Плюсы и минусы солнечной энергии
Солнечная энергетика — активно развивающееся направление в энергоснабжении частных и общественных зданий. Каковы плюсы и минусы такого природного источника энергии, как солнечное излучение?
Преимущества солнечной энергии
1. Возобновляемость
Говоря о солнечной энергии, в первую очередь, необходимо упомянуть, что это — возобновляемый источник энергии, в отличие от ископаемых видов топлива — угля, нефти, газа, которые не восстанавливаются. По данным NASA еще порядка 6.5 млрд. лет жителям Земли не о чем беспокоиться — приблизительно столько Солнце будет согревать нашу планету своими лучами до тех пор, пока не взорвется.
2. Обильность
Потенциал солнечной энергии огромен — поверхность Земли облучается 120 тыс. тераваттами солнечного света, а это в 20 тыс. раз превышает общемировую потребность в ней.
3. Постоянство
Кроме того, солярная энергия неисчерпаема и постоянна — ее нельзя перерасходовать в процессе удовлетворения нужд человечества в энергоносителях, так что ее хватит в избытке и на долю будущих поколений.
4. Доступность
Помимо прочих достоинств солнечной энергии, она доступна в каждой точке мира — не только в экваториальной зоне Земли, но и в северных широтах. Скажем, Германия на данный момент занимает первое место в мире по использованию энергии солнца и обладает максимальным ее потенциалом.
5. Экологическая чистота
В свете последних тенденций в борьбе за экологическую чистоту Земли, солнечная энергетика — это наиболее перспективная отрасль, которая частично заменяет энергию, получаемую от невозобновляемых топливных ресурсов и, тем самым, выступает принципиальным шагом на пути защиты климата от глобального потепления. Производство, транспортировка, монтаж и использование солнечных электростанций практически не сопровождается вредными выбросами в атмосферу. Даже если они и присутствуют в незначительной мере, то по сравнению с традиционными источниками энергии — это почти что нулевое воздействие на окружающую среду.
6. Бесшумность
За счет того, что в системах на солнечном ресурсе нет никаких движущихся узлов, как, например, в генераторах, выработка электроэнергии происходит бесшумно.
7. Экономичность, низкие эксплуатационные расходы
Перейдя на солнечные батареи в качестве автономного источника энергии, собственники частых домов получают ощутимую экономию. Немаловажно и то, что обслуживание систем энергоснабжения на солнечных батареях характеризуется низкими затратами — необходимо лишь несколько раз в год подвергать чистке солнечные элементы, а гарантия производителя на них, как правило, составляет 20-25 лет.
8. Обширная область применения
Солнечная энергия обладает широким спектром приложений — это и выработка электроэнергии в регионах, где отсутствует подключение к централизованной системе электроснабжения, и опреснение воды в Африке, и даже снабжение энергией спутников на околоземной орбите. Не напрасно солярную энергию последнее время называют «народной» — это название отражает простоту ее интегрирования в систему электроснабжения дома, как в случае с фотоэлектрическими, так и с тепловыми элементами.
9. Инновационные технологии
С каждым годом технологии в сфере производства солнечных батарей становятся все более совершенными — тонкопленочные модули вводятся непосредственно в строительные материалы еще на этапе возведения сооружений. Японский концерн Sharp — лидер в производстве солнечных панелей, недавно внедрил инновационную систему прозрачных накопительных элементов для оконного остекления. Современные достижения в области нанотехнологий и квантовой физики позволяют говорить о возможном увеличении мощности солнечных панелей в 3 раза.
Недостатки солнечных источников энергии
1. Высокая стоимость
Бытует мнение, что солнечная энергия относится к разряду дорогостоящего ресурса — это, пожалуй, самый спорный вопрос из всех положительных и отрицательных аспектов ее использования. За счет того, что обустройство дома солнечными накопительными элементами обходится в немалую сумму на начальном этапе, многие государства (но пока не Россия) поощряют использование данного экологически чистого источника энергии путем выдачи кредитов и оформления договоров о лизинге.
2. Непостоянство
За счет того, что солнечный свет отсутствует в ночное время, а также в пасмурные и дождливые дни, солнечная энергия не может служить основным источником электроэнергии. Но, по сравнению с ветрогенераторами, это, все-таки, более стабильный вариант.
3. Высокая стоимость аккумулирования энергии
Аккумуляторные батареи, позволяющие накапливать энергию и сглаживать, в какой-то мере, нестабильность поступления солнечной энергии, отличает высокая цена, доступная не каждому домовладельцу. Упрощает ситуацию тот факт, что пик потребления электроэнергии приходится как раз на светлое время суток.
4. Незначительное загрязнение окружающей среды
Несмотря на то, что по сравнению с производством и переработкой других видов энергоресурсов солнечная энергия наиболее дружественна к природной среде, некоторые технологические процессы изготовления солнечных панелей сопровождаются выбросом парниковых газов, трифторида азота и гексафторида серы.
5. Применение дорогостоящих и редких компонентов
Выпуск тонкопленочных солнечных панелей требует введения теллурида кадмия (CdTe) или селенида меди индия галлия (CIGS), которые являются редкими и дорогостоящими — это влечет за собой удорожание системы альтернативного энергоснабжения в целом.
