Схемы организации ветряных электростанций | Atmosfera™. Альтернативные источники энергии. Солнце. Ветер. Вода. Земля.
Автономная ветроустановка
Автономная ветрогенераторная установка – оптимальное решение для энергообеспечения удаленных объектов от традиционной сети. При условии полного отсутствия электросети является наиболее оправданным источником (по сравнению с бензо- и дизель-генераторами), не требует постоянного контроля и обслуживания. Находит широкое применение для энергообеспечения частных домов, баз отдыха, пансионатов в гористой и степной местности, индивидуальных потребителей (фермеров, садоводов, дачников, охотников, рыболовов), а также навигационных, метеорологических и других постов бесперебойным питанием в полевых условиях.
Ветро-Солнечная (гибридная) установка
Энергия ветра и солнца могут отлично дополнять или взаимозаменять друг друга. Так называемые гибридные системы электроснабжения особенно эффективны для круглогодичного автономного электроснабжения. Эти системы представляют собой станции на базе ветрогенераторов и фотоэлектрических модулей присоединенных к единой энергосистеме. Производительность фотоэлектрических батареи достаточно высокая летом и относительно низкая зимой. В свою очередь, обеспечение электроэнергией, выработанной за счет энергии ветра, в летнее время является проблематичным из-за частых безветренных дней. Поэтому преимущества гибридной системы «ветер-солнце» становится очевидным.
Ветроустановка с подключением к сети
Ветрогенератор с накоплением электроэнергии в аккумуляторах может работать и параллельно с сетью. Параллельная работа осуществляется с помощью устройства АВР (автоматический ввод резерва). АВР позволяет переключить питание объекта при отсутствии ветра и полном разряде аккумуляторов на электросеть или наоборот, переключает нагрузку на аккумуляторные батареи при потери питания электросети. Приоритет может устанавливаться в ручную в зависимости от специфики объекта.
Такое решение находит широкое применение на объектах которые подвластны частым отключениям электросети, или его качество не удовлетворяет потребителей. Система так же может быть установлена для увеличения установленной мощности и для экономии электроэнергии.
Сетевая ветроустановка
Сетевая станция — предназначена для параллельной работы с промышленной сетью 220 или 380 В/50 Гц. В качестве «безграничного» аккумулятора в этой системе является традиционная электрическая сеть. В условиях избытка вырабатываемой электроэнергии сетевой инвертор позволяет отдавать ее в сеть, а в случае отсутствия ветра использовать энергию электросети. Переключение режимов осуществляется в автоматическом режиме. Контроль выработки и потребления учитывается специальными узлами учета.
По такой схеме работают наиболее стремительно растущие станции которые позволяют продавать электроэнергию в сеть по так называемому «Зеленому тарифу».
В последнее время стало возможным объединить автономную и сетевую станцию с помощью гибридного инвертора. Преимущество таких систем в том, что помимо непосредственного питания нагрузки Мы имеем резерв в аккумуляторных батареях который может использоваться по заданным приоритетам.
Следует отметить, что выше указаны только некоторые схематические решения на базе ветрогенераторов. В виду большого количества факторов которые могут влиять на эффективность работы станции на каждом конкретном объекте, все случаи рассматриваются индивидуально.
Перед установкой ветрогенератора обязательно нужно оценить ветровой потенциал, по результатам которого принимать решение о целесообразности установки. Правильно рассчитанная и спроектированная система может быть только после обследования и изучения объекта специалистом.
Ветровая электростанция: назначение и обслуживание
Ветряные генераторы предназначены для преобразования кинетической энергии движения воздушных масс в механическую работу генератора по выработке тока. Установки, объединенные в одну систему, образуют ветровую электростанцию.
Ветровая электростанция: назначение и устройство
Ветровая электростанция – это комплекс ветряных турбин, предназначенных для преобразования энергии движения ветряных масс в механическую работу генератора по выработке электрического тока.
Одна станция может включать в себя любое количество ветроэнергетических установок (ВЭУ). Самые крупные системы насчитывают сотни элементов.
Принцип работы каждой установки заключается в использовании кинетической энергии ветра для вращения подвижной части ветряка, соединенной с ротором генератора энергии. Находящийся внутри редуктор увеличивает скорость движения вала. Вследствие этой работы создается трехфазный переменный ток.
Для преобразования переменного тока в постоянный в конструкции предусмотрен контроллер. Постоянный ток заряжает аккумуляторные батареи, передающие ток на инвертор.
В инверторе постоянный ток снова преобразуется в переменный, но уже пригодный для использования в электроприборах. Его напряжение становится 220 В, а частота – 50 Гц.
Обслуживание ветровых установок
Ветряные электроустановки имеют в своей конструкции множество подвижных элементов, которые преждевременно изнашиваются в условиях высокого коэффициента трения и сильных нагрузок. Например, это вращающиеся валы, подшипники, планетарные шестерни.
Их диаметр может достигать нескольких метров, а по мере совершенствования узлов и повышения производительности станций он становится еще больше.
Для увеличения надежности и срока службы таких высоконагруженных механизмов, постоянное обслуживание которых осуществлять достаточно затруднительно, применяют антифрикционное твердосмазочное покрытие MODENGY 1003, которое не нуждается в обновлении на протяжении всего срока функционирования ВЭУ.
Оно образует на поверхности деталей устойчивый сухой слой, который обеспечивает кардинальное снижение трения сопряженных элементов и увеличение их ресурса. Благодаря этому установки работают дольше, а риск их отказов практически сводится к нулю.
На корпусе ветряного генератора устанавливаются площадки, на которых работает персонал в случае возникновения поломок оборудования. Зачастую устанавливается и поле для посадки вертолетов, так как мачта турбин может составлять сотни метров в высоту, а удаленность от поселений – сотни километров.
Ремонт может понадобиться в случае повреждения тормоза, ударов молнии, обледенения лопастей и других непредвиденных ситуаций. К тому же необходимо проводить периодический профилактический осмотр оборудования.
Ветряной генератор: основные виды
Есть большое количество классификаций, по которым разделяются ветроэнергетические станции. Наиболее распространенными являются географическое положение и конструкция подвижной части установки.
По расположению выделяют наземные, горные, прибрежные и шельфовые электростанции. В этих местах скорость ветра достигает максимальных значений, что позволяет повышать мощность генераторов.
По виду подвижной части выделяют крыльчатые и роторные аппараты. Первые состоят из лопастей, от их количества зависит мощность установки: чем меньше элементов, тем производительнее работает станция. Они вращаются по горизонтальной оси.
Вторые установки вращаются по вертикальной оси, что позволяет им эффективно работать при низких скоростях ветра без высокого уровня шума.
Ветряные электростанции: принцип работы, плюсы, минусы
Практически вся электроэнергия производится установками, использующими энергию природных ресурсов. Темпы производства постоянно увеличиваются, и полезные ископаемые рано или поздно закончатся. В связи с этим, уже сейчас ведутся перспективные разработки, внедряются новые технологии, выступающие в качестве альтернативных источников электроэнергии. Одним из таких вариантов являются ветряные электростанции, применяемые в производственной сфере и в частном секторе. Превращая энергию ветра в электричество, они способны обеспечить основные потребности в питании приборов и электрооборудования.
Устройство ветряной установки
Ветрогенераторы отличаются абсолютной экологической чистотой и способны обеспечивать бесплатной энергией потребителей в течение неограниченного времени. Ветряные генераторы – ВЭС обладают различной мощностью, что дает возможность использовать их в разных областях.
Максимальной эффективности ветряной электростанции можно добиться, установив ее в местах с постоянными активными воздушными потоками. Обычно для этого используются горы и холмы, берега морей и океанов и другие аналогичные условия. Основной деталью установки служит крыльчатка, выполняющая функцию турбины. В большинстве случаев используются трехлопастные конструкции ВЭС в виде пропеллера, устанавливаемые на большой высоте от земной поверхности.
Для того чтобы получить наибольший эффект, лопасти вместе с ротором устанавливаются в оптимальное положение при помощи специальных механизмов, в зависимости от направления и силы ветра. Существуют и другие конструкции – барабанные, не зависящие от вышеперечисленных факторов и не требующие каких-либо регулировок. Однако, если КПД пропеллерных установок находится на уровне 50%, то у барабанных устройств он значительно ниже.
Каждая воздушная электростанция, независимо от конструкции, полностью связана с действием воздушных потоков, часто изменяющих свои показатели. Это в свою очередь приводит к изменениям количества оборотов крыльчатки и производимой электрической мощности. Такое положение требует сопряжения генератора и электрической сети при помощи дополнительного оборудования.
Как правило, для этого используются аккумуляторные батареи вместе с инверторами. Вначале от генератора осуществляется зарядка АКБ, для которой равномерность тока не имеет значения. Далее заряд аккумулятора, преобразованный в инверторе, передается в сеть.
Пропеллерные конструкции ВЭС в случае необходимости могут управляться. При слишком высокой скорости ветра, производится изменение угла атаки лопастей, вплоть до самого минимального. Это приводит к снижению ветровой нагрузки на турбину. Тем не менее, под действием ураганов, крыльчатки ветровых электростанций нередко подвергаются деформациям, и вся домашняя установка выходит из строя. Полностью избежать негативных воздействий не получается, поскольку электрические генераторы размещаются на высоте, составляющей в среднем 50 м. За счет этого удается использовать более сильные и стабильные ветра, господствующие на больших высотах.
Принцип работы
Практически все ветровые установки имеют общий принцип работы. Под действием воздушного потока лопасти приходят в движение и, связанные специальным приводом с ротором, вызывают его вращение. Сам ротор помещен внутрь статорной обмотки, и в результате вращения происходит образование электрического тока. Лопасти ВЭС обладают особенными аэродинамическими свойствами, поэтому турбина вращается с высокой скоростью.
Каждая лопасть с одной стороны ровная, а с другой – закругленная. Когда воздух проходит закругленную сторону, на этом участке создается вакуум, засасывающий лопасть и уводящий ее в сторону. За счет этой энергии возникает общий крутящий момент. В этом состоит основной принцип работы станций.
Полученное электричество накапливается в аккумуляторной батарее. Количество произведенной энергии зависит от скорости вращения лопастей и от скорости воздушного потока. Частота произведенного электрического тока такая же как в домашней сети, поэтому энергия, полученная от ветровой электростанции, вполне пригодна для питания приборов и оборудования. Однако, полученный переменный ток не может сразу аккумулироваться, для этого он должен быть преобразован в постоянный ток. Подобное преобразование выполняется специальными электронными устройствами, расположенными в турбине.
Зарядка аккумуляторной батареи управляется контроллером. По мере накопления заряда, лопасти замедляют вращение, а при разрядке они вновь начинают крутиться. Такой режим работы дает возможность поддерживать заряд АКБ на заданном уровне.
Работа системы торможения
При высокой скорости воздушного потока ветровые электростанции могут выйти из строя. Чтобы этого не случилось, в конструкции применяется тормозная система. В ней используется сила действия вращающихся магнитов ротора. Они не только индуцируют ток в обмотках статора, но и в определенной ситуации замедляют движение вала. С этой целью требуется создать короткое замыкание, вызывающее противодействие и замедляющее вращение.
Автоматическое торможение наступает при скорости ветра свыше 50 км/ч. Если скорость возрастает до 80 км/ч, в этом случае происходит полная остановка лопастей. Конструкция турбины позволяет максимально эффективно использовать энергию ветра и путем двойного преобразования энергии получать электрический ток. Наличие аккумуляторной батареи дает возможность использовать электроприборы при полном отсутствии ветра.
