Контроллер для солнечных панелей: Как выбрать контроллер заряда солнечной батареи – Как подобрать контроллер заряда для солнечных батарей

Содержание

Как подобрать контроллер заряда для солнечных батарей

Статья посвящена выбору характеристик контроллера заряда аккумуляторов для солнечной электростанции

Как подобрать контроллер заряда

Вопрос – как выбрать контроллер заряда для солнечной электростанции является одним из главных при расчете солнечной системы. При всей кажущейся сложности этого вопроса, его можно существенно упростить. Это мы и попытаемся сделать в этой статье.

Итак:

Выбор контроллера заряда является четвертым этапом при расчете солнечной системы. После выбора требуемого инвертора (ссылка), расчета требуемой емкости аккумуляторов и определения требуемой суммарной мощности солнечных панелей можно приступить к выбору контроллера заряда.

 

О том какие контроллеры бывают и какой тип контроллера выбрать вы можете прочитать тут – http://oporasolar.ru/a171898-chto-takoe-kontroller.html

 

Поэтому останавливаться на этом мы не будем, а приведем способы расчета для двух типов контроллеров PWM (ШИМ) и MPPT.

 

Подбор PWM (ШИМ) контроллера заряда АКБ

При подборе контроллера данного типа мы будем прежде всего опираться на 2 основных характеристики это допустимая сила тока (5А, 10А,  20А, 50А) и рабочее напряжение (12В, 24В, 48В).

 

Немного подробнее об этих характеристиках:

Допустимая сила тока определяет максимальный ток от солнечных панелей который будет выдерживать контроллер.

Рабочее напряжение – это режимы в которых контроллер может функционировать. В зависимости от схемы соединения солнечных панелей и аккумуляторов – мы можем выбрать режим работы – рабочее напряжение.

 

О том какие варианты соединения Аккумуляторов и Солнечных панелей  могут быть, а также как будут определяться рабочие токи и напряжения – вы можете прочитать тут – http://oporasolar.ru/a171380-varianty-podklyucheniya-akkmulyatorov.html

И тут – http://oporasolar.ru/a171460-kak-podklyuchit-solnechnye.html

 

Номинальная сила тока одной панели определяется как Номинальная Мощность делить на Номинальное Напряжение

Например:

 для 100 ватной панели на 12 вольт мы получим 100/12=8.33А  ― для одной такой панели контроллера заряда на 10А и 12В будет достаточно, но при этом надо убедиться, что банк аккумуляторов (если их несколько) собран на 12В.

Включая 2 таких панели последовательно мы получаем номинальное напряжение равное 12В*2=24В и в данном случае потребуется уже контроллер заряда который может работать в режиме 24В, при этом допустимая номинальная сила тока по прежнему остается 10А, поскольку при последовательном включении солнечных панелей,  номинальный ток будет равен току одной панели – 8.33А.

 

Если мы включим 2 солнечных панели параллельно, то напряжение останется равным 12 В но при этом ток будет суммироваться. В нашем случае 8.33А*2=16.66А а значит контроллера заряда 20А будет достаточно.

При выборе режима включения PWM контроллера очень важно, чтобы вся система была собрана на одно номинальное напряжение – т.е. если мы включаем аккумуляторы на 24В, то и панели и контроллер и инвертор должны быть включены на 24В.

 

Для того чтобы определить какое максимальное количество панелей можно включить в PWM контроллер при различных режимах включения нужно умножить ток на напряжение режима включения.

Для примера определим какие панели можно включить в контроллер 30А 12/24/48В:

Итак – при включении контроллера в режиме 12 В мы имеем максимальную мощность панелей равную 12В*30А=360Вт – это может быть одна панель на 360Вт с номинальным напряжением 12В, 2 панели по 180Вт с номинальным напряжением 12В включенные параллельно, 4 панели по 90Вт с номинальным напряжением 12В включенные параллельно и так далее

 

При включении контроллера в режиме 24В  ― имеем 24В*30А=720Вт – можно включить 6 панелей по 120Вт с номинальным напряжением 12В при этом соединив по 2 панели последовательно и затем 3 таких цепи параллельно, или другие различные варианты как в предыдущем режиме

 

Мы также можем включить этот контроллер в режиме 48В и тогда получим максимальную мощность панелей 48В*30А=1440Вт.