6. Малая плотность мощности
Одним из важных параметров источника электроэнергии выступает средняя плотность мощности, измеряемая в Вт/м2 и характеризующая количество энергии, которое можно получить с единицы площади энергоносителя. Данный показатель для солнечного излучения составляет 170 Вт/м2 — это больше, чем у прочих возобновляемых природных ресурсов, но ниже, чем у нефти, газа, угля и в атомной энергетике. По этой причине, для выработки 1 кВт электроэнергии из солнечного тепла требуется значительная площадь солнечных панелей.
solarelectro.ru
ЭНЕРГИЯ СОЛНЦА — АЛЬТЕРНАТИВНЫЙ ИСТОЧНИК ЭНЕРГИИ
ЭНЕРГИЯ СОЛНЦА — АЛЬТЕРНАТИВНЫЙ ИСТОЧНИК ЭНЕРГИИ
Яхеев А.Е. 11Муниципальное казенное общеобразовательное учреждение Карачаевского городского округа » Гимназия № 4 имени М.А.Хабичева «
Гагиева Э.Л. 11муниципальное казенное общеобразовательное учреждение «Средняя общеобразовательная школа с.Коста Хетагурова»
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF
ВВЕДЕНИЕ
Энергия Солнца является источником жизни на нашей планете: Земля и ее атмосфера прогреваются, дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения…
Солнечная энергия может быть преобразована, например, в движущую силу и электричество.
По разным данным, человечество успело израсходовать свыше 65% мировых запасов нефти. Ежедневно в мире расходуется нефти почти в 5 раз больше, чем удается найти ее в новых месторождениях. По самым оптимистичным прогнозам, запасов, не возобновляемых источников энергии, хватит на 30 – 70 лет! [1]
Численность населения планеты составляет свыше 7 млрд. человек. При любом подсчете ресурсов Земли она не сможет прокормить более 10-12 млрд. человек!
Вопрос об использовании энергии Солнца, как возможности экономного использования природных ресурсов для сохранения и дальнейшего развития человеческого общества и определил
Объект исследования — изучение разработок ученых-исследователей и расчетных данных, связанных с энергетическим ресурсом Солнца.
Предмет исследования – излучение Солнца, как перспективный и альтернативный источник энергии.
Цель исследования – рассмотреть современные достижения и перспективы использования энергии Солнца, в ходе самостоятельных экспериментов установить факторы, влияющие на величину фототока, найти способ использования солнечных модулей в домашних условиях.
Методы исследования — классификация, систематизация, описание, сравнение.
Работа включает введение, 2 главы, заключение, список использованной литературы, приложение.
В первой главе освещаются вопросы альтернативного и технического использования солнечной энергии, затронуты вопросы экологии.
Во второй главе представлены результаты эксперимента по изучению зависимости генерируемой фотоэлементамисолнечной энергииот внешних факторов, использованиеее в технических устройствах, сделанных самостоятельно.
В заключение даются краткие выводы и перспективы использования солнечной энергии для развития цивилизации.
Глава 1. Применение энергии Солнца
1.1. Пассивное использование солнечной энергии
«Солнце … является неисчерпаемым источником физической силы… та непрестанно заводящаяся пружина, которая поддерживает в состоянии деятельностей». (Роберт Майер, 1845г.) |
Восемь минут – время, через которое солнечный свет достигнет Земли. Знаменательных восемь минут, которые стали основой жизни на единственной обитаемой планете в нашей Галактике.
Солнечный свет – это неиссякаемый источник энергии. Для понимания, на сколько велик запас солнечной энергии приведу несколько цифр: мощность солнечного излучения составляет 3,8*1026 Вт каждую секунду, что равносильно тому, как если бы за это время сжигали 1,3*1016 тонн угля!
Если бы Солнце светило за счет горения угля, то при массе 2*1030 кг просуществовало, лишь 5 тысяч лет!
Не менее интересны и процессы, которые происходят на Солнце и обеспечивают такой запас энергии: на 1 млн. атомов водорода приходится 98 тыс. атомов гелия, 851кислорода, 398 углерода, 123 неона, 100 азота, 47 железа, 38 магния, 35 кремния, 16 серы, 4 аргона, 3 алюминия, по два атома никеля, натрия и кальция, и иных элементов.
Расчеты показывают, чтобы обеспечить мощность ежесекундного излучения 3,8*1026 Вт, в недрах Солнца каждую секунду должно сгорать 630млн.т. водорода, а масса Солнца должна будет уменьшиться при этом на 4,2млн.т. и в виде фотонов рассеется в мировом пространстве.
Несмотря на колоссальность излучаемой энергии, Солнце горит очень экономно и удельная мощность равна 1,9*10-7Вт/г, что в 50млрд. раз меньше удельной мощности горящей спички (104 Вт/г) и в 10 тыс. раз уступает удельной мощности человека (2*10-3 Вт/г).
Наше Солнце образовалось из космической пыли около 5млрд. лет назад. Через 5-7млрд. лет оно истощит запасы водорода и перейдет в стадию гелиевого горения – с этого момента его дни сочтены [2].
Киловатт-час — это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Энергия, излучаемая Солнцем, ежесекундно составляет 1,1*10
Привлекательность использования солнечной энергии связана с возможностью преобразования ее в различные формы энергии, используя активные и пассивные солнечные системы.
Различают:
1. Теплоснабжение с использованием солнечных коллекторов – нагревателей, устанавливаемых неподвижно на крышах домов под определенным углом к горизонту. Больше всего таких установок теплоснабжения имеют США и Япония, но самая высокая плотность их из расчёта на душу населения достигнута в Израиле и на Кипре.
Экономическая выгода от использования коллекторов для нагревания воды, перед подачей в бойлер — достигает 50-70%!
Обычно солнечный коллектор представляет собой металлические пластины или трубки, окрашенные в черный цвет для наибольшего поглощения энергии солнечного излучения, фактически – это минитеплица, которая накапливает энергию под стеклянной панелью, под которую и помещают трубки или пластины. [6] (Приложение 1)
Если говорить о конструкции солнечных коллекторов, то в ней учитывают непосредственное их назначение:
● низкотемпературные коллекторы обеспечивают прогревание воды до 500С и используются там, где требуется не очень горячая вода (бассейн)
●среднетемпературные коллекторы производят высоко- и средне потенциальное тепло (выше 500С, обычно 60-800С).
● вакуумированный трубчатый коллектор используется для нагрева воды в жилом секторе. Высокотемпературные коллекторы представляют собой параболические тарелки и используются в основном электрогенерирующими предприятиями для производства электричества для электросетей. [5]
2. Преобразование солнечной энергии в электрическую с помощью солнечных батарей на кремниевой основе. Первая такая электростанция была сооружена в Калифорнии в 1981 г.
3. Сооружение электростанций башенного или параболического видов.
Вообще, энергию Солнца использовали для обогрева домов с незапамятных времен. В древней Греции солнечный коллектор для прогрева воды был сконструирован в XIX веке. В 100 году н. э. историк Плиний Младший построил летний домик в Северной Италии, в одной из комнат которого были окна из тонкой слюды, обращенные на юг. Комната была теплее других, и для ее обогрева требовалось меньше дров. В известных римских банях в I-IV ст. н. э. специально устанавливались большие окна, выходящие на юг, для того чтобы больше солнечного тепла поступало в здание. К VI ст. солнечные комнаты в домах и общественных зданиях стали настолько обычны, что Джастиниан Коуд ввел «право на солнце», чтобы гарантировать индивидуальный доступ к солнцу.
Из-за перебоев с электроэнергией во время второй мировой войны к концу 1947 года в Соединенных Штатах здания, пассивно использующие солнечную энергию, пользовались таким огромным спросом, что «Libbey-Owens-Ford Glass Company» издала книгу под названием «Ваш Солнечный Дом», в которой были представлены 49 лучших проектов солнечных зданий. В середине 50-х годов ХХ века, архитектор Франк Брайдджерс разработал первое в мире пассивное солнечное здание для офисного помещения. Установленная в нем солнечная система для горячего водоснабжения работает с того времени бесперебойно. Само же здание «Брайдджерс-Пэкстон» занесено в национальный исторический регистр страны как первое в мире офисное здание, обогреваемое при помощи энергии Солнца. [4]
1.2. Активное использование солнечной энергии.
Гениальным воплощением научной мысли в техническом устройстве по праву можно считать фотоэлементы – устройства прямого преобразования световой или солнечной энергии в электроэнергию.
История фотоэлементов берет начало с 1893г., когда Александр Эдмон Беккерель открыл фотогальванический эффект. В 1953г. Джеральд Персен проводя опыты в лаборатории, случайно, установил, что кремний, покрытый определенными примесями более чувствителен к свету, нежели селен. С этого момента было положено начало освоению нового источника энергии – солнечной!
В период нефтяного кризиса (1973-74г.г.), в нескольких странах, сразу же, были запущены программы по использованию фотоэлементов, некоторые из которых до сих пор находятся в эксплуатации.
Фотоэлементы составляют основу фотоэлектрических батарей. Спектр применения, которых широк и разнообразен: от исследования космического пространства до электроснабжения жилых домов!
Ограничение связано с суточным вращением Земли, погодными условиями, загрязнением рабочей поверхности фотоэлемента.[9]
В основе работы солнечных батарей лежат физические свойства полупроводников, а производятся они из сверхчистого кремния, смешанного в точной пропорции с другими веществами. Подробное рассмотрение генерирования электроэнергии в фотоэлементах можно найти на страницах любой научно популярной литературы.
Рис. 2 Строение кремниевого фотоэлемента
Отмечу, что на современном этапе, уже решен вопрос как самой аккумуляции солнечной энергии, так и независимость используемых фотоэлементов от угловой высоты Солнца, времени года и освещенности.
Расчеты показывают, что расположение солнечных модулей под углом 450 на крышах зданий обеспечивает максимальное преобразование солнечной энергии в электрическую.
Просматривая различные источники, мы убедились, что преобразование солнечной энергии в электрическую – перспективное направление современной энергетики, и прежде всего потому, что Солнце, по прогнозам ученых, еще несколько миллиардов лет будет согревать нашу планету.
1.3 Альтернативные источники энергии и вопросы экологии
Энергия Солнца, разумеется, не требует никаких затрат на свое производство, но устройства, которые будут преобразовывать энергию Солнца в электрическую или накапливать ее — способны нанести вред окружающей среде.
1. Модули, генерирующие световую энергию в электрическую, располагаются на поверхности Земли. Поверхностный слой – основа сельскохозяйственной деятельности, и выделение участков под такие модули способно нанести урон сельскому хозяйству. Также придется сократить парковую зону, места отдыха…
2. Производство самих солнечных батарей относят к очень токсичному производству, а значит предположение о том, что выбросов вредных веществ в атмосферу Земли можно будет исключить – ошибочное.
3. Любое оборудование способно прийти в негодность и спустя 20 лет придется решать вопрос его утилизации.
4. Смена дня и ночи требует использовать накопители солнечной энергии — аккумуляторы. Утилизация отработанных аккумуляторов, их возможное накопление на свалках – приведет к существенному загрязнению природы.
По мнению академика П.Л.Капица, «применение фотопреобразователей с высоким КПД может привести к понижению температуры, из-за которого начнется конденсация водяного пара в атмосфере и соответственно прекратят работу фотоприемники. Если ограничить КПД пятнадцатью процентами (уровень лучших современных преобразователей), то туман не будет появляться, но тогда под солнечные станции придется отчуждать еще более гигантские территории. Можно думать, что климат на этих территориях станет прохладнее». [16]
Как видим, использование солнечных батарей не решает возникающих и уже существующих экологических проблем.
Но нельзя не принять и тот факт, что применение солнечных батарей в небольших масштабах позволяет, все же, экономить запасы топлива.
Глава II. Влияние внешних факторов на величину фототока и приведение в действие электрических приборов от накопленной солнечной энергии – самостоятельные исследования.
«По данным Института Энергетической стратегии, теоретический потенциал солнечной энергетики в России составляет более 2300 млрд. тонн условного топлива, экономический потенциал – 12,5 млн. т.у.т.
Потенциал солнечной энергии, поступающей на территорию России в течение трех дней, превышает энергию всего годового производства электроэнергии в нашей стране.
Наша страна расположена между 41 и 82 градусами северной широты и уровень солнечной радиации существенно варьируется: от 810 кВт-час/м2 в год в отдаленных северных районах до 1400 кВт-час/м2 в год в южных районах. На уровень солнечной радиации оказывают влияние и большие сезонные колебания: на ширине 55 градусов солнечная радиация в январе составляет 1,69 кВт-час/м2, а в июле – 11,41 кВт-час/м2в день.» [12]
Целью самостоятельных исследований являлось определение факторов, от которых зависит величина фототока и возможность ответить на вопрос: «следует ли отказаться от традиционных источников энергии в пользу солнечной радиации?».
В качестве источника излучения рассматривался естественный свет.
Экспериментальное оборудование включало фотоэлемент, прибор для измерения фототока, светонепроницаемая бумага, линейка. Эксперименты проводились с лабораторным оборудованием в кабинете физики намеренно в пасмурный день.
Эксперимент 1. Влияние освещенности фотоэлемента на величину фототока.
Гипотеза: если фотоэлемент преобразует энергию Солнца в электрическую, то величина фототока зависит от освещенности.
Ход эксперимента. Установка располагалась на одном и том же расстоянии от источника света. Эксперимент проводился в два этапа. В первом случае, свет проходил через оконное стекло, а во второй раз — через оконное стекло с москитной сеткой. Сетка моделировала ситуацию «помехи» (пыль). В обоих случаях замерялась величина фототока.
Вывод. Величина фототока будет уменьшаться при увеличении загрязнения поверхности солнечной батареи.
I=0,172мА Оконное стекло без москитной сетки |
I= 0,16 мА Оконное стекло с москитной сетки |
Эксперимент 2. Влияние освещенности фотоэлемента на величину фототока.
Гипотеза: если фотоэлемент преобразует энергию излучения в электрическую, то величина фототока зависит от освещенности.
Ход эксперимента. Установка располагалась на одном и том же расстоянии от источника света. На фотоэлемент не попадали прямые лучи света. Для увеличения освещенности использовали лист белой бумаги. Проходящий, через оконное стекло, свет отражался от листа бумаги и попадал на фотоэлемент. В ходе эксперимента лист смещали на 5см.
Вывод. Величина фототока уменьшается при увеличении расстояния от источника отраженного света до фотоэлемента.
№/экс. |
Расстояние до фотоэлемента, см |
Величина фототока, мА |
1 |
5 |
0,144 |
2 |
10 |
0,136 |
3 |
15 |
0,128 |
4 |
20 |
0,088 |
5 |
25 |
0,08 |
Эксперимент 3. Влияние освещенности фотоэлемента на величину фототока.
Гипотеза: если фотоэлемент преобразует энергию излучения в электрическую, то величина фототока зависит от площади освещаемой поверхности.
Ход эксперимента. Установка располагалась на одном и том же расстоянии от источника света. На фотоэлемент не попадали прямые лучи света. Для уменьшения площади освещаемой поверхности светонепроницаемой бумагой закрывали поверхность фотоэлемента.
Вывод. Чем меньше площадь освещаемой поверхности, тем меньше величина фототока.
S1=1/4S I=0,044мА |
S2=1/2S I=0,068мА |
S3=3/4S I=0,08мА |
Эксперимент 4. Использование солнечной энергии в электрических приборах
Идея: Если фотоэлементы преобразовывают энергию Солнца в электрическую, то накопив ее в аккумуляторе, у нас появляется возможность привести, например, в действие бытовые электроприборы.
Воплощение идеи: мне понадобились: фотоэлемент размером 107*61, аккумуляторная батарея (3,7 В, 1000 mAh), лоток для аккумулятора, мультиметр, соединительные провода, макет водопада с водяной электропомпой производительностью 20 л/ч.
Измеряем напряжение, получаемое от фотоэлемента U=5,68 В |
Измеряем напряжение на аккумуляторной батарее до подключения к фотоэлементу U=3,56 В |
Подключаем фотоэлемент для зарядки аккумулятора. U=3,56 В |
Через 15 минут видим, что напряжение аккумулятора увеличилось до 4 В, значит аккумулятор полностью заряжен U=4,00 В |
Подключаем электрическую помпу к заряженному аккумулятору и видим, что помпа качает воду, постепенно расходуя накопленную солнечную энергию. U=3,90 В |
Итак: С помощью фотоэлемента можно накопить солнечную энергию в аккумуляторе и привести в действие электрические приборы, используемые в быту.
Результаты моих экспериментов позволяют сделать следующие выводы:
Количество солнечной энергии попадающей на поверхность фотоэлемента будет зависеть от природных факторов (ясная ли погода, какое время года, дневное или же ночное время, продолжительность светового дня)
Величина фототока будет зависеть от количества используемых фотоэлементов.
Для увеличения силы фототока можно использовать дополнительное освещение в виде отраженного света.
Энергию солнечного света можно использовать только как дополнительный источник энергии.
Выходные характеристики солнечной батареи, будут зависеть от количества используемых модулей, освещенности, расположения фотоэлемента с учетом угла наклона Солнца.
Накопленную в аккумуляторе энергию можно использовать для бытовых целей, тем самым экономить электрическую энергию.
Заключение.
Трудно представить качество нашей жизни без использования энергетических ресурсов. Побочным эффектом развития цивилизации является нарушение природного баланса, но отказаться от разработки все новых месторождений нефти и газа, в ближайшее время, не представляется возможным. Поэтому основной научный потенциал направлен на поиски альтернативных источников энергии, которые бы не зависели от внешних факторов.
На наш взгляд, преобразователи солнечной энергии способны помочь решению данной проблемы, так как основными преимуществами солнечных модулей, для активного использования солнечного излучения служат:
мобильность территориальная — любая техническая установка требует размещения в пространстве. Расчеты показывают, что модуль площадью один квадратный метр производит достаточно электричества, чтобы питать одну 100-ваттную лампочку. Если же говорить о промышленных масштабах, фотоэлектрическая станция, занимающая квадратный участок земли со стороной около 160 км могла бы обеспечить электричеством такую территорию, как все Соединенные Штаты. Лучшим решением, однако, является расположение фотоэлектрических модулей на крышах зданий или встраивание их в фасадные стены. Это более дешевый вариант, так как при этом экономятся и строительные материалы.
Экологичность — при использовании фотоэлектрических систем не сжигается топливо и они, к тому же, являются бесшумными и чистыми.
Надежность — фотоэлементы разрабатывались для использования в космосе, где ремонт слишком дорогой, либо вообще невозможен. Современные фотоэлементы являются источником питания практически для всех спутников на земной орбите, потому что они работают без поломок и, почти, не требуют технического обслуживания.
Низкие текущие расходы — фотоэлементы работают на бесплатном топливе — солнечной энергии. Благодаря отсутствию движущихся частей, они не требуют особого ухода. Рентабельные фотоэлектрические системы являются идеальным источником электроэнергии для станций связи в горах, навигационных бакенов в море и других потребителей, расположенных вдали от линий электропередач.
Модульность — фотоэлектрическую систему можно как уменьшить, так и увеличить в зависимости от потребности в электроэнергии.
Низкие затраты на строительство — размещают фотоэлектрические системы обычно близко к потребителю, а значит, линии электропередачи не нужно тянуть на дальние расстояния, как в случае подключения к линиям электропередач. К тому же, не нужен понижающий трансформатор. Меньше проводов — низкие затраты и более короткий период установки. [7]
Таким образом, альтернативным источником энергии, на современном этапе, является использование энергии Солнечного излучения.
Однако, проблема загрязнения окружающей среды, даже при использовании альтернативных источников энергии, все еще остается нерешенной.
Литература.
http://www.energoinform.org/programs/energy.aspx
Пономарев Л.И. Под знаком кванта.-2-еизд.,испр. и доп. – М: Наука. 1989 – 368с.: ил.
http://ecohelp.com.ua/viewpage.php?page_id=83
http://www.diagram.com.ua/list/alter-energy/alter-energy134.shtml
http://www.diagram.com.ua/list/alter-energy/alter-energy140.shtml
http://www.solarhome.ru/solar/vacuum/
http://www.ecomuseum.kz/dieret/solar/solar.html#COLLECTORS
http://www.solarhome.ru/ru/basics/pv
https://realsolar.ru/article/solnechnye-batarei/kolichestvo-solnechnoy-energii-v-regionah-rossii/
https://www.betaenergy.ru/insolation/cherkessk/
https://refdb.ru/look/2426992-pall.html
https://gisee.ru/articles/solar-energy/24510/
Энергия в технике
http://de-ussr.ru/category/tehnika/energiya
https://avtonomny-dom.ru/ekonomiya-elektroenergii/solnechnaya-energiya-kak-alternativnyiy-istochnik-energii.html
http://ekolog.org/books/40/6.htm
https://energosector.com/solnechnaya-energiya/energiya-solntsa#i-3
Приложение 1
Солнечный коллектор – устройство;
солнечный коллектор – пассивное использование солнечной энергии.
Просмотров работы: 100
school-science.ru
Использование энергии солнца на земле: особенности и преимущества
Солнце является одним из возобновляемых альтернативных источников энергии. На сегодняшний день альтернативные источники тепла широко используют в аграрном хозяйстве и в бытовых нуждах населения.
Использование энергии солнца на земле играет важную роль в жизни человека. При помощи своего тепла солнце, как источник энергии, нагревает всю поверхность нашей планеты. Благодаря его тепловой мощности дуют ветра, нагреваются моря, реки, озера, существует все живое на земле.
Возобновляемые источники тепла, люди начали использовать еще много лет назад, когда современных технологий еще не существовало. Солнце является самым доступным на сегодняшний день поставщиком тепловой энергии на земле.
к содержанию ↑Сферы использования солнечной энергии
С каждым годом применение энергии солнца набирает все больше популярности. Еще несколько лет назад ее применяли в целях подогрева воды для дачных домов, летних душей, а сейчас возобновляемые источники тепла применяют для выработки электричества и горячего водоснабжения жилых домов и промышленных объектов.
На сегодняшний день возобновляемые источники тепла используют в следующих сферах:
- в аграрном хозяйстве, в целях электрообеспечения и отопления парников, ангаров и других построек;
- для электроснабжения спортивных объектов и медицинских учреждений;
- в сфере авиационной и космической промышленности;
- в освещении улиц, парков, а также других городских объектов;
- для электрификации населенных пунктов;
- для отопления, электроснабжения и горячего водоснабжения жилых домов;
- для бытовых нужд.
Особенности применения
Свет, который излучает солнце на земле, при помощи пассивных, а также активных систем превращается в тепловую энергию. К пассивным системам относятся здания, при строительстве которых применяют такие стройматериалы, которые наиболее эффективно поглощают энергию солнечной радиации. В свою очередь, к активным системам относятся коллекторы, преобразовывающие солнечную радиацию в энергию, а также фотоэлементы, конвертирующие ее в электричество. Рассмотрим подробнее как правильно использовать возобновляемые источники тепла.
к содержанию ↑Пассивные системы
К таким системам относят солнечные здания. Это здания, построенные с учетом всех особенностей местной климатической зоны. Для их возведения применяют такие материалы, которые дают возможность максимально использовать всю тепловую энергию для обогрева, охлаждения, освещения жилых и промышленных помещений. К ним относят следующие строительные технологии и материалы: изоляцию, деревянные полы, поглощающие свет поверхности, а также ориентацию здания на юг.
Такие солнечные системы позволяют осуществить максимальное использование солнечной энергии, к тому же они быстро окупают расходы на их возведение за счет снижения энергозатрат. Они являются экологически чистыми, а также позволяют создать энергетическую независимость. Именно из-за этого использование таких технологий очень перспективно.
к содержанию ↑Активные системы
К этой группе относят коллекторы, аккумуляторы, насосы, трубопроводы для теплоснабжения и горячего водоснабжения в быту. Первые устанавливают непосредственно на крышах домов, а остальные располагают в подвальных помещениях, чтоб использовать их для горячего водоснабжения и теплоснабжения.
к содержанию ↑Солнечные фотоэлементы
Чтоб более эффективно реализовывать всю солнечную энергию применяют такие источники энергии солнца, как фотоэлементы, или как их еще называют — солнечные элементы. На своей поверхности они имеют полупроводники, которые, при воздействии на них лучей солнца, начинают двигаться, и тем самым вырабатывают электроток. Такой принцип выработки тока не содержит никаких химических реакций, что позволяет фотоэлементам работать достаточно долго.
Такие фотоэлектрические преобразователи как источники энергии солнца легко использовать, так как они имеют небольшой вес, просты в обслуживании, а также являются очень эффективными в использовании солнечной мощности.
На сегодняшний день солнечные батареи, как источник энергии солнца на земле, используют для выработки горячего водоснабжения, отопления и для производства электричества в теплых странах, таких как Турция, Египет и страны Азии. В нашем регионе солнце источник энергии применяют для снабжения электричеством автономных систем электропитания, маломощной электроники и приводов самолетов.
к содержанию ↑Солнечные коллекторы
Использование солнечной энергии коллекторами заключается в том, что они преобразовывают радиацию в тепло. Их разделяют на следующие основные группы:
- Плоские солнечные коллекторы. Являются самыми распространенными. Их удобно использовать для бытовых отопительных нужд, а также при подогреве воды для горячего водоснабжения;
- Вакуумные коллекторы. Их используют для бытовых нужд, когда необходима вода высокой температуры. Они состоят из нескольких стеклянных трубок, проходя через которые лучи солнца нагревают их, а они, в свою очередь, отдают тепло воде;
- Воздушные солнечные коллекторы. Их используют для воздушного отопления, рекуперации воздушных масс и для осушительных установок;
- Интегрированные коллекторы. Самые простые модели. Их используют для предварительного подогрева воды, например, для газовых котлов. В быту подогретая вода собирается в специальном баке — накопители и далее используется для различных нужд.
Использование энергии солнца коллекторами осуществляется путем накапливания ее в так называемых модулях. Они устанавливаются на крыше зданий и состоят из стеклянных трубок и пластин, которые, в целях поглощения большего объема солнечного света, окрашивают в черный цвет.
Солнечные коллекторы используют для подогрева воды для горячего водоснабжения и отопления жилых домов.
к содержанию ↑Преимущества солнечных установок
- они полностью бесплатны и неисчерпаемы;
- имеют полную безопасность в использовании;
- автономны;
- экономичны, так как расход средств осуществляется только лишь на приобретение оборудования для установок;
- их использование гарантирует отсутствие скачков напряжения, а также стабильность в электроснабжении;
- долговечны;
- просты в использовании и в обслуживании.
Использование солнечной энергии при помощи таких установок с каждым годом набирает популярности. Солнечные батареи дают возможность сэкономить не малые деньги на отоплении и горячем водоснабжении, к тому же они являются экологически чистыми и не наносят урон здоровью человека.
Оцените статью:

Поделитесь с друзьями:
mirenergii.ru
Перспективы использования солнечной энергии для отопления дома в России
В статье рассмотрено использование солнечной энергии для отопления дома в России и по сравнению с использованием в Европе
Ключевые слова: солнечная энергия, отопление, Солнечные ресурсы
Хочу поблагодарить министерство высшего образования Ирака за постоянную поддержку
Введение
Актуальность.
С чем связан постоянный рост цен на энергию? Конечно, с колебанием и увеличением цен на нефть и газ на мировом рынке из-за истощения их запасов. Но ведь существуют альтернативные возобновляемые источники энергии, за которые не надо никому платить, которые не загрязняют окружающую среду и не истощаются – это ветер, солнце, тепло земли, тепло воздуха, морские волны и даже энергетический потенциал нашей планеты. Из всех видов альтернативных источников чаще всего используются солнечные батареи и ветрогенераторы, значительно реже — термальные источники и грунтовые теплообменники. Например, установка солнечных батарей для отопления дома поможет сократить на 70 % энергопотребление, а значит, и расходы из семейного бюджета.
Примерно треть источников энергии (уголь, нефть, газ) мы превращаем в тепло: большая часть этой энергии используется для отопления помещений и подогрева воды. Изменения климата и зависимость от ископаемых источников энергии, запасы которых заметно сократятся в ближайшие десятилетия, заставляют нас действовать быстро. Широкое применение солнечной энергии для отопления жилых домов уже сегодня показывает, как мы можем справиться с этой проблемой. Это означает не только использование новых стандартов при строительстве, но и то, что надо резко сократить потребление энергии в доме. Проведя продуманную перестройку дома и используя большую термическую гелиосистему, можно сократить расход тепла на четверть или даже на треть. Только при этом условии в будущем будет достаточно сырья (такого как древесина), чтобы покрыть оставшуюся потребность в энергии.
1. Использование солнечной энергии для отопления дома в России
Солнечные батареи для отопления дома устанавливаются на крышу, увеличивая её защитную функцию и, несомненно, придают дому высокотехнологичный и современный вид. Их можно устанавливать как сразу при строительстве дома, так и на дом давнишней постройки, принципиального значения это не имеет.
Монтаж солнечных батарей для отопления дома производится так же, как и Солнечные батареи для отопления можно использовать и на многоквартирных домах. То есть, специалист по окнам вполне может справиться с монтажом коллектора на крыше. Дальнейшую установку оборудования лучше доверить специалисту по отоплению и водоснабжению.
Надо сказать, что в современных солнечных батареях для отопления дома используется закаленное стекло и уплотнительные фланцы уникальной конструкции, поэтому они абсолютно устойчивы к погодным катаклизмам и механическим повреждениям.
Солнечная батарея для отопления дома — существенная экономия денег. Выясняя, сколько стоит солнечная батарея и будет ли вам выгодна её установка, следует учитывать различные факторы: ежедневную потребность в горячей воде, площадь и угол наклона крыши, освещенность крыши солнцем и т. д.
Чтобы не затрудняться с вычислением индивидуальных параметров, можно воспользоваться средними показателями: на 1 человека нужен 1 м² светопоглощающей поверхности. Определить параметры и сколько стоит солнечная батарея для отопления вашего дома, можно исходя из того, что на 10 кв. м теплого пола нужно установить 1 м² поверхности коллектора. [4]
Инсоляцию также можно учитывать по средним показателям для вашей местности. При средней инсоляции в 1000 кВт/ч на 1 м² в год, может быть получена энергия, как от сжигания 100 литров газа или других видов топлива.
Например, немецкий солнечный коллектор Roto Sunroof, довольно популярен в Европе. Его площадь — 2,13 м². Двух коллекторов достаточно для обеспечения горячей водой семьи из 4 человек, это примерно 2000 кВт/ч электроэнергии в год. Установка из трех коллекторов производит, соответственно, 3000 кВт/ч энергии. [1] Подсчитывая, сколько стоит солнечная батарея, следует исходить из необходимого и достаточного количества энергии для обеспечения вашего дома.
Если в доме установлено традиционное отопление, которое работает во время низкой солнечной активности и солнечная батарея, то энергией солнца перекрывается 70 % потребляемой энергии. Когда будете подсчитывать, во сколько вам обойдется солнечная батарея и стоит ли её покупать, учтите экономию своих расходов на электроэнергию на 70 %.
Рис. 1. Солнечные ресурсы России
Рис. 2. Солнечная радиация (кВт ч/м2 день)
Рост цен на энергоносители в России заставляет проявлять интерес к дешевым источникам энергии. Наиболее доступной является солнечная энергия. Энергия солнечной радиации, падающая на Землю в 10 000 раз превышает количество вырабатываемой человечеством энергии. Проблемы возникают в технологии сбора энергии и в связи с неравномерностью поступления энергии на гелиоустановки. Поэтому солнечные коллекторы и солнечные батареи применяются или совместно с аккумуляторами энергии или в качестве средства дополнительной подпитки для основной энергетической установки.
Страна у нас обширна и картина распределения солнечной энергии по ее территории весьма разнообразна (рис. 1 и 2.). [3]
Зоны максимальной интенсивности солнечного излучения (рис.2). На 1 квадратный метр поступает более 5 кВт/час. солнечной энергии в день.
По южной границе России от Байкала до Владивостока, в районе Якутска, на юге Республики Тыва и Республики Бурятия, как это не странно, за Полярным Кругом в восточной части Северной Земли.
Поступление солнечной энергии от 4 до 4,5 кВт/час на 1 кв. метр в день
Краснодарский край, Северный Кавказ, Ростовская область, южная часть Поволжья, южные районы Новосибирской, Иркутской областей, Бурятия, Тыва, Хакассия, Приморский и Хабаровский край, Амурская область, остров Сахалин, обширные территории от Красноярского края до Магадана, Северная Земля, северо-восток Ямало-Ненецкого АО.
От 2,5 до 3 кВт/час на кв. метр в день
По западной дуге — Нижний Новгород, Москва, Санкт-Петербург, Салехард, восточная часть Чукотки и Камчатка.
От 3 до 4 кВт/час на 1 кв. метр в день
Наибольшую интенсивность (рис.3) поток энергии имеет в мае, июне и июле. В этот период в средней полосе России на 1 кв. метр поверхности приходится 5 кВт.час в день. Наименьшая интенсивность в декабре-январе, когда 1 кв. метр поверхности приходится 0,7 кВт/час в день.
Если установить солнечный коллектор под углом 30 градусов к поверхности, то можно обеспечить съем энергии в максимальном и минимальном режиме соответственно 4,5 и 1.5 кВт час на 1 кв. метр в день.
Рис.3. Распределение интенсивности солнечного излучения в средней полосе России по месяцам [5]
Исходя из приведенных данных можно рассчитать площадь плоских солнечных коллекторов, необходимую для обеспечения горячего водоснабжения семьи из 4-х человек в индивидуальном доме. Нагрев 300 литров воды от 5 градусов до 55 градусов в июне могут обеспечить коллекторы площадью 5,4 квадратного метра, в декабре 18 кв. метров. Если применить более эффективные вакуумные коллекторы, то требуемая площадь коллекторов снижается примерно вдвое.
Рис.4. Покрытие потребностей в ГВС на счет солнечной энергии [5]
На практике солнечные коллекторы желательно применять не в качестве основного источника ГВС, а в качестве устройства для подогрева воды, поступающей в отопительную установку. В этом случае расход топлива резко снижается. При этом обеспечивается бесперебойная подача горячей воды и экономия средств на ГВС и отопление дома, если это дом для постоянного проживания. На дачах, в летнее время, для получения горячей воды, применяются различные виды солнечных коллекторов. От коллекторов заводского изготовления до самодельных устройств, изготовленных из подручных материалов. Различаются они, прежде всего, по эффективности. Заводской эффективнее, но стоит дороже. Практически бесплатно можно сделать коллектор с теплообменником от старого холодильника.
В России установка солнечных коллекторов регламентируется РД 34.20.115–89 «Методические указания по расчету и проектированию систем солнечного обогрева», ВСН 52–86 «Установки горячего солнечного водоснабжения. Нормы проектирования». Имеются рекомендации по использованию нетрадиционных источников энергии в животноводстве, кормопроизводстве, крестьянских хозяйствах и сельском жилищном секторе, разработанные по заявке Минсельхоза в 2002 году. Действуют ГОСТ Р 51595 «Солнечные коллекторы. Технические требования», ГОСТ Р 51594 «Солнечная энергетика. Термины и определения». [2]
В этих документах довольно подробно описаны схемы применяемых солнечных коллекторов и наиболее эффективные способы их применения в различных климатических условиях.
2. Использование солнечной энергии для отопления дома в Европе
Европейцы широко применяют солнечные батареи в своих домах, ведь они экономичны и экологичны. Действительно, опыт продвинутых жителей Европы, которые, как известно, умеют считать деньги, стоит перенять и для отечественных домов.
В Германии государство дотирует затраты на установку солнечных коллекторов, поэтому их применение устойчиво растет. В 2006 году было установлено 1 миллион 300 тысяч квадратных метров коллекторов. Из этого количества примерно 10 % более дорогие и эффективные вакуумные коллекторы. Общая площадь установленных на сегодняшний день солнечных коллекторов составила примерно 12 миллионов квадратных метров.
В Европейских странах солнечные коллекторы для отопления используют в 50 % от общего количества установленных гелиосистем. Однако следует понимать, что гелиосистемы используют лишь для поддержки отопления и экономии основного энергоресурса, поскольку теплопотребление значительно превышает выработку энергии гелиосистемой в отопительный период.
Наиболее распространенным является использование гелиосистем с суточной аккумулированием тепловой энергии. Недостатком солнечных систем для поддержки отопления с суточным аккумулированием теплоты являются невозможность использовать излишки теплоты в летнее время. Выходом из данной ситуации может быть использование сезонного аккумулирования. Однако такую систему крайне сложно реализовать на практике из-за необходимости установки огромных накопительных емкостей (объемом от 10 м³). Как правило, такие емкости закапывают под землю или строят специальный резервуар из бетона с крышкой.
Заключение
Таким образом необходимо заметить, что проведенное исследование позволяет заключить:
Научиться использовать солнечную энергию для получения тепловой энергии люди пытались с древних времен.
Первые солнечные нагреватели появились во Франции. Естествоиспытатель Ж. Бюффон создал большое вогнутое зеркало, которое фокусировало в одной точке отраженные солнечные лучи. Это зеркало было способно в ясный день быстро воспламенить сухое дерево на расстоянии 68 м.
Вскоре после этого шведский ученый Н. Соссюр построил первый водонагреватель. Это был обычный деревянный ящик со стеклянной крышкой, однако вода в нем нагревалась солнцем до 88°С.
В 1774г. великий французский ученый А. Лавуазье впервые применил линзы для концентрации тепловой энергии солнца. Вскоре в Англии отшлифовали большое двояковыпуклое стекло, расплавлявшее чугун за три секунды и гранит — за минуту.
Солнечный коллектор — один из самых простых способов использования энергии солнца, который не требует больших вложений, высоких технологий и большого уровня знаний.
Системы теплоснабжения на базе солнечных коллекторов совершенствуются во всем мире, чтобы сделать их объектом массового спроса.
Современное общество является свидетелем очередного глобального перехода на новые энергоносители, который начался приблизительно в начале 90-х годов прошлого века.
Определяющей характеристикой текущего этапа является его экологическая направленность, стремление избавиться от зависимости от ископаемых ресурсов, добыча и использование которых истощает и загрязняет природу.
Считается, что разработка источников альтернативной энергии все еще дело завтрашнего дня, на самом деле по отдельным направлениям в технической практике уже произошла тихая революция.
Одним из успешных направлений стала гелиоэнергетика.
Одним из ключевых направлений гелиоэнергетики является производство и эксплуатация солнечных коллекторов.
С помощью солнечных коллекторов можно обогревать помещения даже при минусовых температурах.
Коллекторы активно применяются во многих странах, отечественные потребители также начинают присматриваться к аккумулирующим солнечную радиацию установкам.
Литература:
1. Актуальные вопросы технических наук (II): международная заочная научная конференция (г. Пермь, февраль 2013 г.) / отв. ред.: Г. А. Кайнова. — Пермь: Меркурий, 2013. — 107 с.
2. Альтернативная энергетика и энергосбережение в регионах России: материалы научно-практического семинара, г. Астрахань, 14–16 апреля 2010 г. / Астраханский гос. ун-т, Акад. электротехнических наук Российской Федерации; сост. Л. Х. Зайнутдинова. — Астрахань: Астраханский ун-т, 2010. — 101 с.
3. Вестник Краснодарского регионального отделения Русского географического общества: сборник Вып. 7 / отв. ред.: И. Г. Чайка, Ю. В. Ефремов. — Краснодар, 2013–399 с.
4. Йе В. Исследование эффективности использования солнечной энергии для систем автономного энергоснабжения в Республике Союза Мьянма: диссертация… кандидата технических наук: 05.14.08 / Йе Вин; Место защиты: Нац. исслед. ун-т МЭИ. — Москва, 2013. — 155 с.
5. Курбатов, Н. Е. Использование возобновляемых источников энергии в условиях Забайкалья: способы и устройства для преобразования энергии солнечного излучения [Текст] / Н. Е. Курбатов, Е. Н. Курбатов; Федеральное агентство по образованию, Гос. образовательное учреждение высш. проф. образования «Забайкальский гос. ун-т» (ЗабГУ) Ч. 3. Использование возобновляемых источников энергии в условиях Забайкалья: естественные среды в качестве аккумуляторов солнечной энергии. — Чита, 2012. — 154 с.
moluch.ru