Некоторые конструкции установок оборудованы ветровым датчиком, собирающим информацию о параметрах воздушного потока. В конечном итоге мощность ветровой установки на выходе будет зависеть от мощности подключенного инвертора. Исходя из этого показателя определяется и максимально возможное количество подключаемых приборов. С целью увеличения выходной мощности установки, рекомендуется параллельное подключение сразу нескольких инверторов. В трехфазных системах на каждую фазу устанавливается собственный инвертор.
Классификация
Основными критериями, определяющими типы ветряных установок, являются следующие:
- Различие по количеству лопастей. Быстроходные и малолопастные имеют до 4 лопастей, а 4 и выше относятся к тихоходным многолопастным устройствам. Чем меньше количество лопастей, тем выше обороты двигателя.
- Величина номинальной мощности. Бытовые – до 15 кВт, полупромышленные – от 15 до 100 кВт, промышленные – от 100 кВт до 1 Мвт. Границы между показателями довольно условные, поэтому установки применяются там, где это действительно необходимо.
- Направление оси. В конструкциях используются два типа. В первом случае это горизонтальная ось, расположенная перпендикулярно относительно движения воздуха, напоминающая обычный флюгер. Такие генераторы отличаются более высоким КПД и приемлемой стоимостью. Второй вариант – это вертикальная ось, благодаря которой конструкция генератора становится более компактной. Она не зависит от направления ветра, а ее лопасти изготовлены в виде турбин. Нагрузка на ось значительно снижена, поэтому и мощность таких установок гораздо меньше. В некоторых электростанциях одновременно используется несколько генераторов с различными осями, объединенными в сеть, что позволяет получить высокую мощность на сравнительно небольшой площади.
Существует отдельная классификация ветровых электростанций по месту их расположения. Среди них можно выделить три основных типа:
- Наземные установки, получившие наиболее широкое распространение. Они монтируются на холмах и высотах, а также на специально подготовленных площадках. Строительство ведется с использованием дорогостоящей подъемной техники, поскольку все основные конструкции устанавливаются на большую высоту. Несколько устройств объединяются в общую систему с помощью электрических кабелей.
- Прибрежные ветровые электростанции. Строятся неподалеку от берегов морей и океанов. Работа системы зависит от морского бриза, который создает воздушные потоки с определенной периодичностью. Сам бриз возникает в результате неравномерного нагрева поверхностей водоемов и суши. Днем движение воздуха осуществляется в направлении с воды на сушу, а ночью, наоборот, с побережья к водоему. Таким образом, получение электроэнергии происходит круглосуточно, без каких-либо перерывов.
- Шельфовые ветряные электростанции. Устанавливаются в море далеко от берега, на расстоянии 10-12 км. В этом случае генераторы используют энергию, создаваемую регулярными морскими ветрами. Для установки используются участки морского дна, расположенные на незначительной глубине. Фундамент конструкции представляет собой сваи, забиваемые в грунт на глубину до 30 м. Передача электроэнергии на берег, осуществляется при помощи подводного кабеля.
Особенности выбора
Основным критерием, которым руководствуются покупатели, являются размеры ветряной установки. Чем больше ее размер, тем выше вырабатываемая мощность. Поэтому, выбирая ветряные электростанции для дома, нужно заранее рассчитать месячное энергопотребление. Полученный результат умножается на 12 месяцев.
Далее расчеты для частного дома ведутся при помощи формулы: AEO = 1.64 х D х D х V х V х V, в которой АЕО является электроэнергией, потребляемой за год, D – диаметр ротора в метрах, V – среднегодовая скорость ветра в м/с. Подставив нужные значения, можно легко рассчитать размеры требуемой установки.
Приобретая электростанцию, следует заранее продумать о месте ее расположения. В этом случае учитываются следующие факторы:
- Территория возле генератора должна быть свободной от построек, сооружений, деревьев и других факторов, снижающих продуктивность установки. Имеющиеся помехи располагаются на расстоянии не ближе 200 метров от места установки.
- Высота конструкции для монтажа генератора должна быть как минимум на 2-3 метра выше помех, имеющихся на прилегающей территории.
- Расстояние от жилых домов – не менее 30-40 м, поскольку при вращении лопастей создается некоторый шум, вызывающий у окружающих определенный дискомфорт.
- Следует учитывать среднегодовые изменения погодных условий, когда в одном и том же месте в течение года будет вырабатываться разное количество электроэнергии.
Преимущества ветровых генераторов
Ветровые электростанции уже долгое время используются в быту, на производстве и других областях.
За это время удалось выявить их основные положительные качества и преимущества:
- Энергия ветра, используемая для ветроэлектростанций, является бесплатной и самое главное – возобновляемой. Устройства не загрязняют окружающую среду и не выделяют каких-либо вредных веществ. В перспективе планируется еще шире использовать экологически чистые ветровые электростанции в России, что позволит сократить количество обычных установок с вредными выбросами.
- Снижается зависимость электроснабжения через центральные электрические сети.
- Широкие перспективы для дальнейшего развития и внедрения новых прогрессивных технологий, и это не последние достоинства этих установок.
- Постепенное снижение затрат на получение энергии, без которых не обойтись на первоначальном этапе. В течение последних 20 лет стоимость оборудования и комплектующих снизилась примерно на 80%. Энергия ветра становится наиболее прибыльной среди всех альтернативных источников электроэнергии.
- Ветряки имеют достаточно высокий срок эксплуатации, составляющий 20-30 лет. В течение этого срока окружающий ландшафт остается неповрежденным.
- Простота сборки и дальнейшего использования. Ветряная электростанция монтируется очень быстро, затраты на ремонт и обслуживание сравнительно низкие. Произведенная электроэнергия количественно превышает затраченную энергию ветра примерно в 85 раз. Потери при передаче электроэнергии сравнительно невысокие.
Минусы ветровых электростанций
Идеальных устройств не существует в принципе. Это касается и ветровых установок, обладающих специфическими недостатками:
- Существенные инвестиционные вложения в ветряные электростанции на первоначальном этапе. Хотя они и снижаются, их нельзя полностью сбрасывать со счетов при планировании.
- Непостоянство и непредсказуемость силы и направления ветровых потоков, вызывающих колебания в количестве выработанной энергии. Иногда ветер может отсутствовать в течение нескольких дней, и потребители полностью остаются без электричества.
- Движущиеся элементы ветряных установок нередко убивают пролетающих рядом птиц и летучих мышей. Особую опасность они представляют в периоды массовых миграций. Таким образом, определенный вред экологии все-таки наносится, хотя он и не носит системного характера.
- Работа ветрогенераторов сопровождается постоянными шумами низкой частоты и практически неслышным инфразвуков. Эти минусы ветряных электростанций, превращаясь в отрицательные факторы, негативно воздействуют на человека, вызывая усталость и дискомфорт. В некоторых случаях лопасти, вращаясь с высокой скоростью, могут привести к радиолокационным помехам, искажению телевизионных сигналов.
- Затраты на размещение достаточно высокие из-за дорогой аренды земли. При использовании большого количества ветровых электростанций, этот фактор приобретает важное значение в расчетах себестоимости электроэнергии.
Ветряная электростанция своими руками: особенности устройства
Делаем ветроэлектростанцию своими руками у себя в частном доме. Ознакомимся с уже существующими промышленными аналогами на рынке и с работами народных умельцев.
Человечество на протяжении всего своего развития не перестает искать дешевые возобновляемые источники энергии, которые могли бы решить многие проблемы энергообеспечения. Одним из таких источников является энергия ветра, для преобразования которой в электрическую энергию, разработаны ветровые энергетические установки (ВЭУ), или, как их чаще называют, ветряные электростанции.
Любому человеку, особенно имеющему частный или загородный дом, хотелось бы иметь свой ветрогенератор, обеспечивающий жилье недорогой электрической энергией. Препятствием этому служит высокая стоимость промышленных образцов ВЭУ и, соответственно, слишком большой срок окупаемости для отдельно взятого владельца жилья, делающий его приобретение невыгодным. Одним из выходов может служить изготовление ветряной электростанции своими руками, позволяющее не только снизить общие затраты на ее приобретение, но и распределить эти затраты на некоторый срок, так как работа осуществляется в течение довольно длительного времени.
Для того чтобы сделать ветряную электростанцию, необходимо определить, позволяют ли погодные условия использовать ветровую энергию в качестве постоянного источника энергии.
Виды
Ветроэлектростанция своими руками классифицируется по расположению оси вращения и бывают:
- с горизонтальным расположением;
- с вертикальным расположением.
Установки с горизонтальным расположением оси называются установками пропеллерного типа и имеют самое широкое распространение в связи с высоким коэффициентом полезного действия. Недостатком этих установок является их более сложная конструкция, затрудняющая самодельные варианты изготовления, необходимость применения механизма следования направлению ветра и большая зависимость работы от скорости ветра — как правило, при малых скоростях эти установки не работают.
Более просты, неприхотливы и мало зависимы от скорости и направления ветра установки с вертикальным расположением рабочего вала — ортогональные с ротором Дарье и карусельные с ротором Савониуса. Недостатком их является весьма малый КПД, составляющий порядка 15%.
Недостатком обеих типов самодельной ветряной электростанции является низкое качество вырабатываемой электроэнергии, требующее дорогостоящих вариантов компенсации этого качества — стабилизирующих устройств, аккумуляторов, электрических преобразователей. В чистом виде электроэнергия пригодна только для использования в активной бытовой нагрузке — лампах накаливания и простых нагревательных устройствах. Для питания бытовой техники электроэнергия такого качества не пригодна.
к содержанию ↑Конструктивные элементы
Конструктивно, независимо от расположения оси, самодельная полноценная ветряная электростанция должна состоять из следующих элементов:
- ветряной двигатель;
- устройство для ориентирования ветряного двигателя по направлению ветра;
- редуктор или мультипликатор для передачи вращения от ветряного двигателя к генератору;
- генератор постоянного тока;
- зарядное устройство;
- аккумуляторная батарея для накопления электроэнергии;
- инвертор для преобразования постоянного тока в переменный.
Особенности выбора источника тока
Одним из сложных элементов ветряной электростанции является генератор. Наиболее подходящим для изготовления своими руками является электродвигатель постоянного тока с рабочим напряжением 60-100 вольт. Этот вариант не требует переделки и способен работать с аппаратурой для зарядки автомобильной батареи.
Применение автомобильного источника напряжения затруднено тем, что его номинальная частота вращения составляет порядка 1800-2500 об/мин, а такую частоту вращения при прямом соединении не сможет обеспечить ни одна конструкция ветряного двигателя. В этом случае в составе установки необходимо предусмотреть редуктор или мультипликатор подходящей конструкции для увеличения частоты вращения в необходимых размерах. Скорее всего, этот параметр придется подбирать экспериментальным путем.
Возможным вариантом может стать реконструированный асинхронный двигатель с использованием неодимовых магнитов, но этот способ требует сложных расчетов и токарных работ, что зачастую не приемлет самодельная работа. Имеется вариант с межфазным подключением к обмоткам электродвигателя конденсаторов, емкость которых рассчитывается в зависимости от его мощности.
к содержанию ↑Изготовление
Учитывая то, что эффективность электростанции с горизонтальной осью имеет лучшие показатели эффективности, а бесперебойность подачи электроэнергии предполагается обеспечивать с помощью накопления энергии в аккумуляторной батарее, предпочтительнее для изготовления своими руками является именно такой вид ВЭУ, который мы и рассмотрим в рамках данной статьи.
Для того что бы сделать такую электростанцию своими руками понадобится следующий инструмент:
- сварочный аппарат электродуговой сварки;
- набор гаечных ключей;
- набор сверл по металлу;
- электродрель;
- ножовка по металлу или УШМ с отрезным диском;
- болты диаметром 6 мм с гайками для крепления лопастей к шкиву и алюминиевого листа к квадратной трубе.