 

Другим важным ограничением при выборе PWM контроллера заряда считается Емкость банка аккумуляторов. Считается, что ток заряда аккумуляторов должен быть не менее 10% от значения емкости банка аккумуляторов, т.е. для аккумулятора на 100Ач нужен ток контроллера не менее 10А. При последовательном включении аккумуляторов номинальное напряжение остается неизменным, а вот емкость суммируется соответственно для двух 100Ач АКБ включенных последовательно, ток нужен уже 20А. Поэтому старайтесь выбирать режим работы контроллера так, чтобы ток заряда банка аккумуляторов не был больше номинального тока контроллера.

 

Подбор MPPT контроллера заряда АКБ

В случае выбора такого контроллера ситуация обстоит немного проще. Такие контроллеры преобразовывают любое напряжение панелей на входе в контроллер в требуемое номинальное для зарядки аккумуляторов. 

 

У таких контроллеров важна еще одна характеристика – максимальное напряжение холостого хода солнечных панелей и в данном случае она определяет количество панелей и схему включения.

 

Напряжение холостого хода любой панели указано в инструкции  к солнечной панели или на самой панели с обратной стороны называется  Uoc (U open circuit). Например для панели 150Вт (Моно) 12В  напряжение холостого хода составляет порядка 23В. 

 

Что касается подбора контроллера по току – ситуация аналогичная PWM контроллерам.

 

Например в контроллер MPPT на 60А и 150В Напряжение холостого хода можно включить последовательно 6 моно панелей по 150 Вт с напряжением холостого хода 23В (23В* 6=138В меньше 150В). При этом включить параллельно эти же 6 панелей мы не сможем, поскольку для каждой панели номинальный ток будет равен 150Вт/12В=12,5А. А это значит что включив параллельно 4 таких панели мы получим ток уже 50А. Поэтому в данном случае очень важно определить схему включения панелей так, чтобы получить максимальную суммарную мощность.

При использовании данных панелей мы можем подключить до 24 таких панелей – по 6 панелей последовательно и далее 4 цепочки параллельно.

 

На этом все сложности выбора контроллеров заряда заканчиваются.

Есть более научные способы расчета требуемых характеристик контроллеров, но в целом результаты таких расчетов не будут существенно отличаться от предложенного нами способа. Если Вам интересны такие способы расчета ― следите за появлением новых статей ― мы будем стараться подробно разбирать все нюансы.

 

Если у вас возникли сложности при расчетах – звоните +7-903-008-34-37 и мы с радостью поможем вам разобраться. Кроме того мы сделаем для вас расчет системы любой сложности абсолютно бесплатно!

Обзор солнечной панели мощностью 30 Вт и бюджетного контроллера CMTP02

На mySKU иногда проскакивают обзоры солнечных панелей. Я решил тоже приобщиться к «зелёной» энергии. Перечитал стопку разных материалов по солнечным панелям и контроллерам. Экспертом не стал, но знаний набрал небольшой мешок. Частичкой знаний я с вами сегодня поделюсь.

Для реализации автономного освещения в бане на даче и знакомства выбрал небольшую панель с номинальной выходной мощностью 30 Вт и напряжением 12 В, и простой популярный контроллер для заряда свинцово-кислотного аккумулятора CMTP02.

Планируемая схема подключения:

Солнечная панель

Солнечная панель пришла неожиданно быстро. Позвонил курьер, которого я не ожидал. Из-за большого веса магазин Banggood отправил панель через EMS, а вот контроллер обычной почтой шёл стандартные три с половиной недели.

Панель была упакована хорошо, но самое уязвимое место — углы алюминиевого профиля. Ничего страшного, но на будущее надо просить продавца дополнительно защитить углы в упаковке.



Панель достаточно большая. Реальные размер 650x350x25 мм, вес 2,5 кг.

Фотоэлементы находятся между толстым листом прозрачного пластика и тонким листом белого пластика. Сэндвич вставлен в алюминиевый профиль и обработан герметиком. Алюминиевый профиль покрыт транспортировочной плёнкой. Степень защиты нигде не указана. Лицевой пластик по ощущениям прочный. Как он выдержит град, я не знаю.

На обратной стороне панели находится защитный кожух / короб для соединения. Из него выходит провод.

Провод длинный — 4,5 метра, 2 x 0,75 мм.

На концах провода «крокодилы». Конечно, при финальном монтаже крокодилы и большую часть проводу нужно будет отрезать, но для теста пригодятся.

Внутри короба шунтирующий диод. Он нужен только для последовательного соединения нескольких панелей (чтобы при уходе в тень одной из панелей вся система продолжала работать), для одной панели он роли никакой не играет.

Наклейка со спецификациями:

Производитель не указан. Спецификации:

Как можете видеть, солнечная панель выдаёт максимальное напряжение 21 В без нагрузки (в реальности по замерам 22 В), а не 12 В, как заявлено. Пугаться не нужно. Это нормально, обычно указывается рабочее напряжение системы, для которой предназначена солнечная панель, а это 12 В (на самом деле это формальность, в реальности всё зависит от контроллера заряда). Например, солнечные панели для систем 24 В могут иметь напряжение до 45 В.

Чтобы параметры панели стали более понятными, посмотрите на график (он относится к панели 230 Вт, 24 В):

Горизонтальная ось — напряжение, вертикальные оси — сила тока и мощность. Посмотрите, как меняется сила тока панели (красный график). При увеличении силы тока напряжение панели снижается. А теперь посмотрите график мощности (синий, IxU). Как вы можете видеть, максимальная мощность достигается в определённой точке. Эта точка называется точкой максимальной мощности панели — maximum power point, характеризуется значениями Vmp и Imp. Во время работы, в основном из-за изменения температуры фотоэлементов, эта точка может смещаться.

Панель из обзора имеет Vmp = 18 В и Imp = 1,67 А. Именно в этой точке достигается мощность 30 Вт (в самых идеальных условиях). Если вы будете нагружать панель больше, сила тока будет незначительно расти, а напряжение и выходная мощность падать. Если вы будете нагружать панель меньше, то сила тока будет падать, напряжение расти, а мощность опять падать. Т.е. эффективность панели при смещении от точки максимальной мощности снижается. Чуть позже я ещё вернусь к точке максимальной мощности.

Контроллер

Контроллер CMTP02 поставляется в небольшой коробке.

Внутри сам контроллер и краткая инструкция.

Контроллер рассчитан на ток до 15 А. Т.е. отдаёт на аккумулятор и в нагрузку ток до 15 А. Это «китайские» 15 А. В реальности, конечно, меньше. У меня панель с максимальной силой тока 1,75 А — можно вообще не беспокоиться. Контроллер может работать с аккумуляторами 12 В и 24 В.

Откручиваем 4 винта и снимаем металлическую крышку. На нижней стороне платы три MOSFET транзистора со стёртой маркировкой. На транзисторы надета изоляция. Может она играет роль термоподложки для отвода тепла на металлическую крышку, но материал твёрдый и к крышке прилегает плотно лишь один транзистор. Если планируете использовать контроллер с силой тока больше 5 А, лучше заменить эту изоляцию на силиконовую термоподложку (100x100x3 мм стоит пару долларов).


На обратной стороне платы операционный усилитель LM358 и контроллер STM8S003F3, и множество SMD компонентов в обвязке.

На рынке присутствует много разновидностей подобного контроллера с дополнительным функционалом. На плате есть место для разводки USB выхода (5 В), стабилизированное напряжение 12 В и пр.

Данный PWM/ШИМ контроллер самый простой, без возможности какой-либо настройки. Нужно только подключить аккумулятор, солнечную панель и нагрузку. Важно соблюдать последовательность подключения. Аккумулятор > солнечная панель > нагрузка. Отключение в обратном порядке. Без аккумулятора контроллер не работает.

Хоть в инструкции и указано, что контроллер может работать с GEL аккумуляторами, но лучше этого не делать, т.к. именно у этого контроллера нет выбора типа аккумулятора, а значит напряжение одинаково для всех типов аккумуляторов. Для GEL оно обычно должно быть ниже.

Рынок контроллеров зарядки от солнечных панелей формально можно разделить на два типа. MPPT и не MPPT (их ещё иногда называют PWM/ШИМ). MPPT — maximum power point tracking, отслеживание точки максимальной мощности. Помните, я писал про точку максимальной мощности? Так вот, MPPT контроллер отслеживает (есть разные алгоритмы) точку максимальной мощности и на входе старается держать напряжение на уровне, который соответствует этой точке, до следующего замера. Многие MTTP контроллеры без проблем могут работать с высоким напряжением (например, последовательно соединённые панели с напряжением 90 В для малых потерь из-за сопротивления проводов), а на выходе заряжать обычные 12 В аккумуляторы.

PWM контроллер не следит за точкой максимальной мощности. Например, на этапе bulk charge (CC — постоянная сила тока) напряжение солнечной панели уравнивается с напряжением батареи и последовательно растёт на этом этапе. Давайте посмотрим ещё на один график.

Обратите внимание на серую зону и чёрный график выходной мощности солнечной панели — это выходная мощность при использовании PWM контроллера, а точка Pmpp — выходная мощность при использовании MTTP контроллера.

MPPT контроллеры стоят дороже и являются более эффективными. Но существенный выигрыш получается лишь при использовании мощных панелей. Нужно ещё знать, что многие дешевые китайские контроллеры, на которых написано MPPT, на самом деле таковыми не являются.

Вернёмся к CMTP02. Для его первичного теста я буду использовать: AGM аккумулятор, тестер EBD-USB для создания нагрузки, простой USB-тестер с поддержкой высоких напряжений

Индикатор Solar (солнечная панель) горит, когда есть напряжение от солнечной панели. Мигает, когда напряжение превышает норму для данного контроллера (более 45 В). Контроллер имеет защиту от обратного тока — от аккумулятора к солнечной панели.

Индикатор Load (нагрузка) горит, когда нет никаких проблем. Не горит, если напряжение аккумулятора ниже 11,2 В — в этом случае в нагрузку ток не идёт. Быстро мигает при коротком замыкании.

Пока хватает мощности солнечной панели для питания нагрузки, батарея заряжается. Т.е. ток идёт и на батарею, и в нагрузку. Как только мощность нагрузки начинает превышать выходную мощность солнечной панели, зарядка аккумулятора прекращается, и недостача тока компенсируется от аккумулятора. Весь процесс работает как часы. Как только солнечная панель перестаёт вырабатывать энергию (например, солнечный день закончился), нагрузка питается только от аккумулятора.

Как я уже написал, контроллер самый простой, но свою задачу выполняет. На рынке присутствует множество моделей контроллеров под любые задачи, мощности и кошелёк.

Если у вас стоит простая задача, например, вы хотите фонтан на даче, который работает только днём, то нет ничего проще. На рынке доступны вот такие интересные преобразователи с ручной настройкой напряжения максимальной мощности:

Стоят такие устройства от 6$. Аккумулятор не нужен, просто подключаете преобразователь напрямую к солнечной панели и помпе. С помощью потенциометра MPP выставляете входное напряжение максимальной мощности, дополнительно на выходе задаёте напряжение для помпы. Просто и эффективно.

Тестирование солнечной панели

Чтобы чётко знать, какое количество энергии будет вырабатывать панель в день, построить дневные графики и пр., есть несколько вариантов. Самый простой и частный — это подключить тестер между контроллером и разряженным аккумулятором. Универсальный — это использовать нагрузку, которая поддерживает режим Constant Voltage. Суть этой нагрузки в следующем — вы задаёте напряжение, и нагрузка начинает увеличивать силу тока до тех пор, пока напряжение не стабилизируется на заданном значении. Как только напряжение начинает проседать или повышаться, нагрузка мгновенно уменьшает или увеличивает ток потребления. Так образом источник энергии, солнечная панель, выдаёт всё, что может в конкретный момент времени при заданном напряжении.

Решил использовать нагрузку с режимом CV, которая будет подключаться напрямую к панели.

Проблема в том, что такой режим востребован очень редко, в электронных нагрузках не всегда есть. Поспрашивал у знакомых, ни у кого такой не оказалось. Я начал штудировать схемы в сети Интернет. Быстро нашёл простую схему. Не обошлось без помощи друга. Но всё получилось.

В схеме используется операционный усилитель LM358 (U1) и полевой транзистор (N-канал, Q1). В наличие был другой операционный усилитель, для него понадобилось добавить ещё стабилизатор в схему. Готовый продукт имеет не совсем презентабельный вид, но главное — содержит синюю изоленту и полностью пригоден для использования.


С помощью потенциометра можно настраивать напряжение нагрузки. Т.к. нагрузка сделана из подручных компонентов, то присутствует некоторый перепад напряжения при изменении силы тока. Стенд для тестирования выглядит следующим образом:

Т.к. сила тока небольшая у моей панели, то можно использовать тонкие короткие провода. Для измерения буду использовать тестер EBD-USB в режиме мониторинга. Нагрузка подключена к солнечной панели сквозь EBD-USB, который в свою очередь подключен к компьютеру. Первая ревизия EBD-USB поддерживает измерение напряжения до 13,65 В (работа до 20 В). Мне это на руку, т.к. при подключенном аккумуляторе диапазон напряжения будет 11,2 — 14,6 В. Потенциометром на нагрузке выставлю напряжение чуть больше 12 В.

27 марта, временной отрезок 9.00 — 9.05, безоблачная погода.

Всплески — это я прикрывал солнечную панель, смотрел на изменение графика. За 5 минут работы солнечная панель выдала 1,5 Вт⋅ч. Выходная мощность составляла 19 Вт. При установке напряжения около 18 В, точка максимальной мощности (это я уже смотрел с заменой EBD-USB на обычный USB тестер с поддержкой высокого напряжения), мощность составила 21 Вт. И это только утро в конце марта. Летом при солнце в зените панель вполне может выдать заявленные 30 Вт. Но будем ориентировать на имеющиеся данные. Если грубо прикинуть, что солнце будет светить 5 часов день, то я получу 1,5 x 12 x 5 = 90 Вт⋅ч в день. Летний световой день длиннее, коэффициент «лето/весна» в центральном регионе 1,5. Т.е. летом будет 135 Вт⋅ч. КПД свинцово-кислотного аккумулятора 75%. Запасённая в день энергия составит 100 Вт⋅ч. Аккумулятор (14,5 А⋅ч) полностью зарядится за 2 световых дня. В сарае и в бане я смогу повесить 4 лампы по 7 Вт (со световым потоком 500 Лм, эквивалент 55 Вт). И каждый день/вечер я смогу их использовать до 3 часов одновременно. Меня это устраивает.

Конечно, это грубый приблизительный подсчёт, основанный на кратковременных тестах. Детальное тестирование с замерами и графиками целого дня я буду проводить в мае уже на месте размещения панели.

Пока я экспериментировал с панелью, радиатор нагрузки нагревался очень сильно — как-никак, рассеивала 20 Вт. Для замеров моей панели его вполне хватит, а вот мощнее уже нужно ставить радиатор побольше и активное охлаждение.

Вот ещё один замер. 31 марта, временной отрезок 9.00 — 9.05. Погода пасмурная, на небе дымка и облака. Солнце то выходит, то скрывается.

Выходная мощность составила от 3 Вт до 17 Вт. За 5 минут работы солнечная панель выдала 1 Вт⋅ч. Для такой погоды панель справляется отлично.

Опыты с солнечной панелью мне понравились, я их продолжу. Если у кого-то есть дельные и полезные советы, не стесняйтесь, делитесь ими в комментариях. Думаю, что многим будет интересно.

Рыжий бандит тоже заряжается от солнца:

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Контроллер заряда солнечной батареи

Контроллер заряда солнечной батареи

Среди современных гелиосистем большую популярность приобрели те, что работают автономно и не подключаются к электрической сети. То есть, они функционируют в замкнутом режиме. Например, в рамках энергоснабжения одного дома. В состав подобных систем входят солнечные панели (и/или ветряной генератор), контроллер заряда, инвертор, реле, аккумулятор, провода. Контроллер в этой схеме является ключевым элементом. В этой статье мы поговорим о том, для чего нужен контроллер солнечных батарей, какие бывают разновидности и как выбрать такое устройство.

 

Содержание статьи

Для чего нужен солнечный контроллер?

Как уже было сказано, контроллер заряда является ключевым элементом гелиосистемы. Это электронное устройство, работающее на базе чипа, который контролирует работу системы и управляет зарядом аккумулятора. Контроллеры для солнечных батарей не допускают полной разрядки аккумулятора и его излишнего заряда. Когда заряд аккумуляторной батареи находится на максимальном уровне, то величина тока от фотоэлементов уменьшается. В результате подаётся ток, необходимый для компенсации саморазряда. Если аккумулятор чрезмерно разряжен, то контроллер отключит от него нагрузку.

Итак, можно обобщить функции, которые выполняет контроллер солнечных батарей:

  • многостадийный заряд аккумулятора;
  • отключение зарядки или нагрузки при максимальном заряде или разряде, соответственно;
  • включение нагрузки, когда заряд батареи восстановлен;
  • автоматическое включение тока с фотоэлементов для зарядки аккумулятора.

Можно сделать вывод, что подобное устройство продлевает срок службы аккумуляторов и их поломку. Контроллер заряда солнечных батарей

Контроллер заряда солнечных батарей


Вернуться к содержанию
 

Параметры выбора

На что же следует обратить внимание при выборе контроллера для солнечных батарей? Основные характеристики изложены ниже:

  • Входное напряжение. Максимальное напряжение, указанное в техническом паспорте, должно быть на 20 процентов выше напряжения «холостого хода» батареи фотоэлементов. Это требование появилось из-за того, что производители часто ставят завышенные параметры контроллеров в спецификациях. Кроме того, при высокой солнечной активности напряжение солнечных модулей может быть выше, чем указано в документации;
  • Номинальный ток. Для контроллера типа PWM номинал по току должен на 10 процентов превышать ток короткого замыкания батареи. Контроллер типа MPPT нужно подбирать по мощности. Его мощность должен быть равна или выше напряжения гелиосистемы умноженного на тока регулятора на выходе. Напряжение системы берётся для разряженных аккумуляторов. В период высокой солнечной активностью к полученной мощности следует прибавить 20 процентов про запас.

Не нужно экономить на этом запасе. Ведь экономия может плачевно сказаться в период высокой солнечной инсоляции. Система может выйти из строя и убытки будут гораздо больше.

Вернуться к содержанию
 

Виды контроллеров

Контроллеры On/Off

Эти модели являются самыми простыми из всего класса контроллеров заряда для солнечных батарей.

Контроллер заряда On/Off для гелиосистем

Контроллер заряда On/Off для гелиосистем

Модели типа On/Off предназначены для того, чтобы отключать заряд аккумулятора, когда достигается верхний предел напряжения. Обычно это 14,4 вольта. В результате предотвращается перегрев и излишний заряд.

С помощью контроллеров On/Off не получится обеспечить полную зарядку аккумуляторной батареи. Ведь здесь отключение происходит в том момент, когда достигнут максимальный ток. А процесс зарядки до полной ёмкости ещё необходимо поддерживать несколько часов. Уровень заряда в момент отключения находится где-то 70 процентов от номинальной ёмкости. Естественно, что это негативно отражается на состоянии аккумулятора и снижает срок его эксплуатации.
Вернуться к содержанию
 

Контроллеры PWM

В поисках решения неполной зарядки аккумулятора в системе с устройствами On/Off были разработаны блоки управления, основанные на принципе широтно-импульсной модуляции (сокращённо ШИМ) заряжающего тока. Смысл работы такого контроллера заключается в том, что он понижает заряжающий ток, когда достигается предельное значение напряжения. При таком подходе заряд аккумулятора доходит практически до 100 процентов. Эффективность процесса увеличивается до 30 процентов.

Контроллер заряда PWM

Контроллер заряда PWM



Есть модели PWM, которые умеют в зависимости от температуры ОС регулировать ток. Это хорошо сказывается на состоянии аккумулятора, уменьшается нагрев, лучше принимается заряд. Процесс становится регулируемым в автоматическом режиме.

ШИМ контроллеры заряда для солнечных батарей специалисты рекомендуют применять в тех регионах, где наблюдается высокая активность солнечных лучей. Их часто можно встретить в гелиосистемах маленькой мощности (менее двух киловатт). Как правило, в них работают аккумуляторные батареи небольшой ёмкости.

Вернуться к содержанию
 

Регуляторы типа MPPT

Контроллеры заряда МРРТ сегодня являются самыми совершенными устройствами для регулирования процесса заряда аккумуляторной батареи в гелиосистемах. Эти модели увеличивают эффективность генерации электричества на одних и тех же солнечных батареях. Принцип работы устройств MPPT основан на определении точки максимального значения мощности.

Контроллер заряда MPPT

Контроллер заряда MPPT

MPPT в постоянном режиме следит за током и напряжением в системе. На основании этих данных микропроцессор подсчитывает оптимальное отношение параметров для того, чтобы достигнуть максимальной выработки по мощности. При регулировке напряжения и учитывается даже этап процесса зарядки. MPPT контроллеры солнечных батарей даже позволяют снимать большое напряжение с модулей, затем преобразовывая его в оптимальное. Под оптимальным понимается то, которое обеспечивает полную зарядку АКБ.

Если оценивать работу MPPT по сравнению с PWM, то эффективность функционирования гелиосистемы возрастёт от 20 до 35 процентов. К плюсам также стоит отнести возможность работы при затенении солнечной панели до 40 процентов. Благодаря возможности поддержания высокого значения напряжения на выходе контроллера можно использовать проводку небольшого сечения. А также можно поставить солнечные панели и блок на большее расстояние, чем в случае с PWM.
Вернуться к содержанию
 

Гибридные контроллеры заряда

В некоторых странах, например, США, Германии, Швеции, Дании значительную часть электроэнергии вырабатывают ветрогенераторы. В некоторых маленьких странах альтернативная энергетика занимает большую долю в энергосетях этих государств. В составе ветряных систем также работают устройства для управления процессом заряда. Если же электростанция представляет собой комбинированный вариант из ветрогенератора и солнечных батарей, то применяют гибридные контроллеры.

Гибридный контроллер

Гибридный контроллер



Эти устройства могут быть построены схеме МРРТ или PWM. Основное отличие заключается в том, что в них используются другие вольтамперные характеристики. В процессе работы ветряные генераторы дают очень неравномерную выработку электроэнергии. В результате на аккумуляторные батареи поступает неравномерная нагрузка, и они работают в стрессовом режиме. Задача гибридного контроллера заключается в сбросе избыточной энергии. Для этого, как правило, используются специальные тэны.
Вернуться к содержанию
 

Самодельные контроллеры

Люди, которые разбираются в электротехнике, часто сами собирают контроллеры заряда для ветрогенераторов и солнечных батарей. Функциональность подобных моделей часто уступает по эффективности и набору функций фабричным устройствам. Однако в небольших установках маленькой мощности самодельного контроллера вполне достаточно.

Самодельный контроллер заряда для гелиосистем

Самодельный контроллер заряда для гелиосистем

При создании контроллера заряда своими руками следует помнить о том, что суммарная мощность должна удовлетворять следующему условию: 1,2P ≤ I*U. I – это выходной ток контроллера, U – это напряжение при разряженной батарее.

Схем самодельных контроллеров существует довольно много. Их можно поискать на соответствующих форумах в сети. Здесь следует сказать лишь о некоторых общих требованиях к такому устройству:

  • Напряжение зарядки должно быть 13,8 вольта и меняется в зависимости номинального значения силы тока;
  • Напряжение, при котором происходит отключение заряда (11 вольт). Эта величина должна быть настраиваемой;
  • Напряжение, при котором включается заряд 12,5 вольта.

Так, что если вы решили собрать гелиосистему своими руками, то придётся заняться изготовлением контроллера заряда. Без него при эксплуатации солнечных батарей и ветрогенератров не обойтись.

Вернуться к содержанию
 

Некоторые особенности контроллеров заряда солнечных батарей

В заключение нужно сказать ещё о нескольких особенностях контроллеров заряда. В современных системах они имеют ряд защит для повышения надёжности работы. В таких устройствах могут быть реализованы следующие виды защиты:

  • От неправильного подключения полярности;
  • От коротких замыканий в нагрузке и на входе;
  • От молнии;
  • От перегрева;
  • От входных перенапряжений;
  • От разряда аккумулятора в ночное время.

Кроме того, в них устанавливаются всевозможные электронные предохранители. Чтобы облегчить эксплуатацию гелиосистем, контроллеры заряда имеют информационные дисплеи. На них отображается информация о состоянии аккумуляторной батареи и системы в целом. Здесь могут быть такие данные, как:
  • Степень заряда, напряжение АКБ;
  • Ток, отдаваемый фотоэлементами;
  • Ток для заряда батареи и в нагрузке;
  • Запасённые и отданные ампер-часы.

На дисплее может также выдаваться сообщение о понижении заряда, предупреждение об отключении питания в нагрузку.

Некоторые модели контроллеров для солнечных батарей имеют таймеры для активации ночного режима работы. Существуют сложные устройства, управляющие работой двух независимых батарей. В их названии обычно есть приставка Duo. Стоит также отметить модели, которые умеют сбрасывать лишнюю энергию на тэны.

Интересны модели, имеющие интерфейс для подключения к компьютеру. Так можно значительно расширить функционал наблюдения за гелиосистемой и управления ей.


Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.
Вернуться к содержанию

Сделать контроллер заряда для солнечной батареи в два счета!

Обобщенная схема солнечной системыОдним из важнейших компонентов солнечной системы является контроллер заряда. Он может поставляться отдельно либо в комплекте с инвертором. Как понятно из названия, это устройство предназначено для контроля заряда АКБ, то есть контроллеры заряда для солнечной батареи следят за уровнем напряжения на аккумуляторе и служат для предотвращения полного разряда или перезаряда батареи.

Век глобальной доступности, когда можно найти абсолютно любой товар и информацию, позволяет не только приобрести контроллеры в любом специализирующемся магазине, но и собрать его своими руками. Для этого Вам понадобится схема устройства, которое Вы планируете изготовить, в нашем случае – это контроллер зарядки, и умение разбираться в электронике. Попытаемся снабдить Вас и тем, и другим.

Контроллеры зарядки для СБ: краткое описание

Существует несколько разновидностей описываемого устройства. Самые простые из них выполняет лишь одну функцию: включает и выключает батареи в зависимости от их заряда. Более «продвинутые» модели снабжены функцией отслеживания точки максимального значения мощности, что обеспечивает более высокий выходной ток по сравнению с током солнечной батