Обзор тепловых насосов для отопления
Тепловой насос — хорошая альтернатива традиционному отоплению частного дома. Прибор, используемый в течение 30 лет в странах Запада, в России еще является новинкой. Препятствием для его широкого использования являются два фактора: высокая стоимость и недостаток сведений о тепловых насосах, их преимуществах и принципах работы. Показателем практичности геотермальной системы отопления служит ее популярность на Западе. Так, тепловыми насосами в Швеции и Норвегии отапливаются около 95% домов. Предлагаем вам подробнее ознакомиться с устройством и принципами работы этого теплового оборудования, за которым, непременно, будущее.Что такое тепловой насос?
Тепловой насос — прибор, поглощающий из окружающей среды (вода, земля, воздух) низко потенциальную тепловую энергию и передающий ее в системы теплоснабжения с более высокой температурой.
Природа вокруг нас пропитана энергией. Даже мороз обладает теплом. Энергию невозможно извлечь из окружающей среды только при температуре -273 °С. Поэтому даже в самую лютую зиму загородный дом может отапливаться за счет энергии, полученной от природы.
В зависимости от источника энергии (вода, земля, воздух), происходит модификация тепловых насосов. Однако наиболее практичным и испытанным является геотермальный тепловой насос, применяющий энергию грунта. Он идеально подходит для российских условий.
Геотермальное отопление работает по одному из трех направлений:
- Сквозь специальную трубу, установленную в скважине, грунтовые воды извлекаются на поверхность земли. Они имеют определенную температуру. Проходя через теплообменник, вода передает свое тепло, за счет которого совершается прогрев дома. Затем вода возвращается в грунт, ниже по течению.
- В скважину глубиной примерно 75 — 100 метров опускается резервуар с антифризом, температура которого может повышаться от окружающего грунта. Тепловой насос разгоняет антифриз и пропускает его через теплообменник. За счет этого совершается отдача тепла.
- В данном случае бурение скважины не предусматривается, однако дом должен находиться рядом с крупным водоемом. Специальная магистраль в виде зондов прокладывается по дну водоема. Таким образом происходит перекачивание воды и извлечение из нее тепла. Важный нюанс — достаточная глубина водоема, которая даже зимой под толщей льда позволит сохранять до 150 сантиметров свободной воды.
Использование геотермального отопления, как и любой системы теплоснабжения, позволит не только обогреть дом, но и обеспечить горячей водой, обогреть автостоянку или теплицу, нагреть воду в бассейне
Преимущества использования теплового насоса
- Экономичность. Благодаря высокому КПД системы достигается низкое энергопотребление. Из 1 кВт затраченной электроэнергии получается от 3 до 7 кВт тепловой энергии. Это больше, чем при работе любых котлов, использующих топливо.
- Автономность. Работа насоса не нуждается в подаче органического топлива, поэтому нет необходимости прокладывать тепловые коммуникации.
- Универсальность. В одном устройстве сочетаются одновременно системы нагрева воды, отопления и охлаждения.
- Безопасность. В отличие от котлов, которые могут воспламениться или взорваться, тепловой насос является абсолютно безопасным. Он не содержит деталей, температура которых может привести к пожару. Не выделяет угарный ядовитый газ. Остановка работы не приведет к поломке или замораживанию жидкости.
- Надежность. Работой насоса управляет автоматика. Обслуживание не требует специального обучения.
- Долговечность. Прибор может прослужить от 20 до 50 лет. Это на порядок больше, чем у стандартных систем отопления.
- Комфорт. Функционирование насоса не сопровождается колебанием температуры и влажности. Работает практически бесшумно.
- Минимум площади требуется под скважину. Так как зонд находится под землей, повредить его невозможно.
- Экологичность. Окружающая среда не загрязняется вредными выбросами.
- Отсутствие бумажной волокиты. При монтаже не нужны согласования, как, например, при установке газового отопления.
Принцип работы теплового насоса
Работу теплового насоса можно сравнить с работой обычного холодильника. Только вместо холода аппарат вырабатывает тепло. Веществом, передающим энергию, является фреон — газ или жидкость с низкой температурой кипения. При испарении он поглощает тепло, а при конденсации — отдает его.Тепловой насос — главный элемент системы. Его размеры не превышают габаритов средней стиральной машины, что облегчает установку прибора. Сам насос включается в два контура: внутренний и внешний.
Внутренний контур состоит из системы теплоснабжения дома (трубы и радиаторы).Внешний контур находится в воде или под землей. Он включает в себя коллектор-теплообменник и трубы, связывающие коллектор с насосом.
Тепловые насосы комплектуются различными дополнительными устройствами. Это могут быть:
- коммуникационное устройство для управления системой через персональный компьютер или мобильный телефон;
- блок охлаждения для локальной или центральной системы охлаждения;
- дополнительный насосный блок может потребоваться для отопления полов;
- циркуляционный насос необходим для циркуляции горячей воды;
Процесс работы насоса состоит из нескольких этапов:
- Незамерзающая смесь подается в коллектор. Происходит поглощение тепловой энергии и транспортировка ее к насосу.
- В испарителе энергия передается фреону, где он нагревается до 8 °C, закипает и превращению в пар.
- При увеличении давления в компрессоре повышается температура. Она может достигать 70 °C.
- Внутридомовая система отопления получает тепловую энергию через конденсатор. Фреон мгновенно охлаждается и переходит в жидкое состояние, отдавая при этом оставшееся тепло. Затем он идет обратно в коллектор. Так завершается цикл.
- Далее работа повторяется по тому же принципу.
Наиболее эффективно тепловой насос функционирует при наличии в доме теплых полов. Тепло распределяется по всей площади пола равномерно. При этом отсутствуют зоны перегрева. Теплоноситель в системе редко нагревается больше 35 °C, а отопление путем нагрева полов считается наиболее комфортным при 33 °C. Это меньше на 2 °C чем при отоплении радиаторами. Отсюда возникает экономия до 18% в год от всего отопительного бюджета. Кроме того, считается, что отопление на уровне пола наиболее комфортно для проживания человека.
Система отопления может быть моновалентной и бивалентной. У моновалентных систем один источник отопления. Он полностью отвечает круглогодичной потребности в тепле. У бивалентных, соответственно, — два источника.
Отопление дома в зимний период
На территории с более суровыми климатическими условиями актуально использование бивалентной системы отопления. За счет второго источника тепла расширяется диапазон температур. Работы одного теплового насоса достаточно только до уровня температуры -20 °С. При большем ее понижении подключаются электрообогреватель, камин, жидкотопливный или газовый котел. При этом мощность теплового насоса ограничивается от максимальной зимней потребности до 70 — 80%. Недостающие 20 — 30% дает дополнительный источник тепла. Это снижает общую эффективность работы системы. Однако снижение является незначительным.
При полном переходе на отопление здания геотермальной системой (в случае, когда не планируется устанавливать дополнительно котел или электроприбор) тепловой насос применяется совместно с внутренним модулем, содержащим небольшой встроенный электронагреватель. Он поддержит прибор, когда температура окружающей среды будет ниже -20 °С.
В каких случаях использование теплового насоса является обоснованным?
Вопрос отопления загородного дома предполагает рассмотрение нескольких вариантов:
- Газ. При отсутствии рядом с домом газопровода это становится невозможным. В ряде регионов купить газ можно только в баллонах.
- Уголь или дрова. С ними отопление превращается в трудоемкий и малоэффективный процесс.
- Жидкотопливный котел требует больших расходов на топливо и специального помещения. Особое хранение необходимо и самому топливу, что неудобно в небольшом доме.
- Отопление электричеством обходится очень дорого.
Окупаемость теплового насоса сложно выразить в усредненном числовом значении. Все зависит от его начальной стоимости. Суть установки такого отопления сводится к перспективе. Хотя количество потребляемой электроэнергии — в 3−5 раз меньше, чем у других систем отопления, все же необходимо подсчитать в денежном эквиваленте все энергозатраты за год и сравнить их со стоимостью системы, ее монтажа и эксплуатации.
Достигнуть максимальной эффективности применения теплового насоса можно при соблюдении двух важных условий:
- Отапливаемое здание должно быть утепленным, а показатель теплопотерь не должен превышать 100 Вт/м2. Существует прямая связь между тем, как утеплен дом и тем, насколько выгодно будет установка теплонасоса.
- Подключение теплового насоса к низкотемпературным источникам обогрева (конвекторам, теплым полам), температурный режим которых колеблется между 30 — 40 °C.
Итак, тепловой насос станет неплохой альтернативой традиционным способам отопления. Прибор гарантирует экономичность и полную безопасность. Владельцу, после установки геотермальной системы отопления, не придется зависеть от различных внешних факторов, как, например, перебои с газоснабжением или вызовом сервисной службы. Энергия, взятая из окружающей среды, не требует оплаты и не исчерпывается.
В соответствии с прогнозами Мирового комитета по энергетике в 2020 г. геотермальные насосы составят три четверти всего отопительного оборудования.
Практика применения тепловых насосов: видео
teplo.guru
схемы, устройство и сооружение своими руками
В связи с регулярным повышением стоимости теплоносителей востребованными становятся альтернативные методы отопления. К примеру, практичный тепловой насос воздух-вода, использующий для обогрева энергию воздуха. Установка не требует дорогостоящих расходных материалов, удобна в эксплуатации, безопасна.
В связи с немалой ценой заводской сборки агрегата у многих возникает интерес к самостоятельному сооружению этой системы. Мы расскажем, что потребуется домашнему мастеру для устройства самодельного теплового насоса. У нас вы узнаете, какими техническими средствами следует запастись.
Содержание статьи:
Особенности тепловой системы воздух-вода
Тепловой насос, которому посвящена эта статья, в отличие от других модификаций подобного устройства (в частности, и грунт-вода), обладает рядом достоинств:
- экономит электричество;
- для установки не потребуются масштабные земельные работы, бурение скважин, получение специальных разрешений;
- если подключить систему к солнечным батареям, то можно обеспечить полную ее автономность.
Веское преимущество тепловой системы, извлекающей энергию ветра и передающей ее воде, заключается в стопроцентной экологической безопасности.
Перед тем, как приступать к конструированию насоса, необходимо выяснить, в каких случаях система проявляет себя максимально эффективно, а когда ее использование нецелесообразно.
Тепловая насосная система, извлекающая энергию из воздушной массы, может использоваться для подогрева всех видов теплоносителей, применяющихся на территории СНГ: воды, воздуха, пара
Специфика применения и работы
Тепловой насос продуктивно работает исключительно в температурном диапазоне от -5 до +7 градусов. При температуре воздуха от +7 система будет вырабатывать больше тепла, чем необходимо, а при показателе ниже -5 – недостаточно для обогрева. Это связано с тем, что концентрированный фреон, находящийся в конструкции, закипает при температуре -55 градусов.
Галерея изображений
Фото из
Установка теплового насоса воздух вода
Компоненты системы воздух-вода
Внутренний блок системы воздух-вода
Составляющие внешнего блока насоса
Тепловой насос в системах парового и водяного отопления
Подготовка воды для поставки в контуры ГВС
Теплый пол — один из главных потребителей
Приборы низкотемпературных отопительных контуров
Теоретически система может вырабатывать тепло и в 30-градусный мороз, но его будет недостаточно для обогрева, ведь теплопроизводительность напрямую зависит от разности температуры кипения хладагента и температуры воздуха.
Поэтому жителям Северных регионов, где холода наступают раньше, эта система не подойдет, а в домах Южных областей она сможет эффективно прослужить несколько холодных месяцев.
Если в помещении установлены стандартные батареи, то тепловой насос будет работать менее эффективно. Лучше всего устройство воздух-вода сочетается с конвекторами и иными радиаторами с большой площадью, а также с , «теплые стены» водного типа.
Также само помещение должно быть хорошо утеплено снаружи, обладать встроенными многокамерными окнами, обеспечивающими лучшую теплоизоляцию, чем обычные деревянные или пластиковые.
Тепловой насос лучше всего взаимодействует с водяной системой «теплый пол», не требующей нагрева теплоносителя свыше 40 – 45º С
Самодельный сможет эффективно обогревать дома площадью до 100 кв. м и гарантировано выдавать мощность в 5 кВт. Следует понимать, что фреон невозможно залить достаточно качественно в конструкцию, созданную в бытовых условиях, поэтому следует рассчитывать на температуру его кипения до -22 градусов.
Устройство домашней сборки идеально подойдет для снабжения теплом гаража, теплицы, подсобных помещений, и др. Система обычно используется в качестве дополнительного обогрева.
Электрокотел или иное традиционное оборудование для отопительного сезона потребуется в любом случае. Во время сильных морозов (-15-30 градусов) тепловой насос рекомендуется выключать, чтобы избежать растрат электроэнергии, ведь в этот период его эффективность составляет не больше 10%.
Тепловые насосы поставляют достаточное количество энергии для обогрева воды в крытых частных бассейнах (+)
Принцип действия системы
Рабочее вещество в конструкции – воздух. Через наружный блок, устанавливающийся на улице, кислород по трубам поступает в испаритель, где взаимодействует с хладагентом.
Фреон под действием температуры становится газообразным (поскольку закипает при -55 градусах) и в нагретом виде под давлением поступает в компрессор. Устройство сжимает газ, тем самым увеличивая его температуру.
Горячий фреон поступает в контур накопительного бака (конденсатора), где происходит отдача тепла воде, которую впоследствии можно использовать для организации отопления и ГСВ. В конденсаторе фреон лишается только части своего тепла, и все еще находится в газообразном состоянии.
Проходя через дроссель, хладагент распрыскивается, в результате чего его температура понижается. Фреон становится жидким и в таком виде переходит в испаритель. Цикл повторяется.
На рисунке схематически показана реализация принципа элементарного теплового насоса, разделенного компрессором и расширителем на два контура – высокого и низкого давления
Желающим самостоятельно соорудить из бросовых материалов и отслужившей техники, к примеру, из старого холодильника, поможет информация, изложенная в рекомендуемой нами статье.
Сооружение теплового насоса воздух-вода
Система теплового насоса состоит из четырех основных элементов:
- наружного блока;
- емкости теплообменника-испарителя;
- блока для компрессора;
- накопительной емкости (конденсатора).
Рассмотрим особенности конструирования каждого из блоков.
Сборка наружного блока
Для создания внешнего блока понадобится:
- Корпус. Традиционно подходит блок из-под сплит-системы, стиральной машины, другой габаритной техники, иногда сооружают самостоятельно путем приваривания металлических элементов. Важно после сборки обработать металл антикоррозийной краской порошкового типа.
- Вентилятор. Изделие можно позаимствовать из старой рабочей или приобрести отдельно.
Модель вентилятора должна обладать широкими пластиковыми лопастями и, желательно, с отсоединяемым мотором, чтобы предоставилась возможность подключить его к датчику.
Для сборки наружного блока понадобиться корпус и вентилятор из-под системы кондиционирования. Примерные параметры блока – 75х85х30 см
В наружный блок можно установить испаритель и вспомогательные элементы для его работы, но целесообразнее эти детали поместить в отдельный корпус.
Устанавливают наружный блок на расстоянии 2-10 м от дома. Важно построить под него фундамент и поставить навес, чтобы защитить конструкцию от осадков. Также необходимо закрепить решетку перед вентилятором, чтобы избежать попадания грязи, мусора, листьев в лопасти вентилятора и трубы.
Дополнительно желательно установить обогреватели, защищающие боковины и панели от обледенения. В этом случае дополнительное прогревание корпуса не понадобится. Место для установки блока должно быть хорошо вентилируемым, находиться в отдалении от источников открытого огня.
Блок с теплообменником-испарителем
Испаритель можно приобрести в готовом виде, воспользовавшись услугами поставщиков в сети, или создать самостоятельно. Для этого понадобиться 80-литровый бак и медная проволока диаметром 10 мм и толщиной не менее 1 мм.
Длина высчитывается индивидуально с учетом требуемой мощности. Для устройства 5 кВт можно взять 10 м. В испарителе будет происходить нагрев и циркуляция фреона, а также контакт с воздухом.
Для создания теплообменника нужно сконструировать змеевик. Для этого проволоку обматывают вокруг толстостенной трубы с диаметром, не превышающим ширину бака. Важно оставить срезы, выступающие за высоту корпуса. Они понадобятся для соединения змеевика с другими элементами системы – компрессором и накопительным баком.
Для создания змеевика медную трубку со стенками около 1 мм обматывают вокруг газового баллона, трубы или наполненной водой пластиковой бутылки
В корпус врезают 2 штуцера для подсоединения трубопроводов, создают два разъема для выхода проволоки. Соединения герметизируют. Крепят готовую конструкцию с помощью L-образных кронштейнов.
Рекомендуется дополнительно установить на испаритель реле оттаивания, поскольку в баке будет происходить циркуляция воздуха, температура которого отрицательная. В этом случае конденсат, скапливающийся в системе, может привести к обледенению испарителя. Также, чтобы исключить образования влаги, можно внедрить в систему фильтр-осушитель.
Правила установки компрессора
Для установки компрессора потребуется отдельный корпус со звуко- и виброизоляцией, поскольку практически все модификации устройства шумят во время работы. Компрессор можно взять б/у из-под холодильника, кондиционера или приобрести новую модель.
Для тепловых насосов подойдут следующие виды компрессоров:
- Роторные компрессоры являются самыми недорогими, но обладают рядом недостатков – шумят, обладают малой эффективностью и служат 8-10 лет.
- Спиральные модификации устанавливают во все современные модели кондиционеров, холодильников. Они долговечны (15-20 лет), бесшумные, эффективные, но отличаются высокой стоимостью.
- Поршневые модели преимущественно устанавливают на промышленные холодильники. Изделия обладают хорошим КПД, долговечные (15-20 лет), но крайне шумные и дорогие.
Для теплового насоса необходимо подобрать компрессор однофазной модификации. Перед покупкой важно узнать, с каким видом фреона работает устройство. Желательно приобрести модель, работающую на R22, лучше на R422. С хладагентом данного вида работать проще, чем с любым другим видом фреона.
Компрессор подсоединяют трубками к блоку испарителя и конденсатора. Благодаря устройству фреон увеличивает свою температуру.
Конструирование накопительной емкости (конденсатора)
Для изготовления конденсатора понадобиться корпус из-под 100-литрового бойлера или любой другой нержавеющий бак такого же объема. Также необходим змеевик, выполненный из медной трубки. На насос мощностью 5 кВт можно взять 12-метровую проволоку. По трубке змеевика будет проходить горячий фреон, благодаря чему происходит нагревание воды.
Шаг №1: Создание змеевика
Для изготовления змеевика понадобиться медная проволока диаметром не меньше 26 мм и толщиной стенки от 1 мм. Ее необходимо намотать на трубу, имеющую меньшее поперечное сечение, чем у бака.
Высота спирали должна совпадать с высотой корпуса. Важно оставить выпуски трубы за пределами емкости, чтобы иметь возможность подсоединить змеевик с испарителем и компрессором.
Шаг №2: Подготовка корпуса
Для установки змеевика бак необходимо разрезать. Сверху и снизу понадобиться создать отверстия для выходов медной проволоки, а также вырезать дополнительные отсеки для установки 2-х штуцеров, один из которых предназначен для выхода воды, а другой – для ее входа. После проделанных процедур бак необходимо герметизировать.
Теплообменник-компрессор можно приобрести отдельно в виде готовой конструкции. С помощью устройства заводской сборки можно увеличить мощность и КПД установки.
Хладагент с маркировкой R22 согласно Монреальским постановлениям к 2030 году запланировано вывести из обращения. Для наполнения системы лучше использовать его заменитель – хладагент R422
Соединение внешнего блока с испарителем
Для соединения наружного блока и испарителя потребуется проведение 2 полиэтиленовых труб ПНД 32. Через одну трубу воздух будет проходить, через другую – выходить.
Трубы можно закопать в землю, предварительно досыпав в ров любой песчаный материал, или оставить на поверхности, если наружный корпус располагается недалеко от дома.
Соединение испарителя, компрессора и бака
В этой системе циркулирует фреон. Для присоединения змеевиков с компрессором и дросселем, необходимо обратиться к специалистам по холодильной технике. Человеку, не имеющего опыта в паяльных работах, даже при наличии инструментов и материалов сложно будет грамотно соединить все элементы в одну систему, чтобы обеспечить работу конструкции.
Более того, потребуется много дополнительных материалов – трубок разных диаметров, различных модификаций , клапанов для травления воздуха, предохранительных клапанов, а также клипс для труб, хомутов, труборезов для нарезки участков трубопровода.
Нужны будут и другие специализированные устройства, которые есть в наличие в любой мастерской по ремонту холодильников и кондиционеров.
Качественная закачка фреона также осуществляется с использованием специального оборудования. Поэтому для объединения теплообменников, компрессора и дросселя в рабочую систему удобнее и выгоднее обратиться к профессионалам.
Внедрение систем управления установкой
Для слежения за давлением и температурой фреона можно использовать плату с дисплеем из-под любого кондиционера. В процессе паяльных работ с помощью специалистов конструкцию можно грамотно внедрить в установку.
Также возможно подключить специальное устройство – датчик вращения вентилятора. Он регулирует скорость вращения лопастей, а также автоматизирует обороты циркуляционного насоса фреона.
Дополнительно можно установить таймер, электропускатель, устройство, защищающее компрессор от перегрева. Все эти детали можно приобрести в ремонтных мастерских или на рынке запчастей.
Расчет мощности теплового насоса воздух-вода
Для обогрева помещения с площадью от 100 кв. м потребуется тепловой насос большей мощности. Вычислить необходимую мощность установки можно приблизительно, используя таблицу:
Данные таблицы помогут рассчитать площадь змеевика для создания установки той или иной мощности
Чтобы определить, какая мощность должна быть у компрессора, трубы каких диаметров следует использовать и другие важные данные при конструировании теплового насоса воздух-вода, необходимо обратиться к одному из способов:
- Воспользоваться онлайн-калькуляторами, размещенными на сайтах производителей теплообменников.
- Применить программное обеспечение CoolPack 1,46, Copeland.
- Пригласить специалиста, который произведет необходимые измерения и расчеты.
Площадь змеевика-конденсатора (ПЗК) можно вычислить по формуле:
ПЗК = М/0,8ДТ,
где М — мощность установки в кВт; 0,8 — коэффициент теплопроводности при контакте воды и меди; ДТ — разность температуры между поступающим и выходящим воздухом в системе.
Параметры теплового насоса, приведенные выше, подойдут для помещения до 100 кв. метров. Мощность установки – 5 кВт. Если приобретать специальные теплообменники, то вполне возможно увеличить мощность установки до 10-15 кВт.
На рисунке представлена система, в которой теплообменники, компрессор, дроссель объединены в одном баке. В конструкции используются заводские теплообменники (+)
Обслуживание самодельной установки
Для качественной работы тепловой насос нуждается в дополнительном обслуживании. Если использовать устройство зимой (учитывая, что в корпусе не установлен дополнительный обогрев), то периодически блок придется отогревать, поскольку на его поверхности будет образовываться ледяная корка.
Также необходимо периодически:
- Очищать лопасти вентилятора от мусора – листьев, пыли, грязи, снега и т.д.
- Производить смазку компрессора согласно инструкции к нему.
- Менять масло в компрессоре и вентиляторе.
Кроме того, для нормального функционирования системы необходимо регулярно Проверять целостность медного трубопровода, силового кабеля, питающего компрессор, вентилятор и другие устройства.
Выводы и полезное видео по теме
С принципом действия и устройством теплового насоса, перерабатывающего энергию ветра, ознакомит следующий ролик:
Самодельный тепловой насос системы воздух-вода является одним из эффективных и недорогих устройств для дополнительного обогрева жилья. Изготовить и установить эту систему сможет любой желающий.
Пишите, пожалуйста, комментарии в находящемся ниже блоке. Возможно, у вас есть интересные сведения и фото по теме статьи? Задавайте вопросы, делитесь собственным мнением и полезными для посетителей сайта советами.
sovet-ingenera.com
Тепловой насос: виды и принцип работы тепловых насосов для отопления
Среди альтернативных источников энергии набирают популярность тепловые насосы для отопления дома. В Норвегии, Швеции, Америке уже больше 25 лет тепловые насосы успешно используются для обогрева дома, коттеджа, дачи, квартиры – дешевое тепло без вреда для природы.
Попробуем разобраться, как работает тепловой насос, виды и типы теплонасосов, их характеристики и особенности.
Устройство и принцип работы теплонасосов
Практически любая среда с температурой выше 1°C, окружающая нас, обладает некоторым количеством тепловой энергии. Часть этой бесплатной и возобнавляемой энергии с помощью теплового насоса можно использовать для обогрева своего дома, теплых полов и горячего водоснабжения.
Существует два типа тепловых насосов:
- Компрессорные
- Абсорбционные
Абсорбционные теплонасосы еще не распространились на частные дома и используются пока только в промышленности.
Определение! Отопление компрессорным тепловым насосом – метод, при котором низкопотенциальное тепло генерируется из окружающей среды (воздуха, воды, земли), а дальше переносится к теплоносителя, у которого более высокая температура.
На практике это выглядит так: в трубопровод, расположенном в грунте, поступает теплоноситель и нагревается на несколько градусов. Дальше теплоноситель попадает в испаритель (теплообменник) и собранную тепловую энергию передает на внутренний контур.
Хладагент, фреон (вещество под низким давлением, с низкой температурой кипения) из внешнего контура нагревается в испарителе и преобразуется в газ. Затем хладагент в виде газа поступает в компрессор, где под воздействием высокого давления сжимается, при этом его температура становится еще выше.
Горячий газ попадает в конденсатор, где тепловая энергия передается теплоносителю внутренней системы обогрева дома. Далее потерявший тепло хладагент возвращается в жидком состоянии в систему.
Холодильные установки имеют такой же принцип работы, поэтому некоторые виды теплонасосов можно использовать в летнее время для охлаждения дома в качестве кондиционера.
Благодаря тому, что теплонасос не производит тепло, а просто собирает и транспортирует из одной среды в другую, эффективности термопомбы более 100%.
Виды тепловых насосов для частного дома
Получать энергию можно из воды, грунта, воздуха. Различают несколько видов теплонасосов в зависимости от комбинирования этих источников и функций.
Тепловой насос вода-вода
Принцип работы данного типа устройства основан на энергии грунтовых или подземных вод, которые круглый год имеют плюсовую температуру. Для обогрева дома необходимо 2 скважины (одна для забора тепловой энергии, вторая для сброса воды) либо водоем (озера, реки) возле дома с соответствующей глубиной, в который погружается змеевик с грузом.
Тепловой насос воздух-воздух
Данный насос функционирует при воздушной отопительной системе. Воздушные тепловые насосы используют энергию из рассеянных воздушных масс и распространяют ее при помощи кондиционеров. Эффективность воздушной тепловой системы не очень велика, поэтому часто используется еще один источник тепла.
Тепловой насос вода-воздух
В данном случаем энергия генерируется из воздуха. Теплоносителем такой энергии служит вода. По мощности это устройство менее эффективно, чем другие виды теплонасосов, из-за низкой температуры воздуха зимой.
Тепловой насос грунт-вода
Устроен такой насос таким образом, что наружный контур под землей, а теплоноситель — вода. Устройство довольно эффективно, потому что температура почвы практически одинаковая весь год на глубине 5 метров.
Преимущества и недостатки тепловых насосов
К плюсам можно отнести:
- Установку можно осуществить в любых климатических условиях
- Экологичность – установка такого оборудования безопасна для здоровья человека и окружающей среды. Также помогает сохранить невозобновляемые природные ресурсы
- Бесшумная работа и комфорт. Усправления системой с помощью автоматики
- Пожарная безопасность – котел не перегревается, не горит, не взрывается, не выделяет угарный газ
- Эффективность отопления. Но в сильные морозы, как показывает практика, процесс отопления не очень качественный
- Существуют модели, которые в летнее время могут использоваться, как кондиционер, для охлаждения
- Использовать системы отопления, для ГВС и теплого пола
- Долговечность — срок эксплуатации 20-50 лет, если верно рассчитать мощность оборудования
- Система отопления автономна, единственный централизированный элемент – подключение к электросети
- Установка теплового насоса не требует согласований, как при монтаже газового оборудования
Также к преимуществам можно отнести тот факт, что собрать установку теплового насоса можно своими руками.
К минусам отопления дома тепловым насосом можно отнести:
- Необходимость привлечения квалифицированных специалистов, которые рассчитывают мощность, устанавливают и обслуживают такие установки
- Высокая стоимость агрегата, установки (если покупать). Окупаемость напрямую зависит от интенсивности эксплуатации системы отопления
Целесообразность, рентабельность использования тепловых насосов для отопления частных домов
Для существенной экономии семейного бюджета на обогреве дома на долгие-долгие годы необходимо на этапе проектирования и установки не пожалеть значительную сумму.
КПД теплонасосов зависит от производительности и качества. Например, воздушные тепловые насосы могут производить при +5°C 2-5 кВт тепла, в зависимости от модели, на 1 кВт потраченной электроэнергии. У водяных и грунтовых теплонасосов эффективность зависит от оборудования и может достигать до 1000% КПД, но необходимо хорошенько потратиться на покупку такого теплового насоса.
Окупаемость данной тепловой системы зависит от условий эксплуатации и отложена во времени. Энергия из окружающей среды бесплатна и возобновляема. И если в доме грамотно утеплены пол и стены (потери тепла не должны превышать на 1 кв.м 100 Вт), то тепловой насос будет максимально эффективен.
Тепловые насосы — принцип работы!
ТЕПЛОВОЙ НАСОС — как это работаети почему это выгодно.
Принцип действия теплового насоса
Использование альтернативных экологически чистых источников энергии может предотвратить назревающий энергетический кризис в Кыргызстане. Наряду с поисками и освоением традиционных источников (газ, нефть), перспективным направлением является использование энергии, накапливаемой в водоемах, грунте, геотермальных источниках, технологических выбросах (воздух, вода, стоки и др.). Однако температура этих источников довольно низкая (0–25°С) и для эффективного их использования необходимо осуществить перенос этой энергии на более высокий температурный уровень (50–100 °С). Реализуется такое преобразование
Принцип работы теплового насоса подобен бытовому холодильнику. Только в холодильнике тепло переносится из внутренней камеры на заднюю стенку, а в тепловом насосе из окружающей среды в систему отопления.
Выходящая при работе теплового насоса энергия состоит из следующих компонентов: ? тепловой энергии отбирается из источников низкопотенциального тепла, перечисленных выше, добавляется ? электроэнергии, использующейся для работы компрессора.
Чем исключительна данная технология? При подводе 1 кВт эл. энергии на совершение работы компрессора, в результате получаем 4~5 кВт тепловой энергии. Хотим обратить Ваше внимание: «Это не КПД, это коэффициент трансформации, который характеризует эффективность работы холодильной машины. На 1 кВт подведенной Эл. энергии получаем 4~5 кВт, а в некоторой случаях и больше тепловой энергии».
Схематично тепловой насос можно представить в виде системы из трех замкнутых контуров: в первом, внешнем, циркулирует теплоотдатчик (тепловой носитель, собирающий теплоту окружающей среды), во втором — хладагент (вещество, которое испаряется, забирая теплоту теплоотдатчика, и конденсируется, отдавая теплоту теплоприемнику), в третьем — теплоприемник (вода в системах отопления и горячего водоснабжения здания).
Внешний контур (коллектор) это уложенный в землю или в воду трубопровод, в котором циркулирует незамерзающая жидкость — антифриз.
Во второй контур, где циркулирует хладагент встроены теплообменники — испаритель и конденсатор, а также устройства, которые меняют давление хладагента — дроссель и компрессор.
Третий контур – это внутренний контур, то есть сама система отопления здания или система горячего водоснабжения.
Рабочий цикл . Жидкий хладагент продавливается через дроссель, его давление падает, и он поступает в испаритель, где закипает, отбирая теплоту, поставляемую коллектором из окружающей среды. Газ, в который превратился хладагент, всасывается в компрессор, ужимается и, нагретый, выталкивается в конденсатор. Конденсатор является теплоотдающим узлом теплонасоса: здесь теплота принимается водой в системе отопительного контура. При этом газ охлаждается и конденсируется, чтобы вновь подвергнуться разряжению в расширительном вентиле и вернуться в испаритель. После этого рабочий цикл начинается заново.
Выгодной особенностью теплового насоса является то, что в летний период, включив систему «в обратном направлении» можно получить кондиционирование. То есть тепло будет отбираться внутренним контуром здания и сбрасывать его в грунт, воду или воздух.
Тепловой насос работает по принципу цикла Карно, впервые описанном еще в 1824 году и нашедший практическое описание в 1852 году лордом Кельвином.
Рассол* циркулирует в коллекторе и поглощает тепловую энергию из земли, воздуха или воды.
Тепловой насос имеет теплообменный элемент, который называется испарителем. Тепловая энергия в нем переходит от рассола к хладагенту** (при испарении вещество поглощает тепло). У этого вещества низкую температуру кипения, что заставляет его вскипеть и превратиться в газ.
Давление хладагента повышается с помощью компрессора, что ведет к увеличению его температуры.
В конденсаторе хладагент перенаправляет тепловую энергию в отопительную систему дома (при конденсации вещество отдает тепло).
Вспомогательный охладительный элемент выжимает остаточную тепловую энергию, и хладагент преобразовывается в жидкую форму.
В расширительном вентиле давление падает.
Хладагент возвращается в испаритель, и процесс начинается заново.
* Рассол – это незамерзающая смесь, например, на основе спирта или гликоля.
** В настоящее время используется только экологически безопасные хладагенты, такие как углекислота или углеводороды. Раньше использовался Фреон.
Виды источников тепла
Грунт | ||
Не требуется бурение Почва имеет стабильную температуру Низкие затраты на установку |
Тепловой насос накапливает тепло грунта с помощью коллектора, уложенного на глубину около метра. | |
Скважина | ||
Нет необходимости в большом участке Скважина имеет стабильную температуру на протяжении всего года Не влияет на участок |
При использовании в качестве источника тепла скважины, в нее погружается коллектор, имеющий U-образную форму. Нет необходимости использовать одну очень глубокую скважину, можно пробурить несколько неглубоких, более дешевых скважин, главное получить общую расчетную глубину. | |
Водоём | ||
Нет необходимости в большом участке Водоём имеет стабильную температуру Не влияет на участок |
Используется коллектор, уложенный на дно водоёма чтобы собирать солнечное тепло, накопленное за лето. Принцип тот же, что и в случае с грунтовым коллектором. | |
Воздух | ||
Низкие затраты на установку Не влияет на участок |
Использование воздушного теплового насоса освобождает от необходимости бурить или копать. Вместо этого вы получаете тепло из окружающего воздуха с помощью внешнего блока. Все ключевые компоненты расположены внутри здания, что предотвращает их от повреждения. |
Сравнение с другими типами отопления
Тепловой насос работает от электросети, пользуя затраченную энергию значительно эффективнее любых котлов, сжигающих топливо. Значение КПД у него в несколько раз больше единицы. К примеру, расходуя 1 кВт электроэнергии, Вы получите 3-4 кВт тепла. Таким образом, получаете 2-3 кВт тепла бесплатно из окружающей среды.
Пример
Для дома с отапливаемой площадью 300 метров и хорошим утеплением (теплопотери 70 Вт\м2), учитывая потребность в горячей воде на 4 человека, в год нужно около 50000 кВтч тепловой энергии.
Если рассматривать вариант добычи этой энергии из газа, то подсчет будет следующим:
С одного кубического метра природного газа получают около 6 кВт тепловой энергии. При КПД газового котла в 90%, мы получим 6*0.9=5.4кВт тепловой энергии из одного кубического метра. Итого за год будет затрачено 50000\5.4=9260 кубических метров природного газа.
Для этого же дома среднегодовой коэффициент эффективности теплового насоса (КПД) будет около 3,5. Итого за год будет затрачено 50000\3,5= 14200 кВтч электроэнергии.
Учитывая текущую дифференциацию цен на газ и электричество в Кыргызстане, для нашего примера стоимость 1 кВт тепла, полученного от теплового насоса дешевле более чем в 15 раз.
Тепловые насосы — обзор технологий
Тепловой насос – это экологически чистая система отопления, горячего водоснабжения и кондиционирования, которая приносит тепло из окружающей среды в Ваш дом.
Тепловой насос использует тепло, рассеянное в окружающей среде – в земле, воде или воздухе, доставляя его настолько продуктивно, что стоимость отопления существенно снижается. Нет надобности в каком либо топливе. Сбережение средств часто настолько значительны, что стоимость установки такой системы окупается всего за несколько лет.
Тепловой насос также может работать как на обогрев так на охлаждение. Их легко использовать, они занимают мало места.
Тепловые насосы имеют большой срок службы и работают полностью в автоматическом режиме. Обслуживание установок заключается в сезонном техническом осмотре и периодическом контроле режима работы.
www.220.kg
Тепловые насосы Mitsubishi Electric ZUBADAN Inverter. Принципы работы и преимущества
В наше время тепловые насосы начинают пользоваться значительной популярностью, которая обусловлена несколькими факторами. Во-первых, такое оборудование за несколько лет окупает свою полную стоимость, тем более, учитывая высокие темпы инфляции и повышение цен на все энергоресурсы. Во-вторых, благодаря широкому ассортименту подобной продукции и удобной ценовой линейке, каждый потенциальный покупатель может подобрать что-то для себя. В-третьих, монтаж теплового насоса не является трудоемким, а установку оборудования можно проводить в любой сезон года.
Одними из лидеров современного рынка являются японские тепловые насосы, которые прекрасно адаптированы под нужды потребителей нашей страны. В процессе производства их используются качественные материалы и комплектующие, а также самые современные технологии. Это позволяет судить о высоком качестве оборудования и смело говорить о его безопасности для здоровья людей. Купить тепловой насос вы можете в нашей компании, заказав также услуги монтажа оборудования.
В декабре 2011 года Россия вступила в ВТО. Что для нас это значит? Это означает, что мы все вместе входим в новую эру современной и экономичной техники. В течении нескольких лет цены на энергоносители на внутреннем рынке значительно вырастут. Это, с одной стороны, ударит по карману простых потребителей, но с другой, даст толчок использованию современной экономичной и, что немаловажно, экологичной техники. Именно такой техникой являются тепловые насосы. Ведь они берут тепло прямо из окружающих нас ресурсов: земли, воды, воздуха, того, что дала нам природа. Итак, долой допотопные чугунные котлы, которые через пять лет пойдут на металлолом как прожорливая, не эффективная техника. Пора начинать экономить с тепловым насосом.
Принцип работы тепловых насосов
Тепловые насосы — это устройства, позволяющие использовать низкопотенциальную энергию накопленную в окружающей среде (грунт, водоем или воздух) на нужды нагрева (отопление, горячее водоснабжение, подогрев бассейнов и пр.) и охлаждения (холодоснабжение, кондиционирование).
Существует три вида природных источников тепловой энергии для тепловых насосов:
В этой статье речь пойдет о тепловых насосах использующих тепловую энергию воздуха для отопления помещений.
Из основных законов термодинамики известно, что теплота самопроизвольно переходит от тел более нагретых к телам менее нагретым. Системы, которые переносят тепло в обратном направлении принято называть тепловыми насосами. Тепловой насос представляет собой парокомпрессионную холодильную установку, которая состоит из следующих основных компонентов: компрессор, конденсатор, расширительный вентиль и испаритель.
В чем принцип теплового насоса?
Принцип работы теплового насоса заключается в следующем: Компрессор сжимает газ, при этом его температура и давление увеличиваются (универсальный газовый закон Менделеева-Клапейрона). Горячий газ подается в теплообменник, называемый конденсатором, в котором он охлаждается, передавая свое тепло воздуху или воде, и конденсируется — переходит в жидкое состояние. Далее на пути жидкости высокого давления установлен расширительный вентиль, который понижает давление хладагента. Компрессор и расширительный вентиль делят замкнутый гидравлическийконтур на две части: сторону высокого давления и сторону низкого давления.
Проходя через расширительный вентиль, часть жидкости испаряется и температура потока понижается. Далее этот поток поступает в теплообменник (испаритель), связанный с окружающей средой (например, воздушный теплообменник на улице). При низком давлении жидкость испаряется (превращается в газ) при температуре ниже, чем температура наружного воздуха или грунта. В результате часть тепла наружного воздуха или грунта переходит во внутреннюю энергию хладагента. Газообразный хладагент вновь поступает в компрессор — контур замкнулся. Можно сказать, что работа компрессора идет не столько на «производство» теплоты, сколько на ее перемещение. Поэтому затратив всего 1 кВт электрической мощности на привод компрессора, можно получить теплопроизводительность конденсатора около 5 кВт.
Тепловой насос несложно заставить работать в обратном направлении, то есть возможна работа теплового насоса для охлаждения воздуха в помещении летом.
Как работает тепловой насос
Холодильник, всем известно, переносит тепло из внутренней камеры на радиатор и мы пользуемся холодом внутри холодильника. Тепловой насос — это холодильник «наоборот». Он переносит рассеянное тепло из окружающей среды в наш дом. Теплоноситель (в роли которого выступает фреон), взявший несколько градусов из окружающей среды, проходит через теплообменник теплового насоса, называемый испарителем, и отдает собранное из окружающей среды тепло во внутренний контур теплового насоса. Внутренний контур теплового насоса заполнен хладагентом, который имея очень низкую температуру кипения, проходя через испаритель, превращается из жидкого состояния в газообразное. Это происходит при низком давлении и температуре 5°С. Из испарителя газообразный хладагент попадает в компрессор, где он сжимается до высокого давления и высокой температуры. Далее горячий газ поступает во второй теплообменник — конденсатор, где происходит теплообмен между горячим газом и теплоносителем из обратного трубопровода системы отопления дома. Хладагент отдает свое тепло в систему отопления, охлаждается и снова переходит в жидкое состояние, а нагретый теплоноситель системы отопления поступает к отопительным приборам.
Преимущества тепловых насосов
✓ Экономичность. Низкое энергопотребление достигается за счет высокого КПД (от 300%) и позволяет получить на 1 кВт фактически затраченной энергии 3-8 кВт тепловой энергии или до 2,5 кВт мощности по охлаждению |
✓ Экологичность. Экологически чистый метод отопления и кондиционирования как для окружающей среды так и для людей, находящихся в помещении. Применение тепловых насосов — это сбережение не возобновляемых энергоресурсов и защита окружающей среды, в том числе и путем сокращения выбросов СО 2 в атмосферу. |
✓ Надежность. Минимум подвижных частей с высоким ресурсом работы. Независимость от поставки топочного материала и его качества. Защита от перебоев электроэнергии. Практически не требует обслуживания. Срок службы теплового насоса составляет 15-25 лет. |
✓ Безопасность. Нет открытого пламени, нет выхлопа, нет сажи, нет запаха солярки, исключена утечка газа, разлив мазута. Нет пожароопасных хранилищ для угля, дров, мазута или солярки. |
✓ Комфорт. Тепловой насос работает практически бесшумно, а погодозависимая автоматика и мультизональный климатический контроль создают комфорт и уют в помещениях. |
✓ Гибкость. Тепловой насос совместим с любой циркуляционной системой отопления, а современный дизайн позволяет устанавливать его в любых помещениях. |
✓ Универсальность по отношению к виду используемой энергии (электрической или тепловой). |
✓ Широкий диапазон мощностей. Тепловые насосные установки могут легко решать вопросы теплоснабжения загородного дома, коттеджа. В целом тепловой насос универсален и применим как в гражданском, промышленном, так и в частном строительстве. |
Область применения тепловых насосов
На сегодняшний день тепловые насосы широко применяются во всем мире. Количество тепловых насосов, работающих в Японии, Европе и США исчисляется десятками миллионов штук. Производство тепловых насосов в каждой стране, прежде всего, ориентировано на удовлетворение потребностей внутреннего рынка. В Японии и США наибольшее применение получили тепловые насосы класса «воздух-воздух» для отопления и летнего охлаждения воздуха. В Европе — тепловые насосы класса «вода-вода» и «вода-воздух». В США исследованиями и производством тепловых насосов занимаются более шестидесяти фирм. В Японии ежегодный выпуск тепловых насосов превышает 500 тысяч единиц. В Германии ежегодно вводится более 5 тысяч установок. В Швеции и странах Скандинавии эксплуатируются, в основном, крупные тепловые насосные установки. В Швеции уже к 2000 году эксплуатировалось более 110 тысяч теплонасосных станций (ТНС), 100 из которых имели мощность около 100 МВт и выше. Наиболее мощная ТНС-320 МВт работает в Стокгольме.
Отопление тепловыми насосами
Системы отопления, основанные на применении теплового насоса, отличаются экологической чистотой, так как работают без сжигания топлива и не производят вредных выбросов в атмосферу.
Кроме того, они характеризуются экономичностью: при подводе к тепловому насосу, например, 1 кВт электроэнергии, в зависимости от режима работы и условий эксплуатации он дает до 3-5 кВт тепловой энергии.
Среди достоинств теплового насоса указывают снижение капитальных затрат за счет отсутствия газовых коммуникаций, увеличение безопасности жилища благодаря отсутствию взрывоопасного газа, возможность одновременного получения от одной установки отопления, горячего водоснабжения и кондиционирования.
Системы отопления бывают моновалентные и бивалентные. Различие между двумя видами состоит в том, что моновалентные системы имеют один источник тепла, который полностью покрывает годичную потребность в отоплении. Бивалентные системы имеют в своем составе два источника тепла для расширения диапазона рабочих температур. Например, тепловой насос работает до температуры наружного воздуха -25°С, а при дальнейшем понижении температуры в дополнение к нему подключается газовый или жидкотопливный котел для компенсации снижения производительности теплового насоса.
ТЕПЛОВЫЕ НАСОСЫ ZUBADAN (Mitsubishi Electric)
Компания Mitsubishi Electric представляет тепловые насосы ZUBADAN Inverter (ZUBADAN — в переводе с японского — «суперобогрев»). Известно, что производительность тепловых насосов, использующих для обогрева помещений низкопотенциальное тепло наружного воздуха, уменьшается при снижении температуры на улице. И это снижение весьма значительное: при температуре -20°С теплопроизводительность на 40% меньше номинального значения, указанного в спецификациях приборов и измеренного при температуре +7°С.
Именно по этой причине воздушные тепловые насосы не рассматривают как полноценный нагревательный прибор. Отношение к ним, коренным образом может измениться с появлением тепловых насосов Mitsubishi Electric ZUBADAN Inverter.
Утилизация теплоты
Дополнительный энергетический и экономический эффект применения тепловых насосов основан на создании контура утилизации (использования) тепла в рамках единой системы охлаждения, отопления и нагрева воды.
Аэротермальные тепловые насосы предпочтительнее геотермальных, так как требуют меньших начальных капитальных вложений. Нет необходимости в полях теплосъема и в скважинах, а значит, не нужны дорогостоящие земляные работы и бурение скважин. Не нужны и многометровые трубы грунтовых теплообменников. Вся наружная часть — это только наружный блок теплового насоса.
Пример использования воздушного теплового насоса для отопления частного коттеджа в Ленинградской области
Mr. Slim. Система воздух-вода.
Тепловой насос MITSUBISHI ELECTRIC ZUBADAN Inverter («Воздух-Вода») был установлен в 2009 году в одном из коттеджей Ленинградской области.
Система применена для отопления небольшого частного коттеджа общей площадью отапливаемых помещений 74 м2. Материал стен — пенобетон 200 мм, стены утеплены изнутри пеноплексом 35 мм и вагонкой. Пол утеплен пеноплексом толщиной 55 мм. Крыша утеплена мин. ватой URSA 100 мм. Окна металлопластиковые с двухкамерными стеклопакетами. Двери с герметичными уплотнителями (металлическая + деревянная).
В качестве источника тепла применён наружный блок PUHZ-HRP71VHA (мощность 8,0 – 11,2 кВт). Система отопления — радиаторные батареи. Теплоноситель — пропиленгликоль. Наружный блок подает тепло на пластинчатый теплообменник. С пластинчатого теплообменника циркуляционным насосом тепло передается в радиаторные батареи, которые нагревают воздух в помещениях.
Эксплуатация
За время осенней и зимней эксплуатации система отопления на базе теплового насоса ZUBADAN Inverter не имела аварийных остановок по причине неисправности оборудования.
Система успешно выдержала морозы до –25°С в конце января 2010 года — в помещениях коттеджа поддерживалась целевая температура +21°С. Проверялся автоматический запуск системы после аварийного отключения и подачи электропитания. После подачи питания система осуществляет самодиагностику и включается на заданный режим.
Экономическая эффективность
По требованию заказчика электропотребление системы замерялось отдельным счетчиком. В доме поддерживалась целевая температура +21°С. Результаты измерений следующие:
-
в октябре средняя потребляемая мощность составляла 0,62 кВт при средней температуре воздуха 0 ~ +5°С;
-
в ноябре — 1,50 кВт при средней температуре воздуха -3 ~ 0°С;
-
в декабре -1,90 кВт при температуре -3 ~ -8°С.
Результаты наблюдений позволяют сделать вывод, что для отопления дома площадью 74 м2 при температуре наружного воздуха -3 ~ -8°С система ZUBADAN Inverter потребляет электроэнергии меньше, чем один масляный радиатор!
Сравнение работы теплового насоса и бойлера
Принцип получения тепла с помощью теплового насоса отличается от традиционных систем нагрева, основанных на сжигании газа или жидкого топлива, а также прямого преобразования электрической энергии в тепловую. В таких системах еденица энергии энергоносителя преобразуется в неполную единицу тепловой энергии. В то время как тепловой насос, затрачивая единицу электрической энергии, «перекачивает» в помещение от 2 до 6 единиц тепловой энергии, забирая ее из наружнего воздуха.
Следовательно высокая эффективность воздушного теплового насоса делает естественным выбор в пользу таких систем отопления помещений и нагрева воды на объектах, имеющих ограниченные ресурсы.
Стоимость установки тепловых насосов
Установка теплового насоса по стоимости (да и по качеству) в различных климатических компаниях может сильно отличаться. Специалисты «ЕвроКлимат» проффесионально выполнят монтаж теплового насоса. Мы стараемся предложить нашим клиентам цены ниже средних в Санкт-Петербурге при этом гарантируем качество выполненных работ.
Купить тепловой насос MITSUBISHI ELECTRIC ZUBADAN Inverter
Уточните действующие ЦЕНЫ у наших менеджеров по телефонам в Санкт-Петербурге :
8 (812) 643-66-60, 8 (800) 775-90-60
euroclimate.org