Для изготовления ветряной электростанции своими руками потребуются следующие материалы:
- пластиковая труба 150 мм длиной 600 мм;
- лист алюминия размером 300х300 мм и толщиной 2,0 — 2,5 мм;
- металлическая квадратная труба 80х40 мм и длиной 1,0 м;
- труба диаметром 25 мм и длиной 300 мм;
- труба диаметром 32 мм и длиной 4000-6000 мм;
- медный провод длиной, достаточной для соединения электродвигателя, находящегося на мачте длиной 6 м, и нагрузки, которую будет питать этот источник тока;
- электродвигатель постоянного тока 500 об/мин;
- шкив для двигателя диаметром 120-150 мм;
- аккумуляторная батарея 12 вольт;
- автомобильное зарядное реле аккумулятора;
- инвертор 12/220 вольт.
Процесс изготовления своими руками производится в следующем порядке:
- Пластиковая труба 150х600 мм, для изготовления лопастей пропеллера, разрезается вдоль на четыре части и каждая часть по диагонали разрезается так, что бы одна сторона осталась прежней ширины, а вторая получилась размером 20-25 мм. В качестве лопастей будут использоваться три части трубы;
- Полученные лопасти крепятся к шкиву с шагом 1200 с помощью болтов 6 мм подходящей длины, и шкив крепится на валу электродвигателя;
- К более широкой стороне квадратной трубы на расстоянии 1/3 от края перпендикулярно приваривается труба диаметром 25 мм;
- На короткое плечо квадратной трубы крепится электродвигатель, а на длинное устанавливается алюминиевый лист, служащий для поворота всей конструкции по направлению ветра по типу флюгера;
- Полученная конструкция вставляется трубой 25 мм в один конец трубы 32 мм. Это сочленение будет служить поворотным механизмом ветряной электростанции для следования ее по направлению ветра;
- К электродвигателю подключается кабель, труба диаметром 32 мм устанавливается в качестве мачты и прочно закрепляется в грунте и с помощью растяжек;
- Электрическая часть ВЭУ собирается в отдельном блоке таким образом, что бы энергия от генератора через реле зарядки подключалось к аккумуляторной батарее, а от батареи через инвертор запитывались необходимые потребители. Составные части электрооборудования можно сделать самостоятельно или приобрести.
Далее, в процессе работы установки, возможно, придется сделать другими размеры и конфигурацию лопастей, передаточное отношение между ветряным двигателем и генератором — каждый ветрогенератор, изготовленный своими руками, индивидуален в силу использования различных компонентов и условий ветрообразования. Первоначально ветряную электростанцию рекомендуют изготавливать небольшой мощности, на которой можно отработать полученную информацию не вкладывая большое количество средств.
Оцените статью:
Загрузка…Поделитесь с друзьями:
Ветрогенераторы. Устройство и виды. Работа и применение
Электричество сегодня считается чем-то обыденным, ведь оно есть в каждом доме. И никто не задумывается, откуда оно берется. Электричество в основной массе вырабатывается электростанциями, работающими на нефти, природном газе, ядерном топливе или угле. Эти традиционные источники представляют определенную опасность для окружающей среды, вследствие чего все большее внимание уделяется альтернативным видам энергии. К последним можно отнести ветрогенераторы, которым для выработки электричества нужен лишь ветер.
Устройство
Конструктивно ветрогенераторы в большинстве случаев предполагают наличие следующих элементов:
- Лопасти турбины (пропеллер).
- Турбина (вращающаяся часть).
- Электрогенератор.
- Ось электрогенератора.
- Инвертор, преобразующий переменный ток в постоянный, для возможности зарядки батареи.
- Механизм вращения лопастей.
- Механизм вращения турбины.
- Аккумулятор.
- Мачта.
- Контроллер вращения(анемометр).
- Демпфер.
- Датчик ветра и анемоскоп.
- Хвостовик анемоскопа.
- Гондола и ряд других элементов.
В зависимости от вида ветрогенератора конструкция и входящие в него элементы могут разниться. К примеру, промышленные устройства также предусматривают наличие системы молниезащиты, силового шкафа, поворотного механизма, надежного фундамента, системы пожаротушения, системы изменения угла атаки лопасти, телекоммуникационной системы для передачи информации о работе ветрогенератора и так далее.
Принцип действияВетрогенератор представляет устройство, преобразующее энергии ветра в электрическую энергию. Прародителями современных видов ветрогенераторов являются ветряные мельницы, которые применялись для получения муки из зерен. И принцип их работы изменился ненамного: лопасти вращают вал, который передает необходимую энергию на другие элементы.
- Ветер вращает лопасти, передавая крутящий момент через редуктор на вал генератора.
- При вращении ротора образуется трехфазный переменный ток.
- Полученный ток направляется на аккумуляторную батарею через контроллер. Аккумуляторы применяют для создания стабильности работы ветрогенератора. Генератор заряжает аккумуляторы при наличии ветра. При его отсутствии всегда можно взять энергию с аккумулятора, чтобы потребитель не прекращал получать электричество.
- С целью защиты от ураганов в ветрогенераторах применяется система с уводом ветроколеса от ветра при помощи складывания хвоста, либо торможения ветроколеса электротормозом.
- Для зарядки аккумуляторов ставится контроллер между ветряком и АКБ. Он отслеживает зарядку АКБ, чтобы не испортить аккумуляторы. При необходимости он может сбрасывать лишнюю энергию на определенный балласт, к примеру, большой резистор или тэны для отопления.
- В аккумуляторах имеется лишь постоянное низкое напряжение рядностью 12/24/48 вольт. Однако потребителю нужно напряжение в 220 вольт, именно поэтому ставится инвертор. Это устройство преобразует постоянное напряжение в переменное, создавая напряжение в 220 вольт. Естественно, что можно обойтись и без инвентора, но придется использовать электрические приборы, специально рассчитанные на низкое напряжение.
- Преобразованный ток направляется потребителю, чтобы питать отопительные батареи, освещение, телевизор и иные устройства.
В промышленных ветряках могут применяться и другие элементы, которые обеспечивают автономную работу устройства.
Типы и виды ветрогенераторовКлассифицировать ветряки можно по материалам, количеству лопастей, шагу винта и оси вращения.
Выделяют два основных типа ветрогенераторов по оси вращения:
- С горизонтальной осью круглого вращения, то есть крыльчатые.
- С вертикальной осью вращения, то есть «лопастные» ортогональные, «карусельные».
Горизонтальные классические ветрогенераторы имеют пропеллер (в большинстве случаев трехлопастной), а вертикальные ветряки обладают ветроколесом, которое вращается вертикально.
По количеству лопастей ветряки могут быть:
- Трехлопастные и двухлопастные.
- Многолопастные.
Вращение многолопастных ветряков начинается при слабом ветре, тогда как для двухлопастных и трехлопастных устройств требуется более сильный ветер. Однако каждая
дополнительная лопасть создает дополнительное
сопротивление ветроколеса, вследствие чего достигнуть рабочих оборотов генератора становится сложнее.
По материалам лопастей ветряки могут быть:
- Парусные генераторы.
- Жесткие лопасти ветрогенератора.
Парусные лопасти дешевле и проще в изготовлении, однако, когда необходима стабильная и надежная работа для автономного электроснабжения они не подойдут.
По шагу винта:
- Изменяемый шаг винта.
- Фиксированный шаг винта.
Изменяемый шаг винта дает возможность повысить диапазон эффективных скоростей работы. В то же время данный механизм неизбежно:
- Усложняет конструкции лопасти.
- Снижает общую надежность ветрогенератора.
- Утяжеляет ветроколесо и требует дополнительного усиления конструкции.
Устройства могут использоваться в различных местах. В большинстве случаев в открытые пространства, где большой потенциал ветров:
- Горы.
- Мелководье.
- Острова.
- Поля.
В то же время ветрогенераторы современных конструкций дают возможность задействовать энергию даже слабых ветров – от 4 м/с. Благодаря им можно решать задачи электроснабжения и энергосбережения объектов любой мощности.
- Стационарные ветряные электростанции в виде альтернативных источников энергии способны полностью обеспечить электрической энергией небольшой производственный объект или жилой дом. В периоды отсутствия ветра необходимый запас электроэнергии будет выбираться из аккумуляторных батарей. Они отлично могут сочетаться с фотоэлектрическими батареями, газовым или дизельным генератором.
- Ветрогенераторы могут использоваться и для экономии при наличии центральной электросети.
- Ветроустановки средней и малой мощности часто используются владельцами фермерских хозяйств и домов, удаленных от централизованных электросетей, в качестве автономного источника.
К преимуществам можно отнести:
- Энергия ветра является возобновляемой энергией. Ветер создается бесплатно и постоянно, без ущерба окружающей среде. Энергия ветра доступна в любом месте на планете.
- Энергия ветра является достаточно дешевой.
- Ветряные турбины находятся на мачтах, им требуется минимум места. Благодаря этому их можно устанавливать совместно с иными объектами и строениями.
- Ветрогенераторы в процессе эксплуатации не производят вредных выбросов.
- Энергия ветра в особенности требуется в удаленных местах, куда затруднена доставка электричества иными привычными способами.
К недостаткам можно отнести:
- Сила ветра очень переменчива и непредсказуема, вследствие чего требуется дополнительный буфер для накапливания электроэнергии, либо дублирования источника.
- Высокая начальная стоимость создания и установки ветрогенераторов.
- Ветряные турбины создают шум, который сравним с шумом автомобиля, перемещающегося со скоростью 70 км/ч. Это отпугивает животных и создает определенный дискомфорт для людей.
- Вращающиеся лопасти представляют потенциальную опасность для птиц.
Похожие темы:
Ветрогенераторы, ветряные электростанции — альтернативные источники энергии
Ветер, и ветровая энергия, давно используются человечеством в своих целях. Жители древнего Вавилона и Китая использовали силу ветра для полива орошаемых культур в сельском хозяйстве. А первые парусные лодки появились еще раньше. В средние века в Европе использовались ветряные мельницы, чтобы размолоть зерно в муку. Поэтому можно смело заявить об эффективности ветровой энергии в истории человечества.
Физически процесс происходит следующим образом. Солнце нагревает атмосферу неравномерно, поэтому некоторые участки теплее, а некоторые – холоднее. Воздух движется из теплых участков — в холодные, создавая ветер.
Эту силу ветра и используют в ветрогенераторах (ветряные электростанции). Ветер обдувает винт ветрогенератора, тем самым приводя его в движение. Для вращения винта, нужен ветер, со скоростью около 25 км/ч.
Конструкция ветрогенератора
Сам ветрогенератор состоит из следующих основных частей:
- Ротор (лопасти ветряной электростанции) — преобразует энергию ветра в энергию вращения. Большинство современных роторов ветровых турбин состоит из трех лопастей.
- Современные лопасти ветряных электростанций в диапазоне 30 метров в длину, как правило, изготовлены из армированного стекловолокном полиэстера или древесно-эпоксидной смолы. Скорость вращения лопастей от 12 до 24 оборотов в минуту на низкой скорости.
- Редуктор повышает скорость вращения вала с низкой скорости (приблизительно от 12 до 24 оборотов в минуту) до высокой скорости вращения (примерно 1000 — 3000 оборотов в минуту), и приводит в движение генератор. Некоторые современные ветряки имеют генератор, подключенный напрямую к лопастям.
- Генератор использует магнитные поля, чтобы преобразовать результирующую вращательную энергию в электрическую энергию.
- Анемометр и флюгер расположены на задней стороне корпуса ветровой турбины и измеряют скорость ветра. Собранная информация используется системой управления для того, чтобы вырабатывать максимальное количество энергии. Данные скорости ветра также используются для контроля работы и позволяют операционной системе начинать и останавливать турбину. Современная ветряная электростанция начинает вырабатывать энергию при скорости ветра от 4 м / с и выключается при скорости около 25 м / с. Механизм рыскания поворачивает ротор в преобладающее направление ветра.
- Башня ветрогенератора изготавливается из стальных труб, хотя решетчатые башни до сих пор используются в некоторых странах. Башни для современных ветровых электростанций бывают высотой от 60 метров до 100 метров.
- Трансформатор преобразует напряжение, которое требуется для электрической сети. Трансформатор может быть встроен в башню или расположен у основания башни.
Лучшие места для установки ветряных электростанций — это прибрежные районы, которые открыты сильным и постоянным потокам ветра. Некоторые ветрогенераторы устанавливают прямо в море. Лопасти специально поднимают на максимальную высоту, туда, где ветер имеет наибольшую силу.
Плюсы использования ветровых электростанций (ветрогенераторов):
- Ветряная энергия довольно дешева, генераторы не нуждаются ни в каком топливе
- Не производит выбросов, или отходов производства энергии
- Отлично подходит для обеспечения энергией отдаленных районов
Недостатки ветрогенераторов
- Ветер не всегда предсказуем – иногда бывают периоды без ветра по несколько дней
- Земля под ветрогенераторы рядом с побережьем обычно стоит недешево
Одна из самых распространенных проблем в поиске подходящих мест для строительства ветровых турбин является движение военных и гражданских самолетов. Вот почему авиация является одним из первых вопросов, которые исследуются при строительстве ветрогенератора в определенном месте. Здесь есть проблемы и использования радаров и физической посадки – взлета самолета.
Но проблем с авиацией можно избежать несколькими способами:
- Снижение общей высоты турбины ветрогенератора
- Уменьшение количества или ориентации турбин
Проектирование и создание проекта ветряной электростанции проводится в несколько этапов. Проводится полное технико-экономическое. Это технико-экономическое обоснование включает в себя подробные освещение пунктов о местных радарах, авиации, археологии, животного мира, доступе телекоммуникаций, гидрологии местности и расположении.
Строительство ветряной электростанции
Строительство ветряной электростанции может занять от 4 месяцев постройки одной башни ветрогенератора, до 2 лет — большой электростанции, состоящей из 20 и более турбин.
Срок службы ветрогенератора по проекту считается равным 20 – 25 лет. После этого генераторы или заменяются на новые или демонтируются. Причем в развитых странах демонтаж происходит самым тщательным образом – демонтируются все следы человеческого вмешательства в природу, убираются все остатки кабелей, деталей, строительного мусора, восстанавливается природный слой почвы.
Строительные работы, необходимые для строительства ветряной электростанции меняются от места к месту, но обычно включают следующие этапы:
- Временная строительная площадка — размером примерно 50 х 50 м
- Основание ветряной башни ( из железобетона ) Бетонированная площадка ( в том числе для стоянки автотранспорта), прилегающая к турбине — обеспечивает стабильную основу, на которой держится сама башня генератора.
- Здание контроля и управления — площадь примерно 6м х 6м, здание строится для размещения электрических распределительных устройств, приборов учета и т.д.
Альтернативные и возобновляемые источники энергии пользуются огромной популярностью во всем мире. Стоит отметить, что крупнейшая интернет компания Google, также использует для своего оборудования энергию ветровых электростанций. В Австралии, США, Канаде, Европе сила ветра используется на благо цивилизации. Развитые и развивающиеся страны наращивают потенциал ветровой энергии, возможно что в Европе и Северной Америке уже через несколько лет основным источником энергии станет сила ветра (сейчас этот показатель составляет от 20 до 40 %)
Ян Волховский, promplace.ru
Ветряные электростанции | Устройство и принцип работы
17 Mar 2021
С каждым днем растет потребность в энергетических ресурсах, а запасы привычных нам носителей энергии сокращаются, то с каждым днем использование альтернативных источников энергии становится всё более актуальным.
Генерировать электричество из энергии ветра – возможно. Объем электрической мощности напрямую зависит от особенностей местности, в которой вы проживаете.
Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) — устройство для преобразования кинетической энергии ветрового потока в механическую энергию вращения ротора с последующим её преобразованием в электрическую энергию.
Где же используются ветрогенераторы?
Обычно ветрогенераторы используются на открытых территориях, так как там потенциал ветра самый большой. Но с каждым годом современные установки совершенствуются и могут производить выработку электричества даже при небольшой силе ветра. По функциональности электростанции ветряные можно разделить на 3 типа, стационарные и передвижные, или мобильные. Стационарные установки высокой мощности требуют проведения целого комплекса подготовительных работ. Даже в безветренную погоду, они способны накапливать достаточное для использования количество электроэнергии.
Передвижные электростанции относительно нетребовательные, то есть они проще по конструкции, соответственно их легче устанавливать и просто эксплуатировать. Чаще всего они используются для питания электроприборов или в путешествиях.
Ветроэлектростанции различают по конструкции на крыльчатые и роторные. Ветрогенераторы традиционной схемы, или крыльчатые ветрогенераторы, представляют лопастные механизмы с горизонтальной осью вращения. Ветроагрегат вращается с максимальной скоростью, когда лопасти расположены перпендикулярно потоку воздуха. Коэффициент использования энергии ветра у крыльчатых ветрогенераторов намного выше, чем у других ветряков, поэтому они занимают 90% рынка.
Роторные ветрогенераторы с вертикальной осью вращения, могут работать при любом направлении ветра, в отличие от крыльчатых, не изменяя своего положения. Когда ветровой поток усиливается, карусельные ветряные электростанции быстро наращивают силу тяги, после чего скорость вращения ветроколеса стабилизируется.
По месту установки ветрогенераторы бывают:
- Оффшорные. Строятся в море на расстоянии 10-15 км от берега, где постоянно дуют морские ветры;
- Плавающие. Располагаются на расстоянии 10-15 км от берега, как и оффшорные, но на плавающей платформе;
- Наземные. Данный вид наиболее распространенный, они устанавливаются на возвышенностях;
- Прибрежные. Строятся в прибрежной зоне океанов и морей, где из-за неравномерного нагревания суши и воды постоянно дуют ветры.
По сферам применения электростанции ветряные бывают промышленные и бытовые.
Из чего состоит ВЭС?
Сам по себе ветрогенератор, независимо от мощности и других различных технических характеристик, никогда не сможет обеспечить бесперебойное питание подключенных к нему электроприборов. Скорость ветра – неравномерна. Объем мощности, вырабатываемой ветрогенератором в течение суток, может значительно меняться.
Классическая схема ветрогенераторов, которая сможет обеспечивать питание потребителей даже в тихую и безветренную погоду, должна иметь компоненты, такие как:
- ветрогенератор – установка, которая преобразовывает энергию ветра в электричество;
- аккумуляторная батарея – позволяет накапливать электроэнергию во время работы ветряка и отдавать ее потребителям, когда ВГ перестает вырабатывать электричество;
- инвертор – устройство, которое служит для преобразования постоянного тока напряжением 12В в бытовой ток – 220В, обладающий заданной частотой;
- контроллер – устройство, которое преобразует переменный ток, в ток постоянный.
На сегодняшний день в Европе растет количество вложений в строительство больших ветроэлектростанций. Массовое строительство снижает себестоимость одного киловатта и приближает ее к цене электроэнергии, полученной из традиционных источников. Строение ветроэлектростанций непрерывно развивается, аэродинамические и электрические показатели становятся намного лучше, чем были, снижаются потери. По оценкам многих экономистов, ветряные электростанции для дома, становятся самыми эффективными в плане окупаемости проектами в области энергетики. В дальнейшем они обещают независимость от негативных тенденций на этом рынке.
Это крошечное устройство может собирать энергию ветра из бриза, который вы производите, когда вы идете — ScienceDaily
Большая часть ветра на суше слишком слабая, чтобы толкать лопасти коммерческих ветряных турбин, но теперь исследователи в Китае разработали своего рода «крошечные» ветряная турбина », которая может поглощать энергию ветра от бриза так же мало, как от ветров, созданных при быстрой прогулке. Метод, представленный 23 сентября в журнале Cell Reports Physical Science , представляет собой недорогой и эффективный способ сбора легких ветров в качестве источника микроэнергии.
Новое устройство технически не является турбиной. Это наногенератор, состоящий из двух пластиковых полос в трубке, которые трепещут или хлопают вместе, когда есть воздушный поток. Подобно трению воздушного шара о волосы, два пластика становятся электрически заряженными после отделения от контакта, это явление называется трибоэлектрическим эффектом. Но вместо того, чтобы заставить ваши волосы встать дыбом, как у Эйнштейна, электричество, вырабатываемое двумя пластиковыми полосками, улавливается и сохраняется.
«Вы можете собрать все легкие в повседневной жизни», — говорит старший автор Янг Ян из Пекинского института наноэнергетики и наносистем Китайской академии наук.«Однажды мы поместили наш наногенератор на руку человека, и потока воздуха от качающейся руки было достаточно для выработки энергии».
Слабого ветра 1,6 м / с (3,6 миль в час) было достаточно для питания трибоэлектрического наногенератора, разработанного Яном и его коллегами. Наногенератор работает наилучшим образом при скорости ветра от 4 до 8 м / с (от 8,9 до 17,9 миль в час), скорости, которая позволяет двум пластиковым полоскам колебаться синхронно. Устройство также имеет высокий КПД преобразования энергии ветра в энергию, равный 3,23%, что превышает ранее заявленные характеристики по поглощению энергии ветра.В настоящее время устройство исследовательской группы может питать 100 светодиодных ламп и датчиков температуры.
«Мы не намерены заменять существующую технологию производства ветровой энергии. Наша цель — решить проблемы, которые традиционные ветряные турбины не могут решить», — говорит Ян. «В отличие от ветряных турбин, в которых используются катушки и магниты, где стоимость фиксирована, мы можем выбирать недорогие материалы для нашего устройства. Наше устройство также можно безопасно применять в заповедниках или городах, поскольку оно не имеет вращающихся конструкций. .«
Ян говорит, что у него есть два видения следующих шагов проекта: одно маленькое и одно большое. В прошлом Ян и его коллеги разработали наногенератор размером с монету, но он хочет сделать его еще мельче, компактнее и эффективнее. В будущем Ян и его коллеги хотели бы объединить это устройство с небольшими электронными устройствами, такими как телефоны, чтобы обеспечить устойчивую электроэнергию.
Но Ян также хочет сделать устройство больше и мощнее. «Я надеюсь увеличить мощность устройства до 1000 Вт, чтобы оно могло конкурировать с традиционными ветряными турбинами», — говорит он.«Мы можем разместить эти устройства в местах, недоступных для традиционных ветряных турбин. Мы можем разместить их в горах или на крышах зданий для обеспечения устойчивой энергетики».
История Источник:
Материалы предоставлены Cell Press . Примечание. Содержимое можно редактировать по стилю и длине.
Управление сетевыми устройствами в приложениях башни ветряных турбин | WTI
Башни ветряных турбин намного сложнее, чем кажется на первый взгляд.Помимо выработки энергии, ветровые турбины также включают в себя сетевую электронику, такую как сервоприводы, которые можно использовать для позиционирования лопастей турбины для получения максимальной мощности, датчики для отслеживания скорости и температуры ветра, камеры и другие устройства безопасности, чтобы гарантировать, что турбина не будет взломана. и ряд другого оборудования, используемого для удаленного управления каждой башней ветряной турбины.
В типичной реализации ветряной электростанции серводвигатели, датчики и устройства безопасности в каждой ветряной турбине подключены к сетевому коммутатору в башне, который, в свою очередь, связан с магистралью Ethernet ветровой электростанции, что позволяет легко управлять удаленными башнями. от центрального пункта управления.
Хотя эта схема работает хорошо при правильном функционировании, простая проблема с сетью часто может оставлять турбины неуправляемыми до тех пор, пока сеть снова не вернется в оперативный режим. Без надежного решения для внеполосной связи техническим специалистам, возможно, придется посетить множество отдельных вышек, чтобы перезагрузить или перенастроить устройства и снова восстановить сеть. Помимо потери времени и денег, эта ситуация может также привести к повреждению ветряных турбин, если администраторы на центральном управляющем предприятии не смогут замедлить или остановить турбины, которые либо перегреваются, либо слишком быстро вращаются из-за сильного ветра.
Сотовая широкополосная сеть 4G LTE может предоставить экономичное решение внеполосного резервного копирования для сетевой связи, когда сети ветряных электростанций выходят из строя или умирают. Сотовая широкополосная связь хорошо подходит для среды ветряных электростанций, поскольку устраняет необходимость прокладки кабелей для резервной проводной сети, но обеспечивает надежные внеполосные средства доступа к устройствам в удаленных башнях ветряных турбин, когда первичная сеть недоступен.
Когда консольный сервер WTI CPM-1600-1-ECA + комбинированный блок PDU, оснащенный опцией сотовой связи 4G LTE, установлен на площадке ветряной турбины, удаленные администраторы могут установить внеполосное соединение через широкополосную сотовую связь для быстрого доступа Функции управления консольным портом и возможность перезагрузки по питанию без хлопот и затрат на поездку на удаленный объект, чтобы решить проблему лично.Если ветряная турбина использует датчики и сервоприводы с питанием от постоянного тока, то для доступа к портам консоли и управления питанием и перезагрузки можно использовать удаленный переключатель питания постоянного тока серии WTI RPC и последовательный консольный сервер WTI DSM-40DC-E с опцией сотовой связи 4G LTE. переключение на удаленном сайте.
турбина | Британника
Полная статья
турбина , любое из различных устройств, преобразующих энергию потока жидкости в механическую энергию. Преобразование обычно осуществляется путем пропускания жидкости через систему неподвижных каналов или лопастей, которые чередуются с каналами, состоящими из лопастей, похожих на ребра, прикрепленных к ротору.За счет организации потока так, чтобы на лопасти ротора действовала касательная сила или крутящий момент, ротор вращается, и работа извлекается.
Турбины можно разделить на четыре основных типа в зависимости от используемых жидкостей: вода, пар, газ и ветер. Хотя одни и те же принципы применимы ко всем турбинам, их конкретные конструкции достаточно различаются, чтобы заслужить отдельное описание.
Гидравлическая турбина использует потенциальную энергию, возникающую в результате разницы в высоте между верхним водным резервуаром и уровнем воды на выходе из турбины (отводом), чтобы преобразовать этот так называемый напор в работу.Водяные турбины — современные преемники простых водяных колес, которым около 2000 лет. Сегодня гидротурбины в основном используются для производства электроэнергии.
Однако наибольшее количество электроэнергии вырабатывается паровыми турбинами, соединенными с электрогенераторами. Турбины приводятся в действие паром, вырабатываемым либо в генераторе, работающем на ископаемом топливе, либо в генераторе, работающем на атомной энергии. Энергия, которую можно извлечь из пара, удобно выражать через изменение энтальпии в турбине.Энтальпия отражает формы тепловой и механической энергии в процессе потока и определяется суммой внутренней тепловой энергии и произведением давления на объем. Доступное изменение энтальпии через паровую турбину увеличивается с увеличением температуры и давления парогенератора и с уменьшением давления на выходе из турбины.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчасДля газовых турбин энергия, извлекаемая из текучей среды, также может быть выражена через изменение энтальпии, которое для газа почти пропорционально перепаду температуры в турбине.В газовых турбинах рабочим телом является воздух, смешанный с газообразными продуктами сгорания. Большинство газотурбинных двигателей включает, по крайней мере, компрессор, камеру сгорания и турбину. Они обычно монтируются как единое целое и работают как законченный первичный двигатель в так называемом открытом цикле, когда воздух всасывается из атмосферы, а продукты сгорания, наконец, снова выбрасываются в атмосферу. Поскольку успешная работа зависит от интеграции всех компонентов, важно рассматривать устройство в целом, которое на самом деле является двигателем внутреннего сгорания, а не только турбиной.По этой причине газовые турбины рассматриваются в статье двигатель внутреннего сгорания.
Энергия ветра может быть извлечена ветряной турбиной для производства электроэнергии или для откачки воды из скважин. Ветряные турбины являются преемниками ветряных мельниц, которые были важным источником энергии с позднего средневековья до XIX века.
Fred LandisВодяные турбины обычно делятся на две категории: (1) импульсные турбины, используемые для высокого напора воды и низкого расхода, и (2) реактивные турбины, обычно используемые для напора ниже примерно 450 метров и среднего или высокого расхода.Эти два класса включают в себя основные типы, обычно используемые, а именно, импульсные турбины Пелтона и реактивные турбины типа Фрэнсиса, пропеллера, Каплана и Дериаза. Турбины могут быть оборудованы как горизонтальными, так и, чаще, вертикальными валами. Для каждого типа возможны широкие вариации конструкции для соответствия конкретным местным гидравлическим условиям. Сегодня большинство гидротурбин используются для выработки электроэнергии на гидроэлектростанциях.
Импульсные турбины
В импульсных турбинах потенциальная энергия или напор воды сначала преобразуется в кинетическую энергию путем выпуска воды через сопло тщательно продуманной формы.Струя, выбрасываемая в воздух, направляется на изогнутые лопатки, закрепленные на периферии бегунка, для извлечения энергии воды и преобразования ее в полезную работу.
Современные импульсные турбины основаны на конструкции, запатентованной в 1889 году американским инженером Лестером Алленом Пелтоном. Свободная водная струя попадает в лопатки турбины по касательной. Каждый ковш имеет высокий центральный гребень, так что поток разделяется, оставляя желоб с обеих сторон. Колеса Пелтона подходят для высоких напоров, обычно выше 450 метров при относительно низком расходе воды.Для максимальной эффективности скорость конца рабочего колеса должна составлять примерно половину скорости ударной струи. КПД (работа, производимая турбиной, деленная на кинетическую энергию свободной струи) может превышать 91 процент при работе с 60–80 процентами полной нагрузки.
Мощность одного колеса можно увеличить, используя более одного жиклера. Для горизонтальных валов характерны двухструйные устройства. Иногда на одном валу устанавливаются два отдельных бегунка, приводящих в движение один электрогенератор. Агрегаты с вертикальным валом могут иметь четыре или более отдельных форсунок.
Если электрическая нагрузка на турбину изменяется, ее выходная мощность должна быть быстро отрегулирована в соответствии с потреблением. Это требует изменения расхода воды, чтобы поддерживать постоянную скорость генератора. Скорость потока через каждое сопло регулируется расположенным в центре наконечником или иглой аккуратной формы, которая скользит вперед или назад под управлением гидравлического серводвигателя.
Правильная конструкция иглы гарантирует, что скорость воды, выходящей из сопла, остается практически неизменной независимо от отверстия, обеспечивая почти постоянный КПД в большей части рабочего диапазона.Нецелесообразно внезапно уменьшать поток воды, чтобы соответствовать уменьшению нагрузки. Это может привести к разрушительному скачку давления (гидроудару) в подающем трубопроводе или напорном затворе. Таких скачков можно избежать, добавив временное сопло для разлива, которое открывается при закрытии основного сопла, или, что более часто, частично вставляя отражающую пластину между струей и колесом, отклоняя и рассеивая часть энергии при медленном закрытии иглы.
Другой тип импульсной турбины — турбина турго.Струя падает под косым углом на бегунок с одной стороны и продолжает двигаться по единственному пути, выходя на другую сторону бегунка. Этот тип турбины использовался в установках среднего размера с умеренно высоким напором.
Реакционные турбины
В реакционной турбине силы, приводящие в движение ротор, достигаются за счет реакции ускоряющегося потока воды в рабочем колесе при падении давления. Принцип реакции можно наблюдать в роторном оросителе для газонов, где выходящая струя вращает ротор в противоположном направлении.Из-за большого разнообразия возможных конструкций рабочего колеса реактивные турбины могут использоваться в гораздо большем диапазоне напоров и расходов, чем импульсные турбины. Реакционные турбины обычно имеют спиральный впускной кожух, который включает регулирующие заслонки для регулирования потока воды. На входе часть потенциальной энергии воды может быть преобразована в кинетическую энергию по мере ускорения потока. Впоследствии энергия воды отбирается в роторе.
Как отмечалось выше, широко используются четыре основных типа реактивных турбин: турбины Каплана, Фрэнсиса, Дериаза и пропеллерные.В турбинах Каплана с фиксированными лопастями и с регулируемыми лопастями (названными в честь австрийского изобретателя Виктора Каплана) через машину, по существу, существует осевой поток. Турбины типа Фрэнсиса и Дериаза (в честь американского изобретателя, родившегося в Великобритании Джеймса Б. Фрэнсиса и швейцарского инженера Поля Дериаза, соответственно) используют «смешанный поток», когда вода поступает радиально внутрь и выпускается в осевом направлении. Рабочие лопасти на турбинах Фрэнсиса и пропеллера состоят из неподвижных лопастей, в то время как в турбинах Каплана и Дериаза лопасти могут вращаться вокруг своей оси, которая находится под прямым углом к главному валу.
7 плюсов и минусов ветроэнергетики (Wind Power)
Подобно солнечной энергии, энергия ветра является самым быстрорастущим источником энергии в мире, при этом Соединенные Штаты планируют к 2030 году производить 20 процентов своей электроэнергии за счет энергии ветра. Нет никаких сомнений в том, что энергия ветра будет сокращаться. наша зависимость от ископаемых видов топлива, таких как уголь, нефть и газ, в ближайшее десятилетие, но до какой степени можно только спекулировать.
Это возобновляемый и чистый источник энергии, не образующий парниковых газов.
Wind ничего не стоит, поэтому эксплуатационные расходы близки к нулю после запуска турбины. Исследования в области технологий продолжаются для решения проблем, направленных на то, чтобы сделать ветроэнергетику более дешевой и жизнеспособной альтернативой для частных лиц и предприятий для выработки электроэнергии. С другой стороны, многие правительства предлагают налоговые льготы для стимулирования роста ветроэнергетического сектора.
Топливо на Земле будет исчерпано через тысячу или более лет, равно как и ее минеральные богатства, но человек найдет им замену в ветрах, волнах, солнечном тепле и так далее.
~ Джон Берроуз
Если вы хотите начать использовать энергию ветра для своего дома, вам нужно учесть множество вещей. В этой статье мы рассмотрим плюсы и минусы инвестирования в ветроэнергетику для вашего дома и / или бизнеса.
Узнайте больше о 35 фактах об энергии ветра.
Различные плюсы ветроэнергетики
1. Энергия ветра — чистый источник энергии
Производство энергии ветра «чисто.«В отличие от угля или нефти, энергия ветра не загрязняет воздух и не требует каких-либо разрушительных химикатов. В результате энергия ветра снижает нашу зависимость от ископаемого топлива из других стран, что стимулирует нашу национальную экономику, а также предлагает множество других преимуществ.
2. Возобновляемые источники
Ветер попутный. Если вы живете в геологической зоне с сильным ветром, она готова и ждет. Как возобновляемый актив, ветер никогда нельзя осушать, как другие обычные невозобновляемые ресурсы.
Стоимость ветроэнергетики в последнее время существенно снизилась, и по мере того, как она становится все более популярной среди населения, она будет продолжать дешеветь. Со временем вы окупите затраты на приобретение и внедрение ветряной турбины.
Ветры вызываются вращением Земли, нагревом атмосферы солнцем и неровностями земной поверхности. Мы можем использовать энергию ветра и использовать ее для выработки энергии, пока светит солнце и дует ветер.
3. Энергия ветра имеет низкие эксплуатационные расходы
Установка ветряных электростанций или индивидуальных турбин может быть дорогостоящей. Однако после того, как он будет установлен и запущен, эксплуатационные расходы будут относительно низкими; топливо (ветер) бесплатное, и турбины не требуют особого обслуживания в течение их срока службы.
4. Рентабельность
Ветряные турбины могут дать энергию множеству домов. На самом деле вам не обязательно владеть ветряной турбиной, имея в виду конечную цель — получение прибыли; Вы можете купить электроэнергию в сервисной организации, которая предлагает энергию ветра для определенного района.Это означает, что вам даже не обязательно вкладывать деньги, чтобы воспользоваться преимуществами энергии ветра для вашего дома или бизнеса.
5. Цены снижаются
Цены снизились более чем на 80% с 1980 года. Ожидается, что благодаря технологическим достижениям и возросшему спросу в обозримом будущем цены будут продолжать снижаться.
6. Дополнительная экономия для землевладельцев
Землевладельцы, которые арендуют территорию для ветряных усадеб, могут заработать значительную сумму дополнительных денежных средств, и энергия ветра также дает новые рабочие места в этой развивающейся области машиностроения.
Государственные организации также заплатят вам, если они смогут установить ветряные турбины на вашей земле. Кроме того, в некоторых случаях из-за вас может прекратить свое существование электрическая компания.
Если вы производите больше энергии, чем требуется, от энергии ветра, она может уйти в общую электрическую матрицу, что, в свою очередь, принесет вам дополнительные деньги. Победа со всех сторон!
7. Использование современных технологий
Некоторые считают ветряные турбины невероятно привлекательными. Новейшие модели не похожи на неуклюжие деревенские ветряные мельницы старых времен.Вместо этого они белые, гладкие и современные. Таким образом, вам не придется беспокоиться о том, что они станут бельмом на глазу на вашей земле.
Последние достижения в области технологий превратили предварительные конструкции ветряных турбин в чрезвычайно эффективные энергоуборочные комбайны. Турбины доступны в широком диапазоне размеров для ферм, заводов и крупных частных домов, расширяя рынок за счет множества различных видов бизнеса и частных лиц для использования дома на больших участках и других участках земли.
Также доступны портативные ветряные турбины, которые могут приводить в действие небольшие мобильные устройства. Последние модели вырабатывают еще больше электроэнергии, требуют меньшего обслуживания и работают более тихо и безопасно.
8. Ветроэнергетика стремительно растет
За последнее десятилетие ветроэнергетика значительно выросла. По данным Министерства энергетики США, совокупная мощность ветроэнергетики увеличивается в среднем на 30% в год. На энергию ветра приходится около 2,5% от общего мирового производства электроэнергии.
Ветряные турбины доступны в различных размерах, что означает, что широкий круг людей и предприятий может воспользоваться их преимуществами для производства энергии для собственных нужд или продать ее коммунальному предприятию, чтобы получить некоторую прибыль.
9. Огромный рыночный потенциал
Потенциал ветроэнергетики огромен. Несколько независимых исследовательских групп пришли к тем же выводам, и что мировой потенциал ветроэнергетики составляет более 400 ТВт (тераватт). Использовать энергию ветра можно практически где угодно.
10. Большой потенциал для жилищного строительства
Энергия ветра особенно привлекательна для жилищного рынка. Люди могут вырабатывать собственное электричество с помощью энергии ветра во многом так же, как люди с лучшими солнечными батареями (фотоэлектрическими).
Wind — это независимый источник энергии, и он отлично подходит для электроснабжения домов. В дополнение к этому, домовладельцы, использующие энергию ветра, также получают доступ к так называемому чистому счетчику. Сетевой счетчик в основном предоставляет кредит на счета за электроэнергию за любую избыточную мощность, произведенную в данном месяце.
Домовладельцам фактически платят за дополнительное производство энергии, и это может даже защитить их от отключений электроэнергии, а также от колебаний цен на энергию.
11. Ветряные фермы могут быть построены на существующих фермах
Ветряные турбины невероятно компактны и могут быть установлены на существующих фермах или сельскохозяйственных угодьях в сельской местности, где они могут быть источником дохода для фермеров, поскольку владельцы ветряных электростанций платят фермерам за использование своей земли для производства электроэнергии.Он не занимает много места, и фермеры могут продолжать работать на земле.
В настоящее время ветряными электростанциями используется менее 1,5% прилегающей территории США. Однако, если все равнины и земли для крупного рогатого скота будут доступны во внутренней части страны, появится много возможностей для расширения, если землевладельцы и государственные землеустроители будут готовы к этому.
12. Сохраняет и сохраняет воду чистой
Турбины не производят выбросов твердых частиц, которые способствуют загрязнению ртутью наших озер и ручьев.Энергия ветра также сохраняет водные ресурсы. Для производства того же количества электроэнергии ядерная энергия требует примерно в 600 раз больше воды, чем ветер, а уголь требует примерно в 500 раз больше воды, чем ветер.
13. Ветроэнергетика создает рабочие места
С тех пор, как ветряные турбины стали коммерчески жизнеспособными, ветроэнергетика пережила бум. В результате отрасль создала рабочие места по всему миру. Сейчас существуют рабочие места для производства, установки, обслуживания ветряных турбин, и есть даже рабочие места в области консультирования по ветроэнергетике.
Согласно отчету Международного агентства по возобновляемым источникам энергии (IRENA), в отрасли возобновляемых источников энергии в 2017 году работало более 10 миллионов человек во всем мире. Из них 1,15 миллиона рабочих мест приходились на ветроэнергетику. Китай лидирует в предоставлении более 500 000 таких рабочих мест. На втором месте Германия с примерно 150 000 рабочих мест, а Соединенные Штаты — на третьем месте с примерно 100 000 рабочих мест в ветроэнергетике.
Различные минусы ветроэнергетики
1. Надежность ветра
Ветер обычно не дует надежно, и турбины обычно работают с мощностью около 30% или около того.В случае, если погода не поможет вам, вы можете остаться без электричества (или, во всяком случае, вам придется полагаться на электрическую компанию, которая позаботится о вас в это время). Сильный шторм или сильный ветер могут нанести вред вашей ветряной турбине, особенно если в них ударила молния.
2. Ветровые турбины могут быть угрозой для дикой природы
Края ветряных турбин могут быть небезопасными для диких животных, особенно птиц и других летающих существ, которые могут находиться в этом районе.На самом деле нет способа предотвратить это, но вы определенно хотите убедиться, что вы знаете о возможных последствиях, которые могут возникнуть в результате этого.
3. Ветровые турбины могут вызывать шум и визуальное загрязнение
Ветряные турбины могут быть сложной задачей при установке и ремонте на регулярной основе. Ветряные турбины издают звук мощностью от 50 до 60 децибел, если вам нужно поставить его рядом с домом. Некоторые люди считают ветряные турбины некрасивыми, поэтому ваши соседи тоже могут на них жаловаться.
В то время как большинству людей нравится, как выглядят ветряные турбины, мало кому они нравятся, но с отношением NIMBY («не на моем заднем дворе»), но в остальном ветряные турбины остаются непривлекательными, поскольку они опасаются, что это может омрачить красоту ландшафта.
4. Установка стоит дорого
Производство и установка ветряных турбин требует значительных предварительных инвестиций как в коммерческих, так и в жилых помещениях. Ветровые системы могут включать транспортировку большого и тяжелого оборудования, вызывая большие временные нарушения порядка возле турбин.Эрозия — еще одна потенциальная экологическая проблема, которая может возникнуть в результате строительных работ.
Ветряные турбины и другие расходные материалы, необходимые для производства энергии ветра, могут быть очень дорогими заранее, и в зависимости от того, где вы живете, может быть трудно найти кого-то, кто их вам продает, и кого-то, кто сможет поддерживать их в течение долгого времени.
5. Компромисс затрат
Экономическая конкурентоспособность ветроэнергетики весьма спорна. Как ветряные электростанции, так и небольшие жилые ветряные турбины, как правило, в значительной степени полагаются на финансовые стимулы.Финансовые стимулы имеют решающее значение для того, чтобы дать ветроэнергетике шанс в жесткой конкуренции с уже хорошо зарекомендовавшими себя источниками энергии, такими как ископаемое топливо и уголь.
Ветровые турбины являются отличной альтернативой в некоторых ситуациях для домовладельца, который хочет стать производителем энергии, но для того, чтобы стать чистым производителем электроэнергии, потребуются ветровые турбины мощностью около 10 киловатт и от 40 000 до 70 000 долларов. Такие инвестиции обычно окупаются через 10–20 лет, что довольно долго.
6. Безопасность людей в группе риска
Сильный шторм и сильный ветер могут повредить лопасти ветряных турбин. Неисправное лезвие может представлять опасность для людей, работающих поблизости. Он может упасть на них, что приведет к пожизненной инвалидности или даже смерти в некоторых случаях.
7. Ветровую энергию можно использовать только в определенных местах
Энергию ветра можно использовать только в определенных местах, где скорость ветра высока. Поскольку они в основном расположены в отдаленных районах, необходимо построить линии электропередачи для подачи электроэнергии в жилые дома в городе, что требует дополнительных инвестиций для создания инфраструктуры.
8. Мерцание тени
Мерцание тени возникает, когда лопасти ротора отбрасывают тень при повороте. Исследования показали, что наихудшие условия могут повлиять на соседних жителей за счет изменения освещения в общей сложности на 100 минут в год и только на 20 минут в год при нормальных обстоятельствах. Проектировщики ветряных электростанций избегают размещения турбин в местах, где мерцание теней будет проблемой в течение значительного периода времени.
9. Воздействие на окружающую среду
Он обязывает тонну открытой местности для установки ветряных турбин, а вырубка деревьев как бы устраняет всю зелень, которую вы пытаетесь сделать с ними.Места, которые могут быть хорошими для этого, могут быть труднодоступными и использоваться. Согласованность с городскими правилами и предписаниями может быть утомительной, когда вы пытаетесь установить ветряную турбину. Иногда ограничение по высоте может помешать вам установить его и на своей территории.
Использование энергии ветра
Ветер — уникальный ресурс, потому что мы взаимодействуем с ним каждую минуту. Его использовали с древних времен, и это самый экологически чистый источник энергии. Он имеет широкий спектр применения.Некоторые из них могут быть вам знакомы, но другие могут застать вас врасплох. Достаточно сказать, давайте рассмотрим самые инновационные способы использования энергии ветра. :
1. Энергию ветра можно использовать в транспортных средствах
В ходе исследования вы, должно быть, встречали ветряные машины. Если нет, то знайте, что есть автомобили, приводимые в движение в основном ветром. Типичный пример — широко задокументированный ветряк, который проехал 3100 миль по Австралии.
Хотя он не был полностью оснащен ветром, он является прекрасным примером того, как автомобили можно перемещать с помощью альтернативных источников энергии. Точнее, в машине использовалась комбинация батарей, ветра и воздушного змея. На всю поездку автомобиль потреблял от 10 до 15 долларов энергии, что подчеркивает рентабельность энергии ветра.
2. Отличный источник питания
Электричество — главный источник энергии во всем мире. Из-за обилия электричества почти все производимые устройства питаются от электричества.Традиционный способ производства электроэнергии — это использование ископаемых видов топлива, таких как нефть, природный газ и уголь. Эти ископаемые виды топлива выделяют парниковые газы и другие вредные вещества, загрязняющие окружающую среду.
Энергия ветра избавляет от вредных газов, выбрасываемых в атмосферу. Энергия ветра улавливается с помощью стратегически расположенных ветряных турбин. Это можно осуществить в массовом масштабе, например, с помощью ветряных турбин, установленных на ветряных электростанциях. Это могут быть небольшие по размеру, например, ветряные турбины, устанавливаемые людьми для производства энергии для домашнего использования.
3. Парусные грузовые суда
Типичным примером использования энергии ветра являются грузовые суда, разработанные Cargill, Inc., американской корпорацией, стремящейся обеспечить рост мира за счет внедрения передовых технологий. Компания Cargill расширила масштабы и полностью приняла идею установки огромного воздушного змея на одном из своих грузовых судов для использования энергии ветра.
Проект направлен на сокращение потребления топлива и выбросов углекислого газа. Все мы знаем, что энергия ветра использовалась на протяжении веков для приведения в действие парусных и небольших судов, но новаторы подняли ее на ступеньку выше, чтобы помочь управлять грузовыми судами.
4. Энергию ветра можно использовать в спорте
В течение бесчисленных лет энергия ветра использовалась для некоторых захватывающих видов спорта, таких как виндсерфинг, парусный спорт, запуск воздушных змеев, дельтапланеризм, кайтсерфинг, виндовые лыжи, парасейлинг и многое другое.
5. Для перекачивания воды можно использовать энергию ветра
Использование энергии ветра для перекачки воды из-под земли не является новой технологией. Его использовали с давних времен. Это дешевая альтернатива для некоторых стран и сообществ.По сути, нет никаких экстраординарных затрат по сравнению с использованием огромных насосных линий, работающих на ископаемых источниках энергии.
В связи с тем, что многие люди переходят к экологически чистому образу жизни и вынуждены жить в районах со свежим воздухом, лишенным парниковых газов, энергия ветра в ближайшие годы будет доминировать в энергетическом секторе. Он будет экологически чистым, возобновляемым и дешевым, если будут внедрены технологии ветроулавливания.
Артикул:
Управление энергоэффективности и возобновляемых источников энергии, Основы ветроэнергетики
Рыбак ловит устройство для наблюдения за рыбой для исследования ветряной электростанции
Десятки устройств подводного мониторинга, прикрепленных к большим бетонным блокам, были размещены в водах у восточного Южного берега, и один рыбак из Монтаука, который случайно вытащил один из них в понедельник, раскритиковал исследователей за неудачу правильно уведомить рыболовный флот.
Исследователи рыболовства и ветряная электростанция Саут-Форк подтвердили, что эти устройства являются частью усилий по изучению рыболовного поведения, отчасти из-за опасений рыбаков по поводу кабелей ветряных электростанций, влияющих на их средства к существованию. Университет Стони Брук и его партнеры развертывают датчики для изучения рыбы с 2008 года
Коммерческий рыбак Дэн Уорнер оценил, что устройство мониторинга, встроенное в бетонный блок, весило более 500 фунтов и оказалось в его траловой сети, когда он ловил рыбу в этом районе ранее на этой неделе.
«Он вырвал брюхо моей сети, разбил борт моей лодки, и мне потребовалось два часа, чтобы вытащить ее», — сказал он. «Это был кошмар».
Хуже того, сказал он, компания Orsted-Eversource, заказавшая исследование ветряных электростанций, не уведомила его или других рыбаков, работающих в этом районе, некоторые из которых заявили, что они также столкнулись с устройствами, которые связаны цепью и веревкой с два буя, которые, по словам Уорнера, не достигли поверхности.
«Не было никаких навигационных предупреждений, ничего», — сказал он.
Эти устройства являются частью исследования, направленного на определение того, влияют ли электромагнитные и другие электрические поля от кабелей ветряной электростанции на движения и поведение рыб, что беспокоит некоторых рыбаков.
Когда Бонни Брэди, исполнительный директор Ассоциации коммерческого рыболовства Лонг-Айленда, начала задавать вопросы, она сказала, что получила записку от Cornell Cooperative Extension, которая работает с Университетом Стоуни-Брук для размещения устройств, поскольку Орстед планирует установить кабель к подключить его ветряную электростанцию Саут-Форк.
«Мы недавно установили акустический массив для мониторинга воздействия прокладки кабеля / электромагнитного поля на важные промысловые виды рыб», — говорится в примечании, направленном в Newsday. «… Проект находится на начальной стадии сбора данных до прокладки кабеля».
Команда заявила, что «хотела бы свести к минимуму потерю приемников и любое возможное повреждение рыболовных снастей», и предоставила список координат приемников, заявив, что «хотела бы отправить эту информацию рыболовному флоту.Он попросил Брэди прислать список электронных писем рыболовных капитанов из Монтока и Шиннекока. «Мы будем благодарны за любую помощь!» Исследователи заявили, что ранее они предоставили общую карту сенсорного поля во время собрания общественной рабочей группы весной, но не смогли предоставить окончательные конкретные местоположения, пока все сенсоры не были развернуты в начале этой недели.
Брэди сказал, что время отправить уведомление было до того, как устройства были установлены.
Уведомление «Они ничего из этого не сделали», — сказал Брэди.«Они бросили вещи, и у ребят начались проблемы, но они ничего не сделали». Она отправила письмо профессору Стоуни-Брук Майклу Фриску, который также возглавляет Консультативный совет по морским ресурсам DEC, с просьбой перенести некоторые из устройств, которые конфликтуют с рыболовством.
Warner сказал, что он уведомил береговую охрану об устройствах и сказал, что ему сказали, что они не знали о них. Представитель береговой охраны не сразу ответил.
ПредставительDEC Морин Рен заявила, что агентство не требует разрешений на размещение устройств в воде.
DEC действительно одобрила разрешение для Стоуни-Брук и Корнелл «собирать и хранить» рыбу для хирургической маркировки в рамках исследования, но DEC «не участвовала в планировании размещения массивов», — заявила пресс-секретарь Лори Северино. .
ПредставительOrsted / Eversource Миган Вимс сообщила, что проект обсуждался на заседаниях Рабочей группы по исследованиям в области рыболовства, в которую входили DEC, город Ист-Хэмптон и другие официальные лица, а также ассоциация коммерческого рыболовства. Но Брэди сказал, что это никогда не обсуждалось, когда она посещала собрания.
Тем не менее, как сказал Вимс из Orsted / Eversource, South Fork Wind «продвигаясь вперед… из излишней осторожности будет уведомлять о местонахождении датчиков в нашем [обычном] брифинге Mariner’s Briefing». Она сказала, что компания связалась с одним рыбаком, чтобы устранить повреждение его траловой сети.
Вимс сказал, что датчики того типа, которые были сброшены в водах Ист-Энда, «довольно часто встречаются в этом районе» и являются частью «обязательства компании по проведению промысловых исследований по маршруту подводного кабеля».”
Лорен Шепроу, пресс-секретарь Университета Стоуни-Брук, заявила, что в водах Нью-Йорка развернуто около 130 датчиков, и новые датчики являются частью «более широкой сети приемников» вдоль Восточного побережья, чтобы «отслеживать перемещения различных рыб. ”
Шепроу сказал, что команда поделилась координатами с ассоциацией коммерческого рыболовства, «как только наши исследователи завершили развертывание швартовки» на этой неделе. Группа уже настраивала устройства и ранее не отправляла уведомления.
УловкаУорнера заключалась в том, что «что-то подобное произошло впервые», — написала она. «Мы не ожидали повреждения оборудования». Предыдущие мониторы были установлены в Монтоке, Джонс-Бич и Рокавей.
ПредставительDEC Морин Рен отметила, что проект не велся DEC и агентство «не проинформировано о сроках развертывания» датчиков. Она сказала, что в то время как его список распределения рыбной ловли предназначен для правил и рекомендаций, DEC будет готова использовать его для отправки информации о датчиках, «если будет уведомлено и запрошено» группой.
Брэди сказал, что уведомление в понедельник было слишком поздно — рыбаки должны были сказать, где и были ли установлены устройства.
как сделать из них будущее зеленой электроэнергии
С 2010 года ветроэнергетика во всем мире демонстрирует устойчивый рост, при этом количество энергии, вырабатываемой морским ветром, увеличивается почти на 30% каждый год. Странам всего мира необходимо быстро наращивать предложение возобновляемой энергии, чтобы удовлетворить растущий спрос и быстро сократить выбросы.Несмотря на эту срочность, в настоящее время оффшорный ветер обеспечивает менее 1% мирового электроснабжения.
Многие из лучших мест на мелководье для строительства ветряных электростанций находятся в стадии разработки. Но потенциал морской ветроэнергетики по-прежнему остается в значительной степени неиспользованным, согласно графику установленной мощности по всему миру, приведенному ниже.
Береговая ветроэнергетика и морская мощность
Обозначения: морской ветер = светло-серый, а прибрежный ветер = темно-серый. IRENA, предоставлено авторомПричина этого неиспользованного потенциала заключается в том, что 80% ветра беспрерывно дует дальше от берега — на глубине более 60 метров, где турбины, встроенные в морское дно, сложно построить.
Решением могут быть плавучие морские ветряные электростанции. Так что же их сдерживает?
Плавающий морской ветер
Все, кроме нескольких существующих оффшорных ветряных турбин, прикреплены к морскому дну с помощью фиксированного фундамента — в основном большой стальной трубчатой сваи, переходящей к турбинной мачте над морским дном. Эти так называемые турбины с неподвижным дном ограничены водной глубиной 50 или 60 метров.
Но недавние проекты, включая Hywind у побережья Шотландии и Windfloat у Португалии, показывают, что можно построить плавающие ветряные турбины.Одна турбина мощностью шесть мегаватт — например, те, что используются на ферме Хайвинд — может вырабатывать достаточно электроэнергии для питания 4000 домов в Великобритании.
Но чтобы обеспечить к 2050 году эквивалентную бытовую электроэнергию для населения планеты, численность которого составляет 9 миллиардов человек, потребуется около полумиллиона морских ветряных турбин — в 100 раз больше нынешнего числа — плюс дополнительные мощности для обеспечения электроэнергией будущего спроса на энергию.
К сожалению, хотя плавучие ветряные электростанции технически осуществимы, они не являются экономически жизнеспособными.Делать что-либо в оффшоре — дорогое удовольствие. Чтобы построить ветряную электростанцию с фиксированным дном мощностью 1 гигаватт, необходимо провести обследование территории примерно в 15 миллионов фунтов стерлингов. Установка и ввод в эксплуатацию фермы обойдутся примерно в 650 миллионов фунтов стерлингов, в то время как текущие расходы на эксплуатацию и техническое обслуживание составят примерно 75 миллионов фунтов стерлингов в год. По окончании срока службы, который может составлять около 25 лет, для вывода из эксплуатации потребуется еще 300 миллионов фунтов стерлингов.
Тем не менее, плавучие ветряные электростанции, дизайн и технологии которых еще только зарождаются, стоят еще дороже.В то время как цена на поставку морской ветровой энергии в 2019 году варьировалась от 36 до 45 фунтов стерлингов за МВт-ч электроэнергии, текущие аукционы по плавающей ветровой энергии оцениваются в два раза больше.
Морские сооружения тоже очень большие. Шестимегаваттные турбины Hywind имеют диаметр 154 метра — длина каждой лопасти равна размаху крыльев самолета A380. Турбина Siemens Gamesa мощностью 10 мегаватт имеет диаметр ротора 193 метра, а эталонная турбина мощностью 15 мегаватт Национальной лаборатории возобновляемой энергии США имеет диаметр 240 метров.Строительство, установка, эксплуатация, мониторинг, обслуживание и снятие с эксплуатации инфраструктуры такого масштаба в океане — нетривиальная задача.
Две из пяти турбин, используемых на первой в мире плавучей ветряной электростанции Hywind Scotland. Терье Аасе / ShutterstockВ то время как энергетические компании часто строят далеко в море, одна плавучая ветряная турбина производит намного меньше энергии, чем одна морская нефтяная или газовая вышка. В течение срока службы, в зависимости от размера обеих конструкций, он может быть в 1000 раз меньше.Таким образом, требуется гораздо больше инфраструктуры для того же выхода энергии из возобновляемых источников. Вывести морскую ветряную турбину в море и держать ее там должно быть намного дешевле, чтобы соответствовать стоимости производства энергии из морской нефти или газа.
Из традиционного морского инжиниринга можно многому научиться, чтобы помочь с переходом на возобновляемые источники энергии. Но необходимого сокращения затрат невозможно добиться, если делать то же самое или повышать эффективность существующих методов и технологий.
Технические решения
Вот почему, вероятно, потребуются новые технологии, чтобы сделать плавучие ветряные электростанции рентабельными. Например, использование роботов и других автономных технологий для управления морскими инженерными работами — от исследования морского дна до эксплуатации, проверки и обслуживания плавучей ветряной турбины — может снизить риск для рабочих и обеспечить более эффективный контроль над этими сложными системами.
Регулярные инспекции оффшорных ветряных электростанций людьми были бы непрактичными для огромных объектов, строящихся сегодня, и, конечно, для тех, которые запланированы в будущем.Интеллектуальные датчики, встроенные во все части плавучей ветряной электростанции, могут непрерывно оценивать состояние конструкции.
Машинное обучение, использующее данные для обучения компьютеров самостоятельному принятию решений, можно использовать для определения наиболее эффективного якоря во время проектирования или для определения вероятности выхода из строя швартовки во время эксплуатации.
Машинное обучение уже может использовать данные о погоде для управления положением лопастей турбины, чтобы максимизировать количество энергии, которое они генерируют, или предотвратить повреждение при сильном ветре или шторме.Новые методы, сочетающие физику с машинным обучением, могут делать надежные прогнозы с меньшим объемом данных, что полезно в оффшорах, где данные могут быть трудными для сбора.
Поскольку правительство Великобритании начинает расследование видов технологических инноваций, которые могут помочь в борьбе с изменением климата, оффшорная ветровая энергия является первой точкой захода. Благодаря инвестициям в технологии будущего, плавучие ветряные электростанции могут помочь увеличить мощность возобновляемых источников энергии в стране и во всем мире.
Нет, замерзшие ветряные турбины не виноваты в отключении электроэнергии в Техасе
Подпишитесь на наш ежедневный информационный бюллетень The Brief, который держит читателей в курсе самых важных новостей Техаса.
Замерзшие ветряные турбины в Техасе заставили некоторых консервативных политиков штата заявить во вторник, что штат слишком полагается на возобновляемые источники энергии. Но в действительности ожидалось, что энергия ветра будет составлять лишь малую часть того, что штат запланировал на зиму.
Совет по надежности электроснабжения Техаса прогнозировал, что 80% зимней мощности сети, или 67 гигаватт, может быть произведено за счет природного газа, угля и некоторой части ядерной энергии.
Февральская зимняя буря 2021 года
Когда вернется моя вода? Как мне тем временем достать воду?
Мы не знаем. Власти штата и города призывают к терпению и советуют техасцам, у которых есть проточная вода, кипятить ее. Примите все необходимые меры, чтобы подготовиться к нескольким дням без воды. Официальные лица в Остине, например, заявили.19, что восстановление водоснабжения, вероятно, станет многодневным процессом для всего города. Здесь у нас есть некоторые ресурсы, но лучший вариант, чтобы найти бесплатную воду, — это проверить местные СМИ.
Получу ли я большой счет за электроэнергию?
Не надо сразу. Власти Техаса подписали приказ, временно запрещающий поставщикам электроэнергии отправлять счета жителям.Приказ является временной мерой, дающей чиновникам время для решения проблемы резкого роста счетов некоторых жителей. Чиновники также подписали приказ, запрещающий поставщикам коммунальных услуг отключать обслуживание жителей, не оплативших счет. Подробнее читайте здесь.
Как я могу получать обновления?
Подпишитесь на наши новости, отправив текстовое сообщение «привет» на номер 512-967-6919 или посетив эту страницу.
Я был без электричества больше суток. Почему люди называют это откатывающимися отключениями?
Когда в 1:25 утра по центральному времени 15 февраля государственный электросетевой оператор начал отключать электричество, это планировалось как временная мера на случай экстремальных зимних явлений. Вместо этого некоторые техасцы остаются без электричества намного дольше, сталкиваясь с днями без электричества вместо первоначально запланированных 45 минут. Электросеть была спроектирована так, чтобы пользоваться большим спросом летом, когда техасцы включают дома кондиционеры.Но некоторые источники энергии, питающие сеть летом, отключены зимой. Поэтому, когда техасцы остались дома во время шторма в воскресенье и потребовали рекордное количество электроэнергии, энергосистема штата не выдержала.
Подождите, у нас есть своя электросеть? Почему?
Да, в Техасе есть своя собственная энергосистема, управляемая агентством ERCOT, Совет по надежности электроснабжения Техаса.История длинная, но короткая версия такова: в Техасе есть собственная сеть, чтобы избежать соблюдения федеральных правил. В 1935 году президент Франклин Д. Рузвельт подписал Закон о федеральной энергетике, согласно которому Федеральная энергетическая комиссия возлагала на Федеральную комиссию по энергетике ответственность за межгосударственные продажи электроэнергии. Но коммунальные предприятия Техаса не пересекают границы штата. ERCOT была образована в 1970 году после крупного отключения электроэнергии на северо-востоке в ноябре 1965 года, и ей было поручено управлять надежностью сети в соответствии с национальными стандартами.Обратите внимание, что не весь Техас находится в одной электросети. Эль-Пасо находится на другой сетке, как и верхний Панхэндл и кусок Восточного Техаса.
Я читал в Интернете, что ветряные турбины — причина того, что мы потеряли электроэнергию. Это правда?
Нет. Потеря энергии ветра составляет лишь часть сокращения генерирующих мощностей, которое привело к отключениям миллионов техасцев.Представитель Совета по надежности электроснабжения Техаса заявил 16 февраля, что 16 гигаватт возобновляемой энергии, в основном ветровой, отключены. Почти вдвое больше, 30 гигаватт, было потеряно из-за источников тепла, включая газ, уголь и ядерную энергию. «Техас — это газовый штат», — сказал Майкл Уэббер, профессор энергетических ресурсов Техасского университета в Остине. «Газ сейчас терпит крах самым зрелищным образом».
Как мне согреться? Как я могу помочь другим?
Национальная метеорологическая служба призывает людей закрывать шторы и шторы, по возможности собираться в одной комнате и закрывать двери для других, а также засовывать полотенца в щели под дверями.Носите свободные слои теплой легкой одежды. Перекус и потребление жидкости помогут согреть тело. В некоторых городах есть центры обогрева и транспорт по мере необходимости — местные ресурсы можно найти здесь. Если у вас есть ресурсы или вы можете делать финансовые пожертвования, найдите некоммерческие организации, которые помогают людям здесь.
- Посмотреть больше материалов
Представитель Совета по надежности электроснабжения Техаса сообщил во вторник днем, что 16 гигаватт возобновляемой энергии, в основном ветровой, отключены.Почти вдвое больше, 30 гигаватт, было потеряно из-за источников тепла, включая газ, уголь и ядерную энергию.
К среде эти цифры изменились, поскольку все больше операторов изо всех сил пытались работать в холодную погоду: всего 45 гигаватт были отключены, из которых 28 гигаватт от тепловых источников и 18 гигаватт от возобновляемых источников, заявили представители ERCOT.
«Техас — газовый штат», — сказал Майкл Уэббер, профессор энергетических ресурсов Техасского университета в Остине.
В то время как Уэббер сказал, что в энергетическом кризисе виноваты все источники энергии Техаса, газовая промышленность производит значительно меньше энергии, чем обычно.
«Газ сейчас терпит крах, — сказал Уэббер.
Дэн Вудфин, старший директор ERCOT, поддержал это мнение во вторник.
«Похоже, что большая часть поколения, которое сегодня отключилось от сети, в основном связано с проблемами в системе природного газа», — сказал он во вторник во время телефонного разговора с журналистами.
Тем не менее, некоторые обвиняют ветроэнергетику.
«Это то, что происходит, когда вы заставляете сеть частично полагаться на ветер в качестве источника энергии», — написал в Твиттере во вторник во второй половине дня представитель США Дэн Креншоу из штата Хьюстон. «Когда погодные условия становятся плохими, как это было на этой неделе, периодические возобновляемые источники энергии, такие как ветер, перестают быть там, когда вам это нужно».
Далее он обратил внимание на остановку ядерного реактора в Бэй-Сити из-за холода и, наконец, дошел до того, что эксперты по энергетике считают самым большим виновником, написав: «Низкое снабжение природного газа: ERCOT запланировал на 67 ГВт из природного газа / угля. , но в сети можно было получить только 43 ГВт.У нас не закончился природный газ, но у нас закончилась возможность получать природный газ. На трубопроводах в Техасе не используется холодная изоляция, поэтому все замерзало ».
Комиссар по сельскому хозяйству Сид Миллер, известный своими публикациями правых в Facebook, которые в прошлом распространяли дезинформацию и усиливали теории заговора, также опубликовал в Facebook неприукрашенный обзор ветроэнергетики: «Мы никогда не должны строить еще одну ветряную турбину в Техасе. «
В другом посте Миллер был еще более откровенен, но также вводил в заблуждение.«К травме добавилось оскорбление: эти уродливые ветряные турбины — одна из основных причин, по которой мы испытываем отключение электричества», — написал он. «Разве это не иронично? … Вот вам и неприглядные и непродуктивные, лишающие энергии памятники Обаме. По крайней мере, они показывают нам, где живут идиоты ».
В то время как скептики ветроэнергетики утверждали, что неделя заморозки означает, что на ветровую энергию нельзя положиться, ветровые турбины, как и газовые электростанции, могут быть «подготовлены к зиме» или модифицированы для работы при очень низких температурах.Эксперты говорят, что многие электрогенераторы Техаса не инвестировали необходимые средства для предотвращения сбоев в работе оборудования, поскольку в штате редко случаются сильные зимние штормы.
По оценкам, из общей зимней мощности сети около 80%, или 67 гигаватт, может быть произведено за счет природного газа, угля и некоторой ядерной энергии. Ожидалось, что только 7% прогнозируемой зимней мощности ERCOT, или 6 гигаватт, будет приходиться на различные источники ветровой энергии по всему штату.
Производство природного газа в штате резко сократилось из-за морозных условий, что затруднило получение электростанциями топлива, необходимого для их работы. По словам экспертов, на электростанциях, работающих на природном газе, обычно не так много топлива. Вместо этого заводы полагаются на постоянный поток природного газа из трубопроводов, которые проходят через штат от таких областей, как Пермский бассейн, добывающий нефть и природный газ, в Западном Техасе до крупных центров спроса, таких как Хьюстон и Даллас.
ГубернаторГрег Эбботт уточнил, что источники ископаемого топлива вносят свой вклад в проблемы с энергосистемой, описывая ситуацию в понедельник днем.
«Возможности некоторых компаний, производящих электроэнергию, были заморожены. Это включает в себя генераторы природного газа и угля », — написал он в твиттере.
Хизер Зичал, генеральный директор отраслевой группы American Clean Power Association, заявила, что противники возобновляемой энергии пытались отвлечь внимание от сбоев в других частях системы и замедлить «переход к экологически чистой энергии будущего».”
«Позорно видеть, как давние противники чистой власти — которые нападают на нее, идет ли дождь, снег или светит солнце — участвуют в политически оппортунистической шараде, вводя американцев в заблуждение, продвигая программу, не имеющую ничего общего с восстановлением власти. сообществам Техаса », — сказала она.
Мэтью Уоткинс предоставил репортаж.