких ни в коем случае нельзя допускать — всё это имеет не домыслы, не переписано с интернета, а основано на научных фактах.




8. Постоянно держать ноутбук на зарядке

Рекомендуем всем владельцам ноутбуков не держать их постоянно на зарядке в розетке. По возможности лучше вытаскивать батарею, когда она не нужна. В остальных случаях (например, нельзя или сложно извлекать аккумулятор) заряжайте и затем используйте батарею, не держите её всегда в состоянии «капельной дозарядки» — все подробности на примере макбуков, официальной позиции Apple и научных фактов, конечно же.




Что-нибудь может измениться с тем, как часто заряжать аккумулятор?

Да, может. В будущем процесс зарядки будет отличаться — учёные уже сейчас активно исследуют двумерные решёточные системы для понимания всех процессов и электрохимических свойств аккумуляторов. Они получают идеализированное и всё более точное представление о химических процессах внутри аккумулятора.

Сегодня электрохимические исследования «на коне». Ведь разработки в области накопления энергии сейчас особенно востребованы в концернах автомобилестроения, которые переходят к электромобилям.


Известно, что в аккумуляторах тепло распространяется и рассеивается. Но на сохранение энергии влияет и то, каким образом она доставляется, технически говоря, насколько точно «выравнивается доставка». И вот учёные выяснили, что доставка эффективнее всего при методе «реже и до максимума». Процитируем научную публикацию.



Учёные из Польской академии наук:

Мы заметили, что количество энергии, которое может хранить система, варьируется в зависимости от размера порции энергии и частоты её подачи. Наибольший показатель происходит, когда порции доставки энергии велики, но промежутки времени между их подачей также велики.

Интересно, что, оказывается, если мы разделим этот тип системы хранения внутри на отсеки или ячейки, то количество энергии, которая может храниться в такой разделенной батарее (если бы её можно было построить) увеличивается. Другими словами, три маленьких батареи могут хранить больше энергии, чем одна большая.

Мы в свою очередь хотели бы отметить, всё это верно при условии, что общее количество энергии, вводимой в систему, остаётся неизменным. То есть меняется только способ её доставки.


Исследование, надо сказать, носит теоретический (базисный) характер. До практики, как мы уже говорили в материале о мошенниках-учёных, пока ещё неблизко. Но вполне ожидаемо претерпит изменения фундаментальный принцип, с которым будут разрабатываться аккумуляторы для будущих гаджетов и программное обеспечения для управления ими.


→ Полная версия научной публикации Польской академии здесь.

Уже сейчас это исследование предлагает возможность зарядки электромобиля не за нескольких часов, а за чуть менее двадцати минут, предлагая тем самым значительное увеличение мощности таких батарей, не изменяя их объём. Достаточно просто изменив путь определения оптимальной периодичности подачи энергии.


Узнайте больше о батареях

Каких методов вы придерживаетесь при зарядке гаджетов? Поделитесь опытом длительного использования аккумулятора — напишите в комментарии или отправьте сообщение нам ВКонтакте @NeovoltRu.

Подпишитесь в группе на новости из мира гаджетов, узнайте об улучшении их автономности и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.



Как правильно заряжать литий-ионный аккумулятор

Литий-ионные аккумуляторы сейчас чрезвычайно популярны. Больше 80% всех бытовых аккумуляторов являются литий-ионными. И для того, чтобы эти аккумуляторы служили верой и правдой долгое время, очень важно правильно с ними обращаться и правильно заряжать.

Как правило, литий-ионный аккумулятор представляет собой дуэт – собственно, саму аккумуляторную банку и присоединенную к ней плату защиты. Плата защиты предохраняет аккумулятор от перезарядки или чрезмерной разрядки. Также она ограничивает максимальный ток аккумулятора – следит, чтобы не было короткого замыкания. Все это очень важно, поскольку литий-ионный аккумулятор может очень драматично реагировать на перезарядку или чрезмерный ток (а еще на перегрев) – банально взрываться, нанося совершенно небанальные повреждения.

Тем не менее, вполне могут поставляться аккумуляторы без защиты – только банки. В этом случае подразумевается, что контроль степени заряда и тока будет осуществляться дополнительной электроникой, о которой должен позаботиться сам потребитель.

Литий-ионные аккумуляторы с защитой и без нее

Необходимо всегда обращать внимание на наличие защитной электроники при использовании литий-ионных аккумуляторов. Без схем защиты ни заряжать, ни использовать эти аккумуляторы нельзя! Поскольку в нештатных ситуациях химические процессы в аккумуляторах могут начать протекать чрезмерно бурно. Это может привести к разрыву аккумуляторной банки, воспламенению выделяющихся газов, электролита и, в итоге, к нехилому взрыву с пламенем и разбрасыванием вокруг горящих частей аккумулятора.

Сам процесс правильного заряда аккумулятора – это контролируемый и управляемый процесс. Вначале разряженный аккумулятор заряжается постоянным током 0.2 – 1 С (С – это емкость аккумулятора в ампер/часах). При достижении напряжения 4.0-4.1В (в зависимости от рекомендаций производителя) зарядка продолжается при постоянном напряжении до достижения 4.2В на элемент. Допустимое отклонение напряжения составляет всего +-0.05В. Для соблюдения этих режимов, безусловно, необходима соответствующая электроника. Как правило, это схемы, собранные на специализированных микросхемах. Хороший выбор – для заряда аккумуляторов использовать специализированные зарядные устройства.

Также можно собрать зарядное устройство самостоятельно.

Литий-полимерные аккумуляторы заряжаются также, как и литий-ионные, поскольку по природе своей они очень похожи. В чем их основное различие — читайте в статье «Литий-полимерный аккумулятор — отличие от литий-ионного».

Лучший вариант – заряжать каждый аккумулятор отдельно. Кроме зарядных устройств, можно приобрести готовые платы-контроллеры для зарядки отдельных аккумуляторов. Например, на базе популярной микросхемы TP4056.

Зарядка одного литий-ионного аккумулятора

Миниатюрная плата (около 20х30 мм) позволяет заряжать литий-ионный аккумулятор от источника постоянного напряжения до 8В. Подойдет, в том числе, компьютерный USB. Два индикатора отображают ход заряда. Плата сама остановит зарядку при достижении напряжения 4.2В – с ее помощью можно заряжать и аккумуляторы без платы защиты.

Если используется несколько аккумуляторов одновременно, то возможны варианты. Для увеличения емкости при том же выходном напряжении батареи соединяют параллельно – плюс к плюсу, минус к минусу.

Например, если взять два аккумулятора емкостью 2500 мАh и соединить их параллельно, то получится батарея емкостью 5000 mAh с выходным напряжением 4.2В. Заряжать такую батарею нужно также, как и отдельный аккумулятор, только это займет в 2 раза больше времени.

Если нужно повысить напряжение при сохранении емкости, аккумуляторы соединяют последовательно. Те же две банки из предыдущего примера, соединенные последовательно, дадут батарею с напряжением 8.4В и емкостью 2500mAh.

Ток зарядки последовательно соединенных аккумуляторов должен быть такой же, как и при зарядке одного аккумулятора, а напряжение соответствовать напряжению всей батареи – 4.2В умножить на количество последовательно соединенных элементов.

Когда аккумуляторы используются в связке, очень важно подбирать совершенно одинаковые банки – одного производителя и модели, одной степени свежести. В идеале – из одной партии. Дело в том, что разные аккумуляторы могут иметь немного отличающиеся емкости, напряжение и другие параметры. Соответственно, работать они будут неравномерно и быстрее выйдут из строя.

Правильно заряжать литий-ионные аккумуляторы, соединенные последовательно, необходимо устройствами, которые имеют систему балансировки заряда каждого элемента. Строго говоря, и разряжаться такие батареи должны через аналогичные системы балансировки. Суть ее работы состоит в том, чтобы следить за параметрами каждого аккумулятора и останавливать зарядку всей батареи, если один из аккумуляторов будет уже заряжен полностью. Аналогично при разряде: если один из аккумуляторов полностью разрядился – отключается вся батарея. Это позволит избежать перезаряда/переразряда аккумуляторов и продлит срок их службы.

Контроллер заряда/разряда двух последовательно соединенных аккумуляторов может выглядеть так:

Зарядка двух последовательно соединенных литий-ионных аккумуляторов

Контакты P+ и P- платы служат как для подачи напряжения при зарядке, так и при снятии тока при разрядке батареи. Плата может использоваться с аккумуляторами без плат защиты.

Для зарядки трех последовательно соединенных аккумуляторов может подойти такая схема:

Зарядка трех последовательно соединенных литий-ионных аккумуляторов

Так же как и в предыдущем варианте, контакты Р+ и Р- используются как для подачи напряжения зарядки, так и для снятия питания при работе от аккумуляторов. Плата имеет систему балансировки, защиту от перезаряда/разряда и защиту от короткого замыкания. И также может использоваться с незащищенными аккумуляторами.

Похожая плата зарядки/разрядки имеется и для четырех последовательно соединенных аккумуляторов.

Зарядка четырех последовательно соединенных литий-ионных аккумуляторов

Большее количество последовательно соединенных аккумуляторов встречается достаточно редко. Чаще для увеличения мощности используют последовательно соединенные пары параллельно соединенных аккумуляторов. Например, батареи ноутбуков могут содержать три или четыре пары аккумуляторов.

Правильная зарядка аккумуляторов – совершенно необходимое условие для того, чтобы использование литий-ионных аккумуляторов было долговременным и эффективным. Уделите этому достойное внимание и аккумуляторы будут служить вам верой и правдой.

Как зарядить любой li-ion без специального ЗУ. | Технические советы и не только

Литий-ионные и литий-полимерные аккумуляторы требуют особых условий заряда. С этой задачей легко справляются соответствующие зарядные устройства. Но не всё так просто. Иногда может не быть нужного ЗУ, «лягушка» не сможет зарядить аккумулятор от камеры на 8,4 В, а универсальное зарядное устройство iMAX не выдаёт 4,4 В для полного заряда HV аккумулятора от смартфона. В любом из этих случаев поможет самодельная схема на двух линейных стабилизаторах.

Универсальная схема зарядки li-ion аккумуляторов.

Метод зарядки CC-CV (Constant Current — Constant Voltage), что переводится как Постоянный ток — Постоянное напряжение. До определённого момента с помощью первой КРЕНки на аккумулятор идёт заданный стабильный ток. Он указан в datasheet. Если не знаете максимальный допустимый ток, то используйте 0,5 А или меньший. Он не принесёт вреда современным аккумуляторам от смартфонов или 18650 от других устройств. Превышать зарядный ток не следует!

Потом ток начинает падать, а напряжение приближается к стабилизированному второй КРЕНкой или LM317T. Это напряжение, до которого нужно заряжать, указано на аккумуляторе. Превышать его, как и ток, нельзя! В противном случае возможен такой результат:

Либо заметная потеря ёмкости, если не сильные превышения.
Аккумуляторы с одним литиевым элементом бывают на 4,2 В, 4,3 В, 4,35 В, 4,4 В, 4,5 В. Аккумулятор нужно отключить, когда ток отсечки (cut-off) достигнет значения из даташита. Обычно 38-100 мА.

Собранное зарядное устройство.

На фото устройство подключено к компьютерному блоку питания 12 В. Максимальное напряжение питания 40 В. Гарантированный максимальный выходной ток 1.5 А. Ток заряда задаётся резистором R1 по формуле: R=1,25/I Чтобы получить ток 500 мА нужен резистор: 1,25/0,5=2,5 Ом

Напряжение задаётся резистором R2 по формуле: R2=R3*(Uвых.-Uопор.)/Uопор. Чтобы заряжать аккумулятор на 4,2 В, необходим резистор: 240*(4,2-1,25)/1,25=566,4 Ом.

Для заряда аккумуляторов от смартфонов, собрал следующее устройство:

Зарядное устройство для телефонных аккумуляторов разных размеров.Зарядное устройство для телефонных аккумуляторов разных размеров.Зарядное устройство для телефонных аккумуляторов разных размеров.

С помощью плоского неодимового магнита из жёсткого диска можно легко фиксировать аккумуляторы разных размеров. Разъём с подпружиненными контактами крепится к деревянной основе на двух саморезах.

Разъём с позолоченными контактами и неодимовый магнит из HDD от ноутбука.

Ток подаётся «крокодилами», но можно и припаять провода.

А ещё можно сделать переходник, чтобы заряжать разные аккумуляторы 4,2 В от зарядного устройства, заточенного только под одну модель аккумуляторов.

Спасибо за то, что дочитали мою статью! Я старался для Вас, отблагодарите подпиской на youtube канал.
Если информация понравилась, ставьте лайк и поделитесь в соцсетях. Также буду рад комментариям!

Параметры зарядного устройства для аккумулятора, как их рассчитать

Параметры зарядного устройства для аккумулятора, как их рассчитать

Аккумулятор — устройство для накопления энергии с целью её последующего использования.

Чтобы рассчитать параметры зарядного устройства для конкретного аккумулятора, необходимо прежде всего принять в расчет тип и параметры аккумулятора, который вы собираетесь этим устройством заряжать.

Важнейшие характеристики заряжаемого аккумулятора — это: емкость, напряжение полного заряда, максимально допустимый ток заряда, а также диапазон допустимых рабочих температур.

В зависимости от того, что это за аккумулятор, какого типа материалы в нем используются — параметры зарядного устройства должны подбираться индивидуально. Здесь мы рассмотрим свинцово-кислотный и литий-ионный аккумуляторы, а точнее особенности их зарядки.

Правда в том, что если аккумулятор всегда заряжать правильно, с соблюдением оптимальных величин напряжения и тока, то он сохранит свою емкость на протяжении многих циклов заряда-разряда. Разумеется при условии, что и разряжается он тоже с соблюдением ограничений, без перегрузок, без перегревов. Итак, как же рассчитать параметры зарядного устройства для аккумулятора?

Литий-ионный аккумулятор

Главная заряженная частица, отвечающая за образование тока в литий-ионном аккумуляторе, — это положительно заряженный ион лития. Он способен внедряться в кристаллическую решетку материала на аноде, например в углерод в форме графита, а также образовывать соли или оксиды металлов (например с марганцем, кобальтом или с железом и фосфором).

 В силу именно такого химического состава, максимальное конечное напряжение заряда между электродами литий-ионного аккумулятора не должно превышать 4,2 вольта, а лучше — 4,1 вольта, это продлит срок его службы, замедлит необратимые изменения.

Заряжать литий-ионный аккумулятор необходимо напряжением в 5 вольт, чтобы не ждать бесконечно долго. При этом оптимальный ток заряда должен составлять от 50 до 100% от значения емкости, то есть аккумулятор емкостью 2400мАч оптимально будет заряжать током от 2,4А до 1,2А.

Для недопущения перезаряда, качественные зарядные устройства заряжают такие аккумуляторы в 2 стадии: на первой стадии на электроды подается 5 вольт и заряд некоторое время идет с предельно разрешенным током до достижения порогового напряжения в районе 4,1 вольт, а потом начинается вторая стадия — с меньшим током, когда напряжение доводится до конечных 4,1-4,2 вольт.

Поэтому мощность зарядного устройства для литий-ионного аккумулятора (для 1 ячейки) рассчитывается так: максимальное напряжение умножить на максимальный ток, допустим 5В*2,4А=1,2Вт — для нашего примера.

Свинцово-кислотный аккумулятор

Свинцово-кислотный аккумулятор работает благодаря химическим реакциям свинца и диоксида свинца в водном растворе серной кислоты. Любой классический автомобильный аккумулятор устроен именно так. В процессе заряда сульфат свинца распадается на ионы (отрицательно заряженный SO4 и положительно заряженный H), на катоде образуется диоксид свинца, на аноде — чистый свинец. При разряде — металлический свинец окисляется до сульфата свинца, диоксид свинца восстанавливается на катоде, а на аноде окисляется свинец.

Если аккумулятор перезарядить (продержать на зарядке чрезмерно долго), то сульфат свинца закончится, останется только вода, и начнется ее электролиз: на аноде при этом будет выделяться кислорода, а на катоде (отрицательном электроде) — водород — в жидком электролите будет видно как пойдут пузырьки.

В силу именно такого химического состава, напряжение максимального заряда одной ячейки свинцово-кислотного аккумулятора составляет 2,17 вольта. В 12 вольтовом аккумуляторе таких последовательно соединенных секций 6, а в 6 вольтовом — 3 последовательно соединенные секции. Поэтому максимальное напряжение заряда 12 вольтного аккумулятора составляет 13,02 вольта. Для 6 вольтного — 6,51 вольт.

Таким образом, зарядное устройство в процессе зарядки должно подавать на электроды постоянное напряжение исходя из по крайней мере 2,45 вольт на элемент (чтобы зарядка не шла бесконечно долго) — для 12 вольтного это 14,7 вольт, а для 6 вольтного получается 7,35 вольт. Начальный ток заряда оптимально принять за 30% от емкости.

В итоге максимальная рабочая мощность зарядного устройства должна рассчитываться как максимальное напряжение умножить на максимальный ток, допустим 14,7В*30А=441Вт — для свинцово-кислотного аккумулятора номинальным напряжением 12 вольт, емкостью 100Ач.

Ранее ЭлектроВести писали, что немецкие учёные не перестают удивлять. Технологический институт Карлсруэ (Karlsruhe Institute of Technology) опубликовал пресс-релиз, в котором сообщил об одном интересном исследовании. Оказывается, параметры литиево-ионных аккумуляторов можно заметно улучшить с помощью обыкновенной яичной скорлупы.

По материалам: electrik.info.

Заряжаем литий ионный аккумулятор правильно

Зарядное устройство для литий ионных аккумуляторов очень похоже на зарядное для свинцово- кислотных, за тем лишь исключением, что у Li-ion аккумуляторов значительно выше напряжение на каждой банке и более жёсткие требования к допускам по напряжению.

Банкой называют литий ионные элементы питания за из схожесть по форме на алюминиевую банку из-под прохладительных напитков (напр. coca-cola) Самым распространенным элементом такой формы является банка формата 18650. То есть 18 мм в диаметре и 65 мм в высоту.

В то время, когда для свинцово-кислотных аккумуляторов возможны некоторые неточности в установке граничных напряжений при зарядке, с литий-ионными все гораздо жёстче.  Во врем заряда, когда напряжение на элементе возрастает до 4,2 вольта, должно прекращаться подача напряжения на элемент питания. Разрешенный допуск в напряжении всего 0,05 вольт.

Средний литий-ионный аккумулятор заряжается около 3 часов. Однако точное время зарядки, все же зависит от ёмкости аккумулятора.

Итак приведём несколько основных правил, используя которые можно продлить  срок использования li-ion аккумулятора в разы.

Использование оригинальных зарядных устройств

При изготовлении литий ионных аккумуляторов, их производители довольно серьёзно относятся к зарядным устройствам. Никто не даст вам гарантии, что зарядные устройства сомнительного происхождения не погубят Ваши аккумуляторы. Оригинальные же зарядки 100% выдают только необходимое напряжение и правильно заканчивают зарядку каждого элемента питания. Ведь, если в конце процесса зарядки напряжение будет затухать со значительным опозданием, это может привести к перезарядке элемента, что в свою очередь скажется весьма негативно на химической системе литий-ионного аккумулятора и будет потеряна часть емкости.

Хранить аккумуляторы лучше с малым зарядом (30-50%)

Если Вам приходится оставлять li-ion аккумуляторы на продолжительное время бездействовать, то лучше их вынуть из устройства (фонаря, Р/У машинки и т.д.).

Очень вероятно, что полностью заряженный аккумулятор при продолжительном хранении потеряет часть своей ёмкости. Полностью разряженный или при минимальном уровне, хранящийся аккумулятор, может «умереть» навсегда. Т.е. восстановить его так и не удастся после длительной спячки. Исходя из этого и рекомендуется держать 50% заряд у хранящихся, длительное время li-ion аккумуляторов.

Не допускайте перезаряда и полного разряда аккумулятора.

Учитывая химическую особенность литийевых аккумуляторов, весьма не рекомендуют, как  полностью разряжать, так и чрезмерно перезаряжать такие аккумуляторы.

Как известно, у li-ion аккумуляторов, полностью отсутствует «эффект памяти«, исходя из этого рекомендуется разряжать аккумулятор до 10-20% а заряжать до 80-90, дабы не повредить химическую систему элемента.

Эффект памяти, в основном свойствен только Никель-Кадмиевым аккумуляторам.

А означает он некую потерю емкости аккумулятора после неправильного режима зарядки, в частности дозарядки при не полностью разрядившемся аккумуляторе. Проще говоря Ni-Cd нельзя начинать заряжать, до того, как он разрядится до допустимо низкого уровня. Нарушая данное правило, емкосли никель кадмиевого аккумулятора несколько уменьшается.

Литий ионные аккумуляторы, лучше начинать заряжать не дожидаясь их полного разряда. Таким образом можно значительно продлить срок жизни элемента питания.

Вышеуказанное правило относится только к незащищённым аккумуляторам. Литиевые аккумуляторы с защитой не страдают от пере или недозаряда. Встроенная плата защиты, отсекает чрезмерное напряжение (более 3,7 вольт на банку) при зарядке и отключает аккумулятор, если уровень заряда упал до минимального, обычно до 2,4 вольт.

Li-Ion аккумулятор не любит холода и жары.

Оптимальной температурой для литиевых аккумуляторов, является от +10°С до +25°С. Li-ion аккумуляторы чувствительны к большим перепадам температур. При отрицательной температуре, время работы аккумулятора сильно сокращается, хим. система элемента может сильно пострадать и даже разрушиться. Наверняка, вы замечали, как заряд мобильного телефона, на морозе резко начинает стремиться к минимуму, хотя ранее, в тепле, заряд был полным.

Нужно заметить, что литий-ионные аккумуляторы, весьма неприхотливы. При должном уходе, они проживут от 3 до 5 лет исправной службы хозяину. Так же нужно знать что такие аккумуляторы имеют свой срок использования от даты производства, а это значит, что заранее покупать запасные аккумуляторы не всегда хорошая идея. Обычно считается нормальным покупать литий-ионки не позднее 2-х лет после производства.

По поводу ёмкости литий ионных аккумуляторов. Банки самого распространенного формата 18650, могут иметь реальную емкость до 3500 мАч. При цене не менее 3-4 долларов за шт. Аккумуляторы, ёмкостью в 9900 мАч по цене $2 за шт. — это как минимум смешно. В действительности там будет 3000 мАч. если повезет.

Бренд против Нонейма

Стоит сказать несколько слов о производителях литий ионных аккумуляторов.

Практически все аккумуляторы имеют название (Бренд изготовителя), но это может быть «Panasonic» в котором реальная емкость будет меньше на 50 мАч из 3000 мАч или какой ни-будь «ХуньСюньПродакшн», в котором не хватает 1900 мАч из 3000 мАч. И это не смешно, а реальные цифры.

Так вот нормальными (честными) брендами среди аккумуляторов без защиты, считаются:

  • Panasonic,
  • Sony,
  • Sanyo,
  • Samsung,
  • LG,

Напротив, такие бренды, как:

  • UltraFire,
  • SingFire,
  • Bailong,
  • TrastFire

имеют далеко не точную указанную емкость, зато стоят в 2 — 3 раза дешевле.

Среди достойных установщиков защиты на литий-ионки стоит отметить:

  • Keeppower;
  • Efest;
  • Nitecore

Купить литий ионные аккумуляторы, например, формата 18650 можно как в местных интернет магазинах, так и у китайцев на прямую.

И пожалуйста не обольщайтесь на низкую цену и банки аккумуляторов в прозрачной термо-усадке. Из опыта, могу сказать, что в таком варианте используются в основном оригинальные банки но совсем никудышние платы защиты. 

Как правильно заряжать полимерный аккумулятор

Литий полимерный отличается от литий ионного аккумулятора только лишь консистенцией электролита. Более подробнее читайте здесь. В остальном же, литий-полимерный поддается тем же правилам, что и литий-ионный аккумулятор.

Советы по эксплуатации литий-ионных аккумуляторов

Что представляет собой литий-ионный аккумулятор?

Далеко не все знают, что такое литий-ионный аккумулятор. Давайте для начала рассмотрим его конструкцию на примере смартфона. В данном случае он имеет один аккумуляторный элемент, который чаще всего называется банкой. Его номинальное напряжение обычно составляет 3,7 В. Также в составе аккумулятора есть контроллер, представляющий собой плату с микросхемой, распаянной на ней. Она не допускает перезаряда или глубокого разряда. То есть производители аккумуляторов уже позаботились о том, чтобы избежать проблем с зарядкой и разрядкой батареи. Пользователю нужно только соблюдать простые правила эксплуатации.

Правила по использованию литий-ионных аккумуляторов

Придерживаясь следующих простых правил, вы сможете не только продлить жизненный цикл литий-ионного аккумулятора, но и увеличить время работы устройства, в котором он используется.

Правило 1: не разряжайте полностью аккумулятор

У литий-ионных аккумуляторов нет так называемого «эффекта памяти». Поэтому их необходимо заряжать, не дожидаясь, когда они разрядятся до 0%. Многие производители рассчитывают срок эксплуатации аккумулятора количеством циклов зарядки с нулевого значения. Для качественных АКБ он составляет 400-600 циклов. Чтобы повысить срок службы литий-ионного аккумулятора, нужно чаще заряжать устройство, когда на нем осталось 10-20% зарядки. Благодаря этому можно увеличить количество циклов разряда вплоть до 1700.

Правило 2: разряжайте аккумулятор только 1 раз в 3 месяца

Полный заряд в течение продолжительного времени так же вреден для литий-ионных аккумуляторов, как и постоянная разрядка до 0%. Это приводит к тому, что устройство получает некорректную информацию о количестве заряда. В связи с нестабильным процессом заряда специалисты рекомендуют 1 раз в 3 месяца полностью разряжать АКБ. Причем после следует зарядить его до 100%, а затем продержать на зарядке от 8 до 12 часов. За счет этого обновится максимальное значение, а работа батареи будет стабильнее.

Правило 3: храните неиспользуемый аккумулятор с небольшим количеством заряда

Если вы планируете хранить литий-ионный аккумулятор, который долгое время не будет использоваться, то его уровень заряда должен составлять от 30 до 50%. Причем рекомендуется, чтобы температура в помещении была 15 градусов по Цельсию. Если хранить полностью заряженный аккумулятор, то он потеряет значительную часть емкости. Разряженные до 0% АКБ после длительного хранения, скорее всего, придут в негодность. В таком случае придется обратиться в компанию, которая имеет разрешение на утилизацию литий-ионных аккумуляторов, поскольку выкидывать их с обычным мусором категорически запрещено.

Правило 4: Используйте только оригинальное зарядное устройство

Важно заметить, что зарядное устройство встроено в конструкцию смартфона, планшета, ноутбука и т.д. Поэтому в данном случае внешний адаптер выступает в качестве выпрямителя и стабилизатора напряжения. Видеокамеры и фотоаппараты не оснащены таким устройством. В связи с этим их аккумуляторы следует вынимать и заряжать во внешнем устройстве. Использование сторонних зарядных устройств может оказать негативное воздействие на работу аккумулятора.

Применение несертифицированных зарядных устройств небезопасно. Особенно это касается так называемых «лягушек» китайского производства, которые часто воспламеняются в процессе зарядки. Прежде чем использовать такое универсальное зарядное устройство, сверьтесь с допустимыми значениями, указанными на упаковке. Особое внимание следует обратить на максимальную емкость. Если ограничение меньше емкости, то в лучшем случае аккумулятор не зарядится полностью, а в худшем – его ждет утилизация.

Правило 5: не допускайте перегрева аккумулятора

Высокие температуры крайне негативно воздействуют на литий-ионные аккумуляторы. Поэтому нельзя допускать попадания на мобильные устройства прямого ультрафиолетового излучения. Также запрещено оставлять их в непосредственной близости от источников тепла, к примеру, обогревателей. Низкие температуры тоже губительны для АКБ, но в гораздо меньшей степени. Оптимальная температура, при которой можно использовать литий-ионные аккумуляторы, составляет от -40 до +50 градусов по Цельсию.

Зарядка литий-ионных аккумуляторов

Категория: Поддержка по зарядным устройствам
Опубликовано 09.05.2016 14:27
Автор: Abramova Olesya


Зарядные и разрядные процессы в электрических батареях являются химическими реакциями, но литий-ионная система имеет свои нюансы. Ученые говорят о движении энергии в батарее как о части ионного потока между анодом и катодом. Это утверждение в какой-то мере верно, но если ученые были бы абсолютно правы, то электрические батареи работали вечно. Падение емкости со временем объясняется потерей ионов, но и процессы внутренней коррозии вкупе с другими дегенеративными эффектами также играют определенную роль. (Смотрите BU-808: В чем причина конечного времени работы литий-ионных аккумуляторов).

Зарядное устройство для литий-ионной электрохимической системы представляет собой ограниченное по напряжению устройство, весьма похожее на зарядное для свинцово-кислотных аккумуляторов. Но есть и различия — более высокое напряжение на элемент, более жесткие допуски напряжения и отсутствие режима поддержания при полном заряде. В то время как свинцово-кислотная электрохимическая система имеет некоторую гибкость пороговых значений напряжения, литий-ионная требует очень строгой настройки зарядных устройств, так как перезаряд не может быть принят. Не может быть создано какое-либо «чудо» зарядное устройство, способное продлить срок службы или предоставить дополнительную емкость путем импульсного тока или других уловок. Литий-ионная является “чистой” системой и принимает ровно тот заряд, который она может аккумулировать.


Зарядные устройства Victron Energy (Голландия)

 

Phoenix Charger Skylla-i Skylla-TG
12/24В, 16-200А 24В, 80-500А 24/48В, 30-500А
Мощные профессиональные зарядные устройства для яхт, катеров и другого вида транспорта. Предлагаются однофазные и трехфазные зарядные устройства высокой мощности. Многостадийный адаптивный заряд с возможностью ручного управления.

Литий-ионные аккумуляторы с такими традиционными катодными материалами как кобальт, никель, марганец и алюминий обычно имеют напряжение 4,20 В на элемент. Допустимым отклонением является +/- 50 мВ на элемент. Некоторые версии на основе никеля заряжаются до 4,10 В на элемент; существуют и специально оптимизированные под емкость модели с напряжением 4,30 В и выше на элемент. Повышение напряжения помогает увеличить емкость аккумулятора, но злоупотребление путем превышения значений спецификаций может повредить аккумулятор и даже создать угрозу безопасности. Встраиваемая в аккумулятор схема защиты [BU-304] защищает его от превышения заданного напряжения.

На рисунке 1 показаны графики тока и напряжения литий-ионного аккумулятора относительно этапов зарядки. Полный заряд достигается, когда ток уменьшается до показателя 3-5 процентов от значения номинальной емкости.

Рисунок 1: Этапы зарядки литий-ионного аккумулятора. Li-ion считается полностью заряженным, когда зарядный ток падает до заданного уровня. Вместо режима непрерывного поддержания заряда, некоторые зарядные устройства используют подзарядку только при падении напряжения аккумулятора.

Рекомендуемая скорость зарядки литий-ионных элементов, оптимизированных под емкость, составляет 0,5-1С, полное время заряда при такой скорости составит 2-3 часа. Производители рекомендуют использовать скорость зарядки 0,8С и меньше для продления срока службы аккумулятора. Элементы же, оптимизированные под мощностные показатели, могут использовать более “быстрое” зарядное устройство. Эффективность зарядки литий-ионной электрохимической системы составляет порядка 99 процентов, благодаря этому отсутствует тепловыделение и аккумулятор остается прохладным.

Некоторые аккумуляторы все же могут немного нагреться (примерно на 5°С) при достижении полного заряда. Это может быть вызвано работой схемы защиты и/или повышенным внутренним сопротивлением. Если же температура аккумулятора повысилась более чем на 10°С при умеренных скоростях зарядки, это может говорить о его неисправности, следовательно, необходимо прекратить дальнейшую зарядку и эксплуатацию.

Полная зарядка фиксируется при достижении аккумулятором порогового значения напряжения и падением зарядного тока до 3 процентов от номинального значения. Также аккумулятор считается заряженным, если напряжение и ток достигли некоторого значения и не могут более приблизиться к своим пороговым значениям. Причиной такого поведения может служить повышенный саморазряд [BU-802b].

Увеличение тока зарядки, как ни парадоксально, не ускорит процесс достижения полного заряда. Хотя аккумулятор и быстрее достигнет пикового значения напряжения, ему все еще будет необходим режим насыщения, который в нашем случае займет больше времени. Уменьшение времени первого этапа зарядки компенсируется увеличением времени второго. Высокий ток зарядки, тем не менее, довольно быстро заполнит аккумулятор энергией примерно до 70 процентов.

Литий-ионному аккумулятору не требуется полная зарядка, как в случае со свинцово-кислотным, даже наоборот — легкий недозаряд обеспечит лучшие показатели долговечности. Дело в том, что при полном заряде в аккумуляторе возникает довольно высокое напряжение, которое носит деградационный характер. Ограничение напряжения или устранение режима насыщения продлит срок службы аккумулятора, но, с другой стороны, приведет к уменьшению времени автономной работы. Большинство зарядных устройств оптимизированы как раз под емкость, длительность срока службы воспринимается менее важной.

Некоторые недорогие зарядные устройства вообще могут игнорировать режим насыщения, используя более упрощенный метод зарядки, который длится один час или даже меньше. Такая зарядка фиксирует свое окончание достижением аккумулятором определенного значения напряжения. Окончательный уровень заряда при таком методе составляет примерно 85 процентов от номинальной емкости, что для большинства потребителей является достаточным уровнем.

Промышленные же зарядные устройства часто используют несколько заниженное значение порогового напряжения для продления срока службы аккумулятора. В таблице 2 приведены расчетные значения емкости при зарядке до различных пороговых значений напряжения с и без использования режима насыщения. (Смотрите также BU-808: Как увеличить срок службы литий-ионного аккумулятора).

Напряжение отсечки/на элемент Возможная емкость Время зарядки Емкость с режимом насыщения
3,80 60% 120 минут ~65%
3,90 70% 135 минут ~75%
4,00 75% 150 минут ~80%
4,10 80% 165 минут ~90%
4,20 85% 180 минут 100%

Таблица 2: Стандартные зарядные характеристики литий-ионных аккумуляторов. Применение режима полного насыщения при заданном напряжении отсечки приводит к повышению емкости примерно на 10 процентов, но приводит к стрессу из-за высокого напряжения.

В самом начале зарядного процесса напряжение аккумулятора очень быстро поднимается. Такому поведению можно привести аналогию — подъем груза резинкой, когда в первый момент резинка натягивается, а груз все еще на своем месте. Показатель использования емкости в течение процесса зарядки стабилизируется относительно напряжения аккумулятора (рисунок 3). Такой эффект характерен для всех электрических батарей. Чем выше ток зарядки, тем эффект “резинки” будет ярче выражен. Холодная температура зарядки или высокое внутреннее сопротивление элемента могут усилить проявление этого эффекта.

Рисунок 3: Зависимость напряжения и емкости литий-ионного аккумулятора от времени зарядки. Эффект зависимости емкости от напряжения при зарядке похож на эффект подъема груза растягивающейся резинкой.

Оценка состояния заряда путем считывания напряжения заряжаемого аккумулятора непрактична, гораздо более точным индикатором служит напряжение разомкнутой цепи аккумулятора после нескольких часов покоя. На даже напряжение разомкнутой цепи не является 100-процентным показателем, так как оно зависимо от температуры. Уровень заряда смартфонов, ноутбуков и других устройств оценивается с помощью кулоновского подсчета. (Смотрите BU-903: Как измерить степень заряженности электрической батареи).

Литий-ионный аккумулятор не может поглотить перезаряд. При достижении полной степени заряда необходимо отсечь зарядный ток. Приложение непрерывного тока поддержания заряда может привести к металлизации лития, что чревато проблемами с безопасностью аккумулятора. Чтобы свести к минимуму стресс, желательно не оставлять заряженный литий-ионный аккумулятор подключенным к зарядному устройству.

После того, как процесс зарядки окончился, напряжение аккумулятора начинает падать. Со временем, напряжение холостого хода стабилизируется на уровне 3,70-3,90 В на элемент. Стоит обратить внимание, что литий-ионный аккумулятор, к которому применялась зарядка в режиме насыщения, будет держать напряжение высоким более длительное время, чем тот, к которому этот режим не применялся.

Когда возникает необходимость хранения литий-ионных аккумуляторов подключенными к зарядному устройству, некоторые из них могут иметь функцию капельного поддержания заряда, призванного компенсировать небольшой саморазряд самого аккумулятора и потребление энергии встроенной схемой защиты. Такое зарядное устройство срабатывает при понижении напряжения аккумулятора до 4,05 В на элемент и подзаряжает его снова до значения 4,20 В. Существует и другой режим зарядки, со срабатыванием при напряжении 4,00 В на элемент и подзарядкой до 4,05 В. Использование такого режима несет меньше вреда аккумулятору и продлевает срок его службы.

Некоторые портативные устройства могут оставаться включенными или даже эксплуатироваться во время зарядки. Потребление энергии устройством в этом случае называется паразитной нагрузкой и может вызвать искажения циклов зарядки. Производители аккумуляторов советуют избегать паразитных нагрузок, так как они приводят к возникновению множественных мини-циклов заряда/разряда. Этого не всегда можно избежать, к примеру, часто возникает необходимость эксплуатации того же ноутбука от электросети. Возникает ситуация, когда аккумулятор заряжается до 4,20 В на элемент и тут же подвергается разряду. Уровень стрессового воздействия на такой аккумулятор довольно высок, поскольку циклы возникают при высоком напряжении, а часто – и при повышенной температуре.

Портативное устройство должно быть отключено при зарядке. Это позволит аккумулятору беспрепятственно достичь порогового значения напряжения и точки насыщения. Паразитная нагрузка сбивает с толку зарядное устройство, воздействуя на напряжение аккумулятора и препятствуя току насыщения, возможны даже ситуации, когда аккумулятор уже полностью заряжен, но из-за воздействия паразитной нагрузки зарядное устройство продолжает зарядку, что конечно же приводит к повреждению аккумулятора.

2. Зарядка без-кобальтовых литий-ионных аккумуляторов

В то время как традиционные литий-ионные аккумуляторы имеют номинальное напряжение элемента 3,60 В, литий-фосфатные (LiFePO) являются исключением с напряжением элемента 3,20 В и напряжением зарядки 3,65 В. Относительно новой технологией являются литий-титанатные модели с напряжением элемента 2,40 В и напряжением зарядки 2,85 В. (Смотрите BU-205: Виды литий-ионных аккумуляторов).

Зарядные устройства для этих безкобальтовых аккумуляторов несовместимы с обычными 3,60-вольтовыми. Необходимо предусматривать технологию изготовления аккумулятора и обеспечить его правильным зарядным напряжением. 3,60 В литий-ионный аккумулятор, подключенный к зарядному устройству, предназначенному для литий-фосфатной системы, просто не получит достаточного заряда, и, наоборот, воздействие повышенного зарядного напряжения на литий-фосфатный аккумулятор приведет к его повреждению.

3. Перезаряд литий-ионных аккумуляторов

Литий-ионные аккумуляторы вполне безопасны в пределах определенного рабочего напряжения, но если по неосторожности превысить напряжение, это может привести к неустойчивости аккумулятора. Продолжительная зарядка напряжением выше 4,30 В аккумулятора, рассчитанного на напряжение 4,20 В, может привести к металлизации лития на аноде. На катоде начинают происходить окислительные процессы, он становится нестабильным и выделяет углекислый газ (CO2). Давление в элементе возрастает, и если зарядка будет продолжаться, может сработать устройство прерывания тока, которое ответственно за безопасность при повышении внутреннего давления элемента до 1,000-1,380 кПа. Если по каким-то причинам давление продолжает расти дальше, то при значении в 3,450 кПа может раскрыться мембрана безопасности. В любом случае, такие экстремальные значения давления небезопасны, и могут привести к возгоранию или даже взрыву аккумулятора. (Смотрите BU-304b: Обеспечение безопасности литий-ионных аккумуляторов).

Тепловой пробой, который и приводит к возгоранию или взрыву, непосредственно зависим от высокой температуры. Полностью заряженному аккумулятору нужно меньшее температурное воздействие для коллапса в сравнении с частично заряженным. Все аккумуляторы на основе лития являются более безопасными при низком уровне заряда, поэтому полностью заряженные аккумуляторы даже запрещено перевозить воздушным транспортом (регламентированный уровень заряда составляет 30 процентов). (Смотрите BU-704a: Перевозка аккумуляторов на основе лития воздушным транспортом).

Пороговой температурой для полностью заряженного литий-кобальтового аккумулятора является 130-150°С, для литий-никель-марганец-кобальтового (NMC) — 170-180°С, а для литий-марганцевого — около 250°С. Литий-фосфатный обладает температурной стабильностью, даже немного лучшей, чем у литий-марганцевого. (Смотрите BU-304a: Аспекты безопасности литий-ионных аккумуляторов и BU-304b: Обеспечение безопасности литий-ионных аккумуляторов).

Не только литий-ионная электрохимическая система небезопасна при перезаряде. Аккумуляторы на основе свинца и никеля также могут расплавиться и привести к пожару при неправильной эксплуатации. Правильно спроектированное зарядное оборудование имеет первоочередное значение для всех аккумуляторных систем. Наличие функции контроля температуры поможет избежать многих проблем.

4. Итоги

Зарядка литий-ионных аккумуляторов намного проще зарядки аккумуляторов на основе никеля. Нет необходимости в сложном анализе зависимых от возраста аккумулятора изменений напряжения для определения полного заряда. Процесс зарядки может быть прерывистым, нет нужды в режиме насыщения, как в случае со свинцово-кислотными аккумуляторами. Эти нюансы дают большое преимущество для использования в сфере возобновляемых источников энергии, таких как солнечные панели и ветряные турбины, которые не всегда могут полностью зарядить аккумулятор. Отсутствие необходимости в режиме поддержания заряда значительно упрощает и удешевляет зарядное устройство. Уравнительный заряд, который требуется для обслуживания тех же свинцово-кислотных аккумуляторов, не является необходимым для литий-ионных.

5. Рекомендации по зарядке литий-ионных аккумуляторов
  • Выключите заряжаемое устройство или отдельно заряжайте его аккумулятор, чтобы позволить зарядному току беспрепятственно достичь значения режима насыщения. Паразитная нагрузка сбивает с толку зарядное устройство.

  • Производите зарядку при умеренной температуре. Не заряжайте литий-ионный аккумулятор при температуре ниже 0°С (Смотрите BU-410: Зарядка аккумуляторных батарей в условиях высоких и низких температурах).

  • Литий-ионной электрохимической системе не обязателен полный заряд, частичный даже лучше, так как увеличивает срок службы аккумулятора.

  • Не все зарядные устройства имеют функцию капельной подзарядки, следовательно, на все 100 процентов аккумулятор при их помощи зарядиться не сможет.

  • Следует прекратить зарядку при обнаружении излишнего тепловыделения аккумулятора.

  • Перед длительным хранением аккумулятора зарядите его до 40-50 процентов. (Смотрите BU-702: Как правильно хранить электрические батареи).

Последнее обновление 2016-02-23

Как заряжать литий-железо-фосфатные батареи (LiFePO4)

Если вы недавно приобрели или исследуете литий-железо-фосфатные батареи (в этом блоге они называются литиевыми или LiFePO4), вы знаете, что они обеспечивают больше циклов, равномерное распределение мощности и весят меньше, чем сопоставимые герметичные свинцово-кислотные батареи (SLA ) аккумулятор. Знаете ли вы, что они также могут заряжаться в четыре раза быстрее, чем SLA? Но как именно заряжать литиевую батарею?

Power Sonic рекомендует выбирать зарядное устройство, разработанное с учетом химического состава вашей батареи.Это означает, что при зарядке литиевых батарей мы рекомендуем использовать литиевые зарядные устройства, такие как LiFe Charger Series от Power Sonic.

МОЖЕТ ЛИ СВИНЦОВО-КИСЛОТНОЕ ЗАРЯДНОЕ УСТРОЙСТВО ЗАРЯДИТЬ ЛИТИЕВУЮ БАТАРЕЮ?

Как вы узнаете из этого блога, профили зарядки SLA и лития имеют много общего. Тем не менее, следует проявлять особую осторожность при использовании зарядных устройств SLA для зарядки литиевых батарей, поскольку они могут повредить литиевую батарею или снизить ее емкость со временем.Есть много различий при сравнении литиевых батарей и батарей SLA.

ПРОФИЛЬ ЗАРЯДКИ АККУМУЛЯТОРА ДЛЯ ЗАРЯДКИ АККУМУЛЯТОРА С УПЛОТНЕНИЕМ (SLA)

Давайте вернемся к основам зарядки герметичных свинцово-кислотных аккумуляторов. Наиболее распространенный метод зарядки представляет собой трехэтапный подход: начальный заряд (постоянный ток), дополнительный заряд насыщения (постоянное напряжение) и плавающий заряд.

В Stage 1 , как показано выше, ток ограничен, чтобы избежать повреждения батареи.Скорость изменения напряжения непрерывно изменяется во время Стадии 1, в конечном итоге начиная с выхода на плато при приближении к пределу полного заряда. Перед переходом к следующему этапу решающее значение имеет постоянный ток / этап 1 заряда. Зарядка на этапе 1 обычно выполняется при токе 10–30% (0,1–0,3 ° C) от номинальной емкости аккумулятора или меньше.

Этап 2 , постоянное напряжение, начинается, когда напряжение достигает предела напряжения (14,7 В для быстрой зарядки батарей SLA).Во время этого этапа потребление тока постепенно уменьшается по мере продолжения максимального заряда батареи. Этот этап завершается, когда ток падает ниже 5% от номинальной емкости батареи. Последний этап, плавающий заряд, необходим для предотвращения саморазряда и потери емкости аккумулятора.

Если аккумулятор используется в режиме ожидания, подзарядка необходима для обеспечения полной емкости аккумулятора, когда требуется разряд аккумулятора. В приложении, где батарея находится на хранении, плавающая зарядка поддерживает батарею SLA на уровне 100% заряда (SOC), что необходимо для предотвращения сульфатирования батареи, что, таким образом, предотвращает повреждение пластин батареи.

ПРОФИЛЬ ДЛЯ ЗАРЯДКИ БАТАРЕИ LIFEPO4

Аккумулятор LiFePO4 использует те же ступени постоянного тока и постоянного напряжения, что и аккумулятор SLA. Несмотря на то, что эти две ступени похожи и выполняют одну и ту же функцию, преимущество батареи LiFePO4 заключается в том, что скорость заряда может быть намного выше, что значительно сокращает время зарядки.

Стадия 1 Зарядка аккумулятора обычно выполняется при токе 30% -100% (от 0,3 ° C до 1,0 ° C) от номинальной емкости аккумулятора. Для завершения этапа 1 приведенной выше таблицы SLA требуется четыре часа. Этап 1 литиевой батареи может занять всего один час, что делает литиевую батарею доступной для использования в четыре раза быстрее, чем SLA.

Этап 2 необходим в обеих химических областях, чтобы довести аккумулятор до 100% SOC. Батареи SLA требуется 7 часов для завершения этапа 2, тогда как литиевая батарея может занять всего 15 минут. В целом литиевая батарея заряжается за четыре часа, а батарея SLA обычно занимает 10 часов.В циклических приложениях время зарядки очень критично. Литиевую батарею можно заряжать и разряжать несколько раз в день, тогда как свинцово-кислотную батарею можно полностью перезаряжать только один раз в день.

Где они становятся разными по профилям зарядки — это Stage 3 . Литиевая батарея не нуждается в плавающем заряде, как свинцово-кислотная. При долгосрочном хранении литиевые батареи не должны храниться при 100% SOC, и поэтому их можно поддерживать в полном цикле (заряжать и разряжать) один раз каждые 6–12 месяцев до 30–70% SOC.

В резервных приложениях, поскольку скорость саморазряда лития очень мала, литиевая батарея будет работать почти до полной емкости, даже если она не заряжалась в течение 6–12 месяцев. Для более длительных периодов времени рекомендуется система зарядки, которая обеспечивает подзарядку в зависимости от напряжения.

ХАРАКТЕРИСТИКИ ЗАРЯДА ЛИТИЕВОЙ БАТАРЕИ

Настройки напряжения и тока при зарядке

Номинальное напряжение полной зарядки 12 В SLA-батареи составляет около 13.1, а полное напряжение заряда литиевой батареи 12,8 В составляет около 13,4. Аккумулятор будет поврежден только в том случае, если приложенное напряжение зарядки значительно выше, чем напряжение полной зарядки аккумулятора.

Это означает, что уровень заряда батареи SLA должен быть ниже 14,7 В для стадии 2 зарядки и ниже 15,2 В для литиевой. Плавающая зарядка требуется только для батареи SLA, рекомендуется около 13,8 В. Исходя из этого, диапазона напряжения заряда от 13,8 В до 14,7 В достаточно для зарядки любой батареи без повреждения. При выборе зарядного устройства для любого химического соединения важно выбрать такое, которое будет находиться в пределах, указанных выше.

Зарядные устройства

выбираются в соответствии с емкостью заряжаемой батареи, поскольку ток, используемый во время зарядки, зависит от номинальной емкости батареи. Литиевую батарею можно заряжать со скоростью 1С, тогда как свинцово-кислотную батарею следует хранить при температуре ниже 0,3С. Это означает, что литиевый аккумулятор на 10 Ач обычно можно заряжать при токе 10 А, а свинцово-кислотный аккумулятор на 10 Ач можно заряжать при токе 3 А.

Ток отключения заряда составляет 5% от емкости, поэтому ток отключения для обеих батарей будет 0,5 А. Обычно значение тока на клеммах определяется зарядным устройством.

Универсальные зарядные устройства

обычно имеют функцию выбора химического состава. Эта функция выбирает оптимальный диапазон напряжения зарядки и определяет, когда аккумулятор полностью заряжен. Если заряжается литиевая батарея, зарядное устройство должно отключиться автоматически. Если он заряжает аккумулятор SLA, он должен переключиться на плавающий заряд.

Литиевые батареи заменяют герметичные свинцово-кислотные в поплавковых системах

Литиевые батареи очень часто помещают в приложения, в которых батареи SLA обычно поддерживаются на плавающем заряде, например в системе ИБП. Были некоторые опасения, безопасно ли это для литиевых батарей. Обычно допустимо использовать стандартное зарядное устройство SLA с постоянным напряжением с нашими литиевыми батареями, если оно соответствует определенным стандартам.

При использовании зарядного устройства SLA с постоянным напряжением, Зарядное устройство должно соответствовать следующим условиям:
— Зарядное устройство не должно содержать настройки десульфатирования.
— Напряжение быстрой зарядки 14.7 В
— Рекомендуемое напряжение плавающего заряда 13,8 В

В качестве примечания, некоторые интеллектуальные или многоступенчатые зарядные устройства SLA имеют функцию, которая определяет напряжение холостого хода (OCV). Чрезмерно разряженная литиевая батарея, находящаяся в режиме защиты, будет иметь OCV, равное 0. Этот тип зарядного устройства предполагает, что эта батарея разряжена, и не будет пытаться ее зарядить. Зарядное устройство с литиевой настройкой попытается восстановить или «разбудить» чрезмерно разряженную литиевую батарею.

Долгосрочное хранение

Если вам нужно хранить батареи в хранения в течение длительного периода, есть несколько вещей, которые следует учитывать в качестве Требования к хранению отличаются для SLA и литиевых батарей.Есть два Основные причины, по которым хранение SLA по сравнению с литиевой батареей отличается.

Первая причина в том, что химия аккумулятор определяет оптимальный SOC для хранения. Для батареи SLA вы хотите хранить его как можно ближе к 100%, чтобы избежать сульфатирования, которое вызывает скопление кристаллов сульфата на пластинах. Наращивание кристаллов сульфата уменьшит емкость аккумулятора.

Для литиевой батареи структура положительного вывода становится нестабильной при истощении электронов в течение длительного периода времени. Нестабильность положительного вывода может привести к необратимой потере емкости. По этой причине литиевый аккумулятор следует хранить около 50% SOC, который равномерно распределяет электроны на положительных и отрицательных выводах.

Второе влияние на хранение — это скорость саморазряда. Высокая скорость саморазряда батареи SLA означает, что вы должны поставить ее на постоянный или непрерывный заряд, чтобы поддерживать его как можно ближе к 100% SOC, чтобы избежать необратимой потери емкости. Для литиевой батареи, которая имеет гораздо более низкую скорость разряда и не требует 100% SOC, вы можете обойтись с минимальной поддерживающей зарядкой.

Рекомендуемые зарядные устройства

Всегда важно соответствовать вашему зарядное устройство для обеспечения правильного тока и напряжения для аккумулятора, который вы используете зарядка. Например, вы не будете использовать зарядное устройство на 24 В для зарядки аккумулятора 12 В. Также рекомендуется использовать зарядное устройство, соответствующее вашей батарее. химии, за исключением примечаний сверху о том, как использовать зарядное устройство SLA с литиевая батарея.

Если у вас есть вопросы о существующем совместимость зарядного устройства с одним из наших продуктов, позвоните нам или отправьте нам электронное письмо.Мы будем рады помочь вам с зарядкой.

Способы зарядки литий-ионных батарей

Для большинства электронных устройств, работающих от аккумуляторов, выбирают литий-ионный аккумулятор. Узнайте, что нужно для их правильной зарядки.

Опубликовано Джон Тил

Литий-ионный аккумулятор

— это аккумулятор, наиболее часто используемый в бытовой электронике. Из других типов, которые использовались ранее, никель-кадмиевые батареи для использования в электронном оборудовании были запрещены в ЕС, поэтому общий спрос на эти типы упал.

Никель-металлогидридные батареи

все еще используются, но их низкая плотность энергии и соотношение цены и качества делают их непривлекательными.

Работа и конструкция литий-ионного аккумулятора

Литий-ионные батареи считаются вторичными батареями , что означает, что они перезаряжаемые. Наиболее распространенный тип состоит из анода, сделанного из слоя графита, нанесенного на медную подложку, или токоприемника, и катода из покрытия из оксида лития-кобальта на алюминиевой подложке.

Сепаратор обычно представляет собой тонкую полиэтиленовую или полипропиленовую пленку, которая электрически разделяет два электрода, но обеспечивает перенос ионов лития через нее.Это расположение показано на рисунке 1.

Также используются различные другие типы анодных и катодных материалов, наиболее распространенные катоды обычно дают свои имена в соответствии с описанием типа батареи.

Таким образом, катодные элементы из оксида лития-кобальта известны как ячейки LCO. Типы оксида лития, никеля, марганца и кобальта называются типами NMC, а элементы с катодами из фосфата лития-железа известны как ячейки LFP.

Рисунок 1 — Основные компоненты типичного литий-ионного элемента

В реальной литий-ионной ячейке эти слои обычно плотно скручены друг с другом, а электролита, хотя и жидкого, едва хватает для смачивания электродов, и внутри нет жидкости, плещущейся.

Это устройство показано на рисунке 2, который показывает реальную внутреннюю конструкцию призматической или прямоугольной металлической ячейки. Другими популярными типами корпусов являются цилиндрические и мешочные (обычно называемые полимерными ячейками).

На этом рисунке не показаны металлические выступы, прикрепленные к каждому токосъемнику. Эти выступы являются электрическими соединениями с батареей, в основном клеммами батареи.

Рисунок 2 — Типичная внутренняя конструкция призматического литий-ионного элемента

Зарядка литий-ионного элемента включает использование внешнего источника энергии для переноса положительно заряженных ионов лития от катода к анодному электроду. Таким образом, катод становится отрицательно заряженным, а анод — положительно заряженным.

Внешне зарядка включает движение электронов от анодной стороны к источнику заряда, и такое же количество электронов проталкивается в катод. Это направление противоположно внутреннему потоку ионов лития.

Во время разряда к клеммам батареи подключается внешняя нагрузка. Ионы лития, которые накапливались в аноде, возвращаются на катод. Внешне это связано с движением электронов от катода к аноду.Таким образом, через нагрузку протекает электрический ток.

Вкратце, то, что происходит внутри элемента во время зарядки, например, заключается в том, что на стороне катода оксид лития-кобальта отдает часть своих ионов лития, превращаясь в соединение с меньшим содержанием лития, которое все еще остается химически стабильным.

Со стороны анода эти ионы лития внедряются или интеркалируются в межузельные пространства молекулярной решетки графита.

При зарядке и разрядке необходимо учитывать несколько моментов. Внутри литий-ионные ионы должны пересекать несколько границ раздела во время зарядки и разрядки. Например, во время зарядки ионы лития должны перемещаться от основной части катода к катоду к границе раздела электролита.

Оттуда он должен пройти через электролит через сепаратор к границе раздела между электролитом и анодом. Наконец, он должен диффундировать с этой границы раздела в основную часть материала анода.

Скорость переноса заряда через каждую из этих различных сред определяется ее ионной подвижностью.На это, в свою очередь, влияют такие факторы, как температура и концентрация ионов.

На практике это означает, что во время зарядки и разрядки необходимо соблюдать меры предосторожности, чтобы не допустить превышения этих ограничений.

Рекомендации по зарядке литий-ионных аккумуляторов

Зарядка литий-ионных аккумуляторов требует особого алгоритма зарядки. Это осуществляется в несколько этапов, описанных ниже:

Капельный заряд (предварительная зарядка)

Если уровень заряда аккумулятора очень низкий, то он заряжается с пониженным постоянным током, который обычно составляет около 1/10 полной скорости зарядки, описанной ниже.

В это время напряжение аккумулятора увеличивается, и когда оно достигает заданного порога, скорость заряда увеличивается до полной скорости заряда.

Обратите внимание, что некоторые зарядные устройства разделяют эту стадию непрерывной зарядки на две части: предварительная зарядка и постоянная зарядка, в зависимости от того, насколько низкое напряжение батареи изначально.

Полная ставка

Если напряжение батареи изначально достаточно высокое, или если батарея заряжена до этого момента, то запускается этап полной скорости заряда.

Это также стадия зарядки постоянным током, и во время этой стадии напряжение батареи продолжает медленно расти.

Конический заряд

Когда напряжение батареи поднимается до максимального зарядного напряжения, начинается стадия постепенного заряда. На этом этапе зарядное напряжение поддерживается постоянным.

Это важно, так как литий-ионные аккумуляторы катастрофически выйдут из строя, если их зарядить при более высоком напряжении, чем их максимальное напряжение. Если это зарядное напряжение поддерживается постоянным на этом максимальном значении, то зарядный ток будет медленно уменьшаться.

Отключение / прекращение

Когда зарядный ток снизился до достаточно низкого значения, зарядное устройство отключается от аккумулятора. Это значение обычно составляет 1/10 или 1/20 от полного зарядного тока.

Важно не заряжать литий-ионные батареи постоянно, так как это снизит производительность и надежность батареи в долгосрочной перспективе.

Хотя в предыдущем разделе описаны различные этапы зарядки, конкретные пороговые значения для различных этапов не были предоставлены.Начиная с напряжения, каждый тип литий-ионного аккумулятора имеет собственное напряжение на клеммах полного заряда.

Для наиболее распространенных типов LCO и NCM это 4,20 В. Есть некоторые с 4,35 В и 4,45 В.

Для типов LFP это 3,65 В. Пороговое значение непрерывного заряда до полного заряда составляет около 3,0 и 2,6 для типов LCO / NMC и LFP соответственно.

Зарядное устройство, предназначенное для зарядки литий-ионных аккумуляторов одного типа, например LCO, нельзя использовать для зарядки аккумулятора другого типа, например аккумулятора LFP.

Обратите внимание, однако, что существуют зарядные устройства, которые можно настроить для зарядки нескольких типов. Для этого обычно требуются разные значения компонентов в конструкции зарядного устройства для установки каждого типа батарей.

Когда дело доходит до зарядного тока, требуется небольшое пояснение. Емкость литий-ионного аккумулятора традиционно указывается как мАч, или миллиампер-час, или Ач. Сама по себе эта единица не является единицей накопления энергии. Чтобы получить реальную энергоемкость, необходимо учитывать напряжение аккумулятора.

На рисунке 3 показана типичная кривая разряда литий-ионной батареи типа LCO. Поскольку напряжение разряда имеет наклон, среднее напряжение батареи на всей кривой разряда принимается за напряжение батареи.

Это значение обычно составляет от 3,7 до 3,85 В для типов LCO и 2,6 В для типов LFP. Умножив значение мАч на среднее напряжение батареи, мы получим мВтч, или емкость накопления энергии, данной батареи.

Ток зарядки аккумулятора указан в единицах C-rate, где 1C численно совпадает с емкостью аккумулятора в мА.Таким образом, батарея емкостью 1000 мАч имеет значение C 1000 мА. По разным причинам максимально допустимая скорость зарядки литий-ионной батареи обычно составляет от 0,5 ° C до 1 ° C для типов LCO и 3 ° C или более для типов LFP.

ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .

Батарея, конечно, может состоять как минимум из одной ячейки, но может состоять из множества ячеек в комбинации последовательно соединенных групп параллельно соединенных ячеек.

Приведенный выше сценарий применим к одноэлементным батареям. В тех случаях, когда батарея состоит из нескольких ячеек, необходимо масштабировать зарядное напряжение и зарядный ток для соответствия.

Таким образом, зарядное напряжение умножается на количество последовательно соединенных ячеек или группы ячеек, и, аналогично, зарядный ток умножается на количество параллельно подключенных ячеек в каждой последовательно соединенной группе.

Рисунок 3 — Типичная кривая разрядки батареи типа LCO

Еще одним очень важным дополнительным фактором, который необходимо учитывать при зарядке литий-ионных аккумуляторов, является температура.Литий-ионные аккумуляторы нельзя заряжать при низких или высоких температурах.

При низких температурах ионы лития движутся медленно. Это может вызвать скопление ионов лития на поверхности анода, где они в конечном итоге превратятся в металлический литий. Поскольку это образование металлического лития принимает форму дендритов, оно может пробить сепаратор, вызывая внутренние короткие замыкания.

На верхнем пределе температурного диапазона проблема заключается в избыточном тепловыделении. Зарядка аккумулятора не является 100% эффективной, и во время зарядки выделяется тепло. Если внутренняя температура сердечника становится слишком высокой, электролит может частично разложиться и превратиться в газообразные побочные продукты. Это вызывает необратимое уменьшение емкости аккумулятора, а также его вздутие.

Типичный диапазон температур для зарядки литий-ионных аккумуляторов составляет от 0 ° C до 45 ° C для высококачественных аккумуляторов или от 8 ° C до 45 ° C для более дешевых аккумуляторов. Некоторые батареи также позволяют заряжаться при более высоких температурах, примерно до 60 ° C, но с пониженной скоростью зарядки.

Все эти соображения обычно выполняются специальными микросхемами зарядного устройства, и настоятельно рекомендуется использовать такие микросхемы независимо от фактического источника зарядки.

Зарядные устройства Li-ion

Литий-ионные зарядные устройства

можно разделить на две основные категории: линейные и переключаемые зарядные устройства. Оба типа могут соответствовать ранее заявленным требованиям относительно правильной зарядки литий-ионных аккумуляторов. Однако у каждого из них есть свои преимущества и недостатки.

Достоинством линейного зарядного устройства является его относительная простота. Однако главный его недостаток — неэффективность. Например, если напряжение питания составляет 5 В, напряжение аккумулятора составляет 3 В, а зарядный ток составляет 1 А, линейное зарядное устройство будет рассеивать 2 Вт.

Если это зарядное устройство встроено в продукт, необходимо будет отвести много тепла. Именно поэтому линейные зарядные устройства чаще всего используются в тех случаях, когда максимальный зарядный ток составляет около 1А.

Для больших аккумуляторов предпочтительны переключаемые зарядные устройства. В некоторых случаях они могут иметь КПД до 90%. Недостатками являются его более высокая стоимость и несколько большие требования к площади схемы из-за использования индукторов в ее конструкции.

Рассмотрение источника начисления

Различные приложения могут использовать разные источники зарядки. Например, это может быть прямой адаптер переменного тока, обеспечивающий выход постоянного тока, или блок питания. Это также может быть USB-порт от настольного компьютера или аналогичных устройств. Это также может быть сборка солнечных батарей.

Из-за возможности передачи энергии этими различными источниками необходимо дополнительно рассмотреть конструкцию реальной схемы зарядного устройства, помимо простого выбора линейного или переключаемого зарядного устройства.

Самый простой случай — это когда источник зарядки обеспечивает регулируемый выход постоянного тока, например адаптер переменного тока или блок питания.Единственное требование — выбрать зарядный ток, который не превышает максимальную скорость зарядки аккумулятора или мощность источника питания.

Зарядка от USB-источника требует немного большего внимания. Если порт USB относится к типу USB 2.0, он будет соответствовать стандарту зарядки аккумулятора USB 1.2 или BC 1.2.

Для этого требуется, чтобы любая нагрузка, в данном случае зарядное устройство, не потребляла более 100 мА, если только нагрузка не указана в источнике. В этом случае допускается принимать 500 мА при 5 В.

Если порт USB — USB 3.1, то он может следовать за USB BC1.2, или в конструкцию может быть включена активная схема контроллера для согласования большей мощности по протоколу USB Power Delivery или USB PD.

Солнечные элементы в качестве источника зарядки представляют собой еще один набор проблем. Напряжение-ток солнечного элемента, или VI, чем-то похож на обычный диод. Обычный диод не будет проводить заметного тока ниже минимального значения прямого напряжения, а затем может пропускать гораздо больший ток при лишь небольшом увеличении прямого напряжения.

С другой стороны, солнечный элемент может подавать ток до определенного максимума при относительно ровном напряжении. При превышении этого значения тока напряжение резко падает.

Итак, солнечное зарядное устройство должно иметь схему управления питанием, которая модулирует ток, потребляемый от солнечного элемента, чтобы не снижать выходное напряжение.

К счастью, существуют микросхемы, такие как TI BQ2407x, BQ24295 и другие, которые могут работать с одним или несколькими из перечисленных выше источников.

Настоятельно рекомендуется потратить время на поиск подходящего зарядного чипа, а не на создание зарядного устройства с нуля.

Наконец, не забудьте загрузить бесплатный PDF-файл : The Ultimate Guide to Develop Your New Electronic Hardware Product . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.

Другой контент, который может вам понравиться:

Фотоускоренная быстрая зарядка литий-ионных батарей

  • 1.

    Канг, К., Менг, Ю.С., Брегер, Дж., Грей, К. П. и Седер, Г. Электроды большой мощности и большой емкости для перезаряжаемых литиевых батарей. Наука 311 , 977–980 (2006).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • org/ScholarlyArticle»> 2.

    Rolison, D. R. et al. Многофункциональные трехмерные наноархитектуры для хранения и преобразования энергии. Chem. Soc. Ред. 38 , 226–252 (2009).

    CAS Статья Google ученый

  • 3.

    Ван, Й. и Цао, Г. Разработки наноструктурированных катодных материалов для высокоэффективных литий-ионных батарей. Adv. Mater. 20 , 2251–2269 (2008).

    CAS Статья Google ученый

  • 4.

    Брюс П.Г., Скросати Б. и Тараскон Ж.-М. Наноматериалы для литиевых аккумуляторных батарей. Angew. Chem. Int. Эд. 47 , 2930–2946 (2008).

    CAS Статья Google ученый

  • org/ScholarlyArticle»> 5.

    Гуденаф, Дж. Б. и Парк, К.-S. Литий-ионная аккумуляторная батарея: перспектива. J. Am. Chem. Soc. 135 , 1167–1176 (2013).

    CAS Статья Google ученый

  • 6.

    Уиттингем М.С. Литиевые батареи и катодные материалы. Chem. Ред. 104 , 4271–4302 (2004).

    CAS Статья Google ученый

  • 7.

    Эллис, Б. Л., Ли, К. Т.& Назар, Л. Ф. Материалы положительных электродов для литий-ионных и литиевых батарей. Chem. Mater. 22 , 691–714 (2010).

    CAS Статья Google ученый

  • 8.

    Маром, Р., Амальрадж, С. Ф., Лейфер, Н., Джейкоб, Д. и Аурбах, Д. Обзор современных и практичных материалов для литиевых батарей. J. Mater. Chem. 21 , 9938–9954 (2011).

    CAS Статья Google ученый

  • 9.

    Lu, J. et al. Роль нанотехнологий в разработке аккумуляторных материалов для электромобилей. Nat. Nanotechnol. 11 , 1031–1038 (2016).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 10.

    Теккерей М. М., Джонсон П. Дж., Де Пиччиотто Л. А., Брюс П. Г. и Гуденаф Дж. Б. Электрохимическая экстракция лития из LiMn 2 O 4 . Mater. Res. Бык. 19 , 179–187 (1984).

    CAS Статья Google ученый

  • org/ScholarlyArticle»> 11.

    Хантер, Дж. С. Получение новой кристаллической формы диоксида марганца: λ-MnO 2 . J. Solid State Chem. 39 , 142–147 (1981).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 12.

    Озуку Т., Китагава М. и Хираи Т. Электрохимия диоксида марганца в неводном литиевом элементе III.Рентгеноструктурное исследование восстановления связанного со шпинелью диоксида марганца. J. Electrochem. Soc. 137 , 769–775 (1990).

    CAS Статья Google ученый

  • 13.

    Сираиси, Ю., Накай, И., Цубата, Т., Химеда, Т., Нишикава, Ф. Анализ тонкой структуры поглощения рентгеновских лучей на месте в процессе заряда-разряда в LiMn 2 O 4 , материал литиевой аккумуляторной батареи. J. Solid State Chem. 133 , 587–590 (1997).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 14.

    Кушида К. и Курияма К. Наблюдение расщепления кристаллического поля, связанного с полосами Mn-3d в пленках шпинель-LiMn2O4, путем оптического поглощения. Заявл. Phys. Lett. 77 , 4154–4156 (2000).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 15.

    Хоанг, К. Понимание электронной и ионной проводимости и сверхстехиометрии лития в шпинели LiMn2O4. J. Mater. Chem. А 2 , 18271–18280 (2014).

    CAS Статья Google ученый

  • org/ScholarlyArticle»> 16.

    Mukerjee, S. et al. Структурная эволюция LixMn2O4 в элементах литий-ионной батареи, измеренная на месте с использованием методов синхротронной дифракции рентгеновских лучей. J. Electrochem. Soc. 145 , 466–472 (1998).

    CAS Статья Google ученый

  • 17.

    Вюрфель П. и Вюрфель У. Физика солнечных элементов: от основных принципов до передовых концепций . (Вайли-ВЧ, 2009).

  • 18.

    Стоянова Р., Горова М., Жечева Е. ЭПР Mn4 + в шпинелях Li 1 + x Mn 2 − x O 4 с 0 ≤ x ≤ 0,1. J. Phys. Chem. Твердые вещества 61 , 609–614 (2000).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • org/ScholarlyArticle»> 19.

    Н. Жечева, Е., Ю. Горова, М. и К. Стоянова, Р. Микроструктура шпинелей Li1 + xMn 2 − x O4, полученных из металлорганических прекурсоров. J. Mater. Chem. 9 , 1559–1567 (1999).

    Артикул Google ученый

  • 20.

    Абрагам А. и Блини Б. Электронный парамагнитный резонанс переходных ионов . 944 (Издательство Оксфордского университета, 2012 г.).

  • 21.

    Pilbrow, J.R. Переходный ионный электронный парамагнитный резонанс. 738 (Clarendon Press, 1991).

  • 22.

    Saponjic, Z. V. et al. Разделение зарядов и реконструкция поверхности: исследование легирования Mn 2+ . J. Phys. Chem. B 110 , 25441–25450 (2006).

    CAS Статья Google ученый

  • 23.

    Мисра С.К. Интерпретация спектров ЭПР Mn2 + в неупорядоченных материалах. Заявл.Magn. Резон. 10 , 193–216 (1996).

    CAS Статья Google ученый

  • 24.

    Канамура, К., Наито, Х., Яо, Т. и Такехара, З.-i Структурные изменения структуры шпинели LiMn2O4, вызванные экстракцией лития. J. Mater. Chem. 6 , 33–36 (1996).

    CAS Статья Google ученый

  • 25.

    Рамана, К.В., Массо, М. и Жюльен, С. М. Исследование шпинелей LiMn2O4 с помощью РФЭС и комбинационного рассеяния света. Surf. Интерфейс Анал. 37 , 412–416 (2005).

    CAS Статья Google ученый

  • 26.

    Родригес-Карвахаль, Дж., Русе, Г., Маскелье, К. и Эрвье, М. Электронная кристаллизация в материале литиевой батареи: столбчатое упорядочение электронов и дырок в шпинели LiMn2O4. Phys. Rev. Lett. 81 , 4660–4663 (1998).

    ADS Статья Google ученый

  • 27.

    Ходес, Г., Манассен, Дж. И Кахен, Д. Фотоэлектрохимическое преобразование и накопление энергии с использованием поликристаллических халькогенидных электродов. Nature 261 , 403–404 (1976).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • org/ScholarlyArticle»> 28.

    Li, N., Wang, Y., Тан, Д. и Чжоу, Х. Интеграция фотокатализатора в гибридную литий-серную батарею для прямого хранения солнечной энергии. Angew. Chem. 127 , 9403–9406 (2015).

    Артикул Google ученый

  • 29.

    Paolella, A. et al. Делитирование нанокристаллов фосфата лития-железа в фото-перезаряжаемых ионно-литиевых батареях с помощью света. Nat. Commun. 8 , 14643 (2017).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 30.

    Аммундсен, Б., Бернс, Г. Р., Ислам, М. С., Кано, Х. и Розьер, Дж. Динамика решетки и колебательные спектры оксидов лития-марганца: компьютерное моделирование и спектроскопическое исследование. J. Phys. Chem. B 103 , 5175–5180 (1999).

    CAS Статья Google ученый

  • 31.

    Chitra, S. et al. Характеристика и электрохимические исследования катодных материалов LiMn2O4, полученных методом сжигания. J. Electroceram. 3 , 433–441 (1999).

    CAS Статья Google ученый

  • 32.

    Hwang, S.-J., Park, D.-H., Choy, J.-H. И Кэмпет, Г. Влияние замещения хрома на колебания решетки шпинели манганата лития: новая интерпретация рамановского спектра LiMn2O4. J. Phys. Chem. B 108 , 12713–12717 (2004).

    CAS Статья Google ученый

  • 33.

    Paolo, G. et al. QUANTUM ESPRESSO: модульный программный проект с открытым исходным кодом для квантового моделирования материалов. J. Phys .: Condens. Дело 21 , 395502 (2009).

    ADS Google ученый

  • 34.

    Хаманн, Д. Р. Оптимизированные сохраняющие норму псевдопотенциалы Вандербильта. Phys. Ред. B 88 , 085117 (2013).

    ADS Статья Google ученый

  • 35.

    Schlipf, M. & Gygi, F. Алгоритм оптимизации для генерации псевдопотенциалов ONCV. Comput. Phys. Commun. 196 , 36–44 (2015).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • org/ScholarlyArticle»> 36.

    Lejaeghere, K. et al. Воспроизводимость при расчетах твердых тел по теории функционала плотности. Наука 351 , aad3000 (2016).

  • 37.

    Warburton, R.E., Iddir, H., Кертисс, Л. А. и Грили, Дж. Термодинамическая стабильность поверхностных окончаний шпинели LiMn2O4 с низким и высоким показателем преломления. ACS Appl. Mater. Интерфейсы 8 , 11108–11121 (2016).

    CAS Статья Google ученый

  • 38.

    Gygi, F. Архитектура Qbox: масштабируемый код молекулярной динамики из первых принципов. IBM J. Res. Dev. 52 , 137–144 (2008).

    Артикул Google ученый

  • org/ScholarlyArticle»> 39.

    Цзян Л., Левченко С. В. и Рапп А. М. Строгое определение степени окисления ионов в твердых телах. Phys. Rev. Lett. 108 , 166403 (2012).

    ADS Статья Google ученый

  • 40.

    Чен, Дж., Ву, X. и Селлони, А. Электронная структура и связывающие свойства оксида кобальта в структуре шпинели. Phys. Ред. B 83 , 245204 (2011).

    ADS Статья Google ученый

  • 41.

    Амос, К. Д., Ролдан, М. А., Варела, М., Гуденаф, Дж. Б. и Феррейра, П. Дж. Выявление реконструированной поверхности Li [Mn 2 ] O 4 . Nano Lett. 16 , 2899–2906 (2016).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • org/ScholarlyArticle»> 42.

    Scivetti, I. & Teobaldi, G. (Sub) поверхностное диспропорционирование и абсолютное выравнивание полосы в катодах из LiMn2O4 с высокой мощностью. J. Phys.Chem. С 119 , 21358–21368 (2015).

    CAS Статья Google ученый

  • Часто задаваемые вопросы по переходу на литиевую зарядку

    Одним из требований к литиевой батарее для попадания в этот список UL является наличие встроенной системы управления батареей (BMS) . Этот электронный блок выполняет несколько функций для обеспечения безопасности и длительного срока службы батареи.

    Функции безопасности BMS включают:

    Постоянный мониторинг каждого из четырех (3.2 В) литиевые элементы, соединенные последовательно, необходимы для производства литиевой батареи на 12,8 В. Этот мониторинг включает в себя напряжение каждой ячейки для высоких или низких пределов напряжения и отключает аккумулятор от нагрузки или зарядного устройства, чтобы предотвратить повреждение. Каждая ячейка контролируется на предмет температуры и чрезмерного потребления тока, и снова батарея отключается от нагрузки, если эти пределы превышаются. BMS также отслеживает состояние заряда для каждой из четырех ячеек и автоматически уравновешивает их напряжения в течение цикла перезарядки, чтобы полностью зарядить все элементы одновременно.Такая балансировка обеспечивает безопасную полную зарядку и длительный срок службы батареи. Основываясь на этих характеристиках, литий-железо-фосфатные батареи ( LFP ) очень безопасны и надежны. С 2015 года Progressive Dynamics отслеживает сотни систем литиевых батарей, установленных в жилых автофургонах, без каких-либо сообщений о сбоях литиевых батарей или зарядных устройств.

    Как долго прослужит моя дорогая литиевая батарея?

    Срок службы литиевой батареи зависит от количества циклов зарядки и разрядки, которым она подвергается.Цикл требует полной зарядки аккумулятора, затем его полной разрядки и повторной полной зарядки. Литиевые батареи обычно рассчитаны на 3 000–5 000 циклов. Свинцово-кислотные батареи обычно служат всего 300-400 циклов. Это верно при условии, что они подзаряжаются как можно скорее после разряда и поддерживаются на постоянной подзарядке с периодическими выравнивающими зарядами во время зимнего хранения для предотвращения сульфатации батареи. Литиевые батареи можно хранить без подзарядки, и они сохранят более 90% своего заряда в течение года и более.Для увеличения срока службы литиевые батареи не следует хранить полностью заряженными. Рекомендуется заряд от 50% до 60%.

    Если предположить, что срок службы вашей свинцово-кислотной батареи составляет 300 циклов, и она заряжается и разряжается, 100 циклов в год равняются трехлетнему сроку службы батареи. Предполагая, что 100 циклов в год для литиевой батареи со сроком службы 3000 циклов, теоретически может равняться 30 годам жизни. Опять же, это теоретическая цифра, и существует множество факторов, которые могут увеличить или уменьшить срок службы батареи, включая глубину разряда, рабочую температуру и старение материалов. Производители аккумуляторов обычно занижают свой срок службы, чтобы гарантировать, что срок их службы значительно превысит гарантийный срок до 5 лет.

    Каковы верхние и низкие пределы рабочих температур для литиевых батарей (LFP)?

    Литиевые батареи имеют широкий диапазон рабочих температур (от -4 до +160 F / от -20 до +70 C). Литиевые батареи можно хранить и разряжать при верхних и нижних пределах температуры, однако зарядные токи должны быть ниже этих пределов, а литий-железо-фосфатные батареи нельзя заряжать при температурах ниже нуля. Обратитесь к веб-сайту производителей аккумуляторов для получения информации о предельных значениях температуры.

    Каковы другие преимущества системы литиевых батарей ?

    Литиевые батареи служат на годы дольше, чем свинцово-кислотные батареи, и требуют минимального обслуживания, поддерживают заряд в течение длительных периодов хранения и имеют вес примерно на ½ веса или меньше, чем эквивалентный рейтинг AH свинцово-кислотных аккумуляторов. Сухие туристы оценят то, что они обеспечивают до 3 раз большую мощность, чем свинцово-кислотные батареи , и заряжаются до 6 раз быстрее с помощью зарядного устройства того же размера.Это приводит к сокращению времени работы генератора и более быстрой подзарядке.

    Причиной такой более быстрой перезарядки является уникальный химический состав литиевых батарей , который позволяет им принимать полный заряд зарядного устройства, пока оно почти не достигнет полной зарядки. Химический состав свинцово-кислотных аккумуляторов может принимать только полный заряд в фазе поглощения, а затем зарядный ток быстро падает, поэтому полная зарядка занимает гораздо больше времени.

    Как быстро перезаряжается моя литиевая батарея?

    Ответ зависит от общего номинала в ампер-часах (AH) вашей литиевой батареи и номинального тока на выходе вашего зарядного устройства.Например, литиевая батарея емкостью 100 А · ч, подключенная к зарядному устройству Progressive Dynamics PD9160L (60 ампер), завершит время перезарядки следующим образом (100 ампер-часов, разделенная на скорость перезарядки 60 ампер в час), составит 1,7 часа. Однако по мере того, как состояние заряда приближается к завершению, ток заряда постепенно снижается, поэтому реальное общее время составит около двух часов. В тех же условиях свинцово-кислотная батарея потребует от 6 до 8 часов, более или менее, для полной зарядки.

    Будет ли моя солнечная зарядная система работать вместе с литиевым зарядным устройством?

    Да, две системы могут работать одновременно. Ваша солнечная система должна иметь контроллер солнечной энергии, который позволяет ограничить максимальное напряжение зарядки от солнечных панелей . Это максимальное напряжение должно быть установлено на 14,6 В для литий-железо-фосфатных батарей .

    Могу ли я зарядить литиевую батарею от автомобильного генератора ? — Да, но не обязательно до полной зарядки, так как большинство генераторов настроены на более низкие требования к напряжению транспортного средства Свинцово-кислотная аккумуляторная батарея (приблизительно 13. 9 вольт). Литиевые батареи требуют для полной зарядки от 14,4 до 14,6 В. При этом вы можете получить примерно до 70% заряда, в зависимости от глубины разряда и пройденного расстояния при подзарядке от генератора вашего автомобиля.

    Могу ли я использовать свинцово-кислотные блоки серии PD9200, PD4000 или PD4500 Progressive Dynamics с мастером зарядки для зарядки литиевой батареи?

    Да, если вы готовы жить с дорогой батареей, которая заряжена только частично.Нормальное выходное напряжение серий PD9200, PD4000 и PD4500 составляет всего 13,6 В, а напряжение полной зарядки лития должно составлять 14,4 — 14,6 В. Мастер зарядки для серий PD9200, PD4000 и PD4500 сначала перескакивает до 14,4 В в режиме ускорения при первом подключении к источнику питания 120 В переменного тока и будет оставаться там до тех пор, пока напряжение батареи не достигнет 13,8 В, а затем автоматически упадет до нормального значения . Режим 13,6 В. Более высокая скорость заряда лития означает, что в Boost Mode он достигнет 13.Точка 8 В после всего лишь нескольких минут зарядки, а затем зарядный ток упадет до ZERO AMPS и не добавит дополнительной зарядки литиевой батарее. Это более низкий уровень заряда не повредит вашу батарею, но устранит большинство преимуществ, за которые вы заплатили.

    Сколько мне будет стоить переход на литиевую батарею?

    Это будет зависеть от размера (номинальной емкости в ампер-часах) литиевой аккумуляторной батареи и номинальной мощности зарядного устройства, которое вы планируете установить.Типичный жилой домик будет иметь литиевую батарею емкостью не менее 100 Ач, которая будет эквивалентна свинцово-кислотной батарее 250 Ач, это в сочетании с зарядным устройством PD9160LAV (60 ампер) обеспечит двухчасовую перезарядку. Исходя из цен, доступных на сайтах наших дистрибьюторов, это обновление будет стоить минимум около 1200 долларов. Чтобы обновить свой нынешний RV до литиевой системы, щелкните здесь, чтобы просмотреть варианты замены литиевого блока.

    My Present RV имеет преобразователь / зарядное устройство на 45 ампер. Могу ли я установить более мощный блок на 60 или 80 ампер, чтобы еще больше сократить время зарядки?

    Нет, ваша система электропроводки RV рассчитана на безопасную работу с током 45 А, повышение его до 60 или 80-амперного зарядного устройства может вызвать тепловое событие! При переходе на литиевую батарею используйте преобразователь / зарядное устройство того же размера, что и в вашем доме на колесах! Опять же, с более высокой скоростью зарядки, которую литиевые батареи могут принять, даже литиевое зарядное устройство на 45 ампер может перезарядить батарею на 100 Ач (100 Ач, разделенных на скорость заряда 45 ампер), что будет равняться примерно 2.2 часа плюс дополнительное время, необходимое в конце зарядки из-за более низкой скорости зарядки, равняются расчетному времени зарядки примерно 3 часа.

    Как хранить литиевую батарею для автофургона зимой?

    Еще одно преимущество литий-железо-фосфатных батарей заключается в том, что они не требуют подзарядки в течение длительного периода хранения. Фактически, отключение зарядного устройства во время зимнего хранения или длительного простоя и оставление батареи в покое на самом деле полезно и продлит срок службы батареи.Перед тем, как поставить свой дом на зимнее хранение, просто подключите его к источнику питания 120 В переменного тока на срок до 10 часов для больших аккумуляторных блоков и полностью зарядите аккумулятор, затем отключите питание переменного тока и нажмите выключатель аккумулятора. Весной он будет готов принять полную зарядку перед вашим первым походом. Литиевые батареи имеют очень низкую скорость саморазряда и теряют от 2 до 4% своего заряда в месяц.

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или уточнить у системного администратора.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Можно ли оставлять литий-ионную батарею в зарядном устройстве? Часто задаваемые вопросы по зарядке аккумуляторов вилочного погрузчика и другого погрузчика

    Что такое Battery SoC’ и Battery DoD ?

    SoC или состояние заряда батареи — это уровень заряда электрической батареи относительно ее емкости: 0% — разряжена, а 100% — полна.Обратной формой этого показателя является DoD или глубина разряда, при которой 100% пусто, а 0% заполнено.

    Термин «батарея SoC» обычно относится к состоянию батареи во время ее использования, тогда как термин «батарея DoD» обычно означает, какая часть общей емкости батареи была разряжена.

    Есть несколько способов измерения SoC, применимых к разным типам батарей. Свинцово-кислотные батареи с жидким электролитом могут быть измерены химическим способом с помощью ареометра, в то время как большинство других батарей, включая литий-ионные, измеряются по их напряжению холостого хода.

    Измерение напряжения батареи необходимо производить после того, как она находилась в состоянии разомкнутой цепи в течение как минимум нескольких часов, иначе на показания будут влиять ток и температура батареи, и они будут неточными.

    Как можно перезарядить аккумулятор?

    Перезаряд происходит, когда аккумулятор заряжается до напряжения выше указанного. Это может быть очень опасным для аккумуляторов вилочного погрузчика и, если его не контролировать, опасно для пользователей.

    Правильное зарядное устройство для вашей батареи имеет решающее значение для предотвращения перезарядки; зарядное устройство должно соответствовать аккумулятору с точки зрения выходного напряжения и номинала Ач.

    В литиево-ионных аккумуляторах легче избежать перезарядки, поскольку они могут частично заряжаться или заряжаться с перерывами.

    Свинцово-кислотные батареи имеют более сложный процесс зарядки и должны получать полную зарядку каждый раз, когда они вставляются в розетку; по этой причине проще случайно перезарядить.

    Свинцово-кислотные аккумуляторы

    в среднем рассчитаны на 1500 циклов зарядки, поэтому не рекомендуется заряжать их частично — вы должны делать это каждый раз полностью, чтобы продлить срок службы аккумулятора.

    По тому же принципу, начинать зарядку свинцово-кислотных аккумуляторов, у которых осталось более 50-60% емкости, также является пустой тратой срока службы аккумулятора. Каждый цикл зарядки, независимо от SOC, по-прежнему считается одним циклом. Таким образом, чем чаще заряжается свинцово-кислотный аккумулятор, тем короче срок его службы.

    Каковы последствия перезарядки аккумулятора?

    В литий-ионном аккумуляторе перезарядка может создать нестабильные условия внутри аккумулятора, повысить давление и вызвать тепловой пробой.

    Литий-ионные аккумуляторные блоки

    должны иметь схему защиты, предотвращающую чрезмерное повышение давления и перекрывающую поток ионов при слишком высокой температуре.

    Большинство литий-ионных аккумуляторных батарей также содержат систему управления батареями для контроля их состояния заряда и отключения тока при достижении предела.

    Избыточная зарядка свинцово-кислотной батареи вызывает коррозию катодов, приводит к увеличению расхода воды и повышению температуры внутри батареи. В лучшем случае это приведет к снижению емкости и сокращению срока службы, а в худшем — к тепловому разгоне. Кроме того, свинцово-кислотные батареи могут выделять вредные токсичные газы при перезарядке.

    Какой газ выделяется при зарядке свинцово-кислотной батареи?

    В процессе зарядки свинцово-кислотный аккумулятор выделяет небольшое количество газообразного водорода, что может быть опасно без надлежащей вентиляции аккумулятора.Газообразный водород может быть взрывоопасным, если его концентрация в воздухе составляет 4% и более.

    Если свинцово-кислотный аккумулятор слишком заряжен, он может выделять сероводород, имеющий запах тухлых яиц и очень ядовитый. В низких концентрациях этот аккумуляторный газ может вызвать тошноту, усталость и головокружение, а в больших количествах может быть смертельным.

    Большинство свинцово-кислотных аккумуляторов необходимо снимать с погрузчиков и помещать в отдельную зону для зарядки. Помещение должно хорошо проветриваться для количества заряжаемых аккумуляторов в помещении и иметь устройства для контроля уровня газа в воздухе.

    Как происходит зарядка литий-ионной батареи?

    В литий-ионных батареях

    на первом этапе процесса зарядки используется метод постоянного тока и постоянного напряжения. После достижения пикового напряжения аккумулятор переходит в стадию заряда насыщения. В целом этот процесс занимает около 1-2 часов.

    Литий-ионные батареи

    можно использовать до тех пор, пока не останется 20% их емкости. В отличие от свинцово-кислотных аккумуляторов, он не повредит аккумулятор, чтобы использовать возможность подзарядки, что означает, что пользователь может подключить аккумулятор во время обеденного перерыва, чтобы завершить зарядку и завершить смену, не разряжая аккумулятор слишком сильно.

    Многие промышленные литий-ионные аккумуляторные батареи поставляются со встроенными в них зарядными устройствами, которые можно подключать к обычным электрическим розеткам, а это означает, что аккумуляторы даже не нужно размещать рядом с установленным зарядным устройством для зарядки аккумуляторов.

    Могут ли литий-ионные батареи повысить производительность склада?

    Если ваш склад работает в несколько смен, упрощенный процесс зарядки литий-ионных аккумуляторов дает огромное преимущество.Операторы вилочных погрузчиков могут заряжать литий-ионные батареи во время перерыва или в перерывах между сменами, и аккумуляторы доступны всего через 15–30 минут для возврата в эксплуатацию, даже если они еще не полностью заряжены.

    Простой оборудования может быть дорогостоящим, поэтому тот факт, что оператор вилочного погрузчика может подключить аккумулятор к зарядному устройству, не тратя время на извлечение разряженного аккумулятора и повторную установку заряженного аккумулятора, повысит производительность склада.

    Plus, устраняющий необходимость переносить тысячи фунтов батареи между погрузчиками и зарядными станциями, значительно снижает риски безопасности для рабочих.

    Процесс зарядки аккумуляторов может быть сложным, но важно понимать все различные факторы, чтобы его можно было сделать правильно, чтобы обеспечить долгий срок службы аккумуляторов. Упрощенный процесс зарядки литий-ионных аккумуляторов делает их гораздо лучшим вариантом с точки зрения безопасности и производительности для компаний, работающих в несколько смен и непрерывно заряжающих аккумуляторы.

    Как выбрать ИС управления зарядом литий-ионной батареи | Статья

    .

    СТАТЬЯ

    Получайте ценные ресурсы прямо на свой почтовый ящик — рассылается раз в месяц

    Мы ценим вашу конфиденциальность

    Джон Б.Гуденаф, которого считают отцом литий-ионных (Li-ion) батарей, стал старейшим лауреатом Нобелевской премии, когда в 2019 году получил Нобелевскую премию по химии за свою новаторскую работу. В настоящее время литий-ионные батареи используются большинством потребителей во всех сферах жизни, поскольку они делают электронные устройства легкими и долговечными. Например, в большинстве мобильных телефонов используется литий-ионный аккумулятор для более длительного времени работы, портативности и удобной зарядки.

    Для максимального использования важно эффективно заряжать литий-ионные аккумуляторы.

    Как заряжать литий-ионные батареи

    Сначала давайте проанализируем процесс зарядки литий-ионного аккумулятора. Процесс зарядки можно разделить на четыре различных этапа: постоянный заряд, предварительный заряд, заряд постоянным током и заряд постоянным напряжением. На рисунке 1 показана кривая зарядки типичной литий-ионной батареи.

    Рисунок 1: Кривая заряда литий-ионной батареи

    Это кажется простым, но есть много параметров, которые следует учитывать при выборе решения для зарядки аккумулятора. На рис. 2 показаны четыре основных момента при выборе решения.

    Рисунок 2: Конструкция зарядного устройства — основные моменты

    Эти соображения более подробно описаны ниже:

    Топология

    Разработчики системы зарядного устройства должны выбрать топологию на основе диапазона входного напряжения, конфигурации батареи, зарядных токов и других приоритетов на уровне системы (см. Рисунок 3) .

    Рисунок 3: Топология зарядного устройства

    Например, большинство портативных устройств заряжаются от порта USB.Есть два основных типа USB:

    • USB Type-A: обычно 5 В при максимальном 1,5 А, этот тип USB может поддерживать быструю зарядку (среди других стандартов) до 12 В
    • USB Type-C: 5 В, максимум 3 А. Если поддерживается USB-PD, его можно увеличить до 20 В при 5 А

    Если устройство заряжается через порт USB, оно всегда должно поддерживать работу 5 В. Например, для последовательно соединенных батарей (максимальное напряжение VBATT ≥ 8,4 В) используйте топологию повышающего или понижающего напряжения. Если устройство не заряжается от USB-порта, рекомендуется использовать понижающую топологию, поскольку входное напряжение всегда превышает напряжение аккумулятора.

    Контур управления

    Основная проблема для ИС управления батареями состоит в том, что они имеют несколько контуров управления. Они не только должны управлять входным напряжением и током, они также должны управлять мощностью системы, током и напряжением зарядки аккумулятора, температурой аккумулятора и другими параметрами (см. Рисунок 4) . Например, системе часто приходится регулировать ток зарядки аккумулятора в соответствии с температурой аккумулятора.

    Рисунок 4: Различные контуры управления в зарядном устройстве IC

    Управление трактом питания

    Контур управления траекторией питания динамически регулирует ток заряда батареи в зависимости от мощности входного источника тока и требований к току нагрузки системы.Это гарантирует, что система получит необходимый ток при использовании избыточного заряда для зарядки аккумулятора.

    Рисунок 5: Архитектура системы зарядного устройства батареи

    В зависимости от характеристик зарядного устройства существует три типичных архитектуры.

    Первая архитектура подключает батарею напрямую к системному источнику питания и требует, чтобы напряжение батареи достигло минимального напряжения системы для работы.

    Второй — сквозной подход, в котором используются внешние переключатели для управления зарядкой батареи и системными путями.

    Третья архитектура — это управление трактом питания NVDC, который представляет собой общий подход, имеющий следующие преимущества по сравнению с двумя предыдущими архитектурами:

    • Система может запускаться мгновенно даже при низком напряжении батареи
    • Напряжение системы точно соответствует напряжению батареи, чтобы снизить напряжение компонентов системы
    • При ограничении входной мощности аккумулятор может дополнять систему
    • Система может быть отключена от аккумулятора для поддержки транспортного режима

    На рисунке 6 показана кривая зарядки зарядного устройства NVDC.

    Рисунок 6: Кривая зарядки Li-Ion с функциями NVDC

    Когда напряжение батареи относительно низкое, напряжение системы регулируется в самой низкой рабочей точке (VSYS_REG_MIN на рисунке 6). Когда напряжение батареи приближается к VSYS_REG_MIN, напряжение батареи и системы близко отслеживает друг друга. Поэтому независимо от состояния аккумулятора напряжение в системе всегда поддерживается в узком диапазоне. На рисунке 7 показаны графики реального масштаба.

    Рисунок 7: Типичная кривая зарядки (рабочие условия: V IN = 16 В, V BATT , линейное изменение с 0 В, ICHG = 1.84A, I SYS = 1A)

    Обратный ход

    Операции с зарядным устройством, описанные выше, использовали источник входного сигнала для зарядки аккумулятора или питания системы. Также возможно обеспечить работу в обратном направлении, например, функцию USB On-the-Go (OTG). Зарядное устройство с функцией USB OTG позволяет внутренней батарее устройства обеспечивать питание устройств через входной порт устройства.

    MP2731 ИС для зарядки аккумулятора

    Если вашему приложению требуется управление трактом питания NVDC и функция OTG, микросхема зарядного устройства MP2731 полностью удовлетворит ваши потребности. (см. Рисунок 8) .

    Рисунок 8: Схема и основные характеристики MP2731

    MP2731 — это полностью интегрированное зарядное устройство, которое поддерживает эти режимы и обеспечивает высокую эффективность, а также впечатляющие тепловые характеристики .

    Рисунок 9: Высокая эффективность и тепловые характеристики

    Поскольку литий-ионные батареи продолжают использоваться в современных приборах и системах, жизненно важно постоянно оценивать, как сделать их более эффективными и экономичными. Благодаря такому разнообразию архитектур и зарядных устройств на выбор, MPS может оптимизировать процесс с помощью таких продуктов, как MP2731.

    _________________________

    Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!

    Просмотреть все сообщения на форуме

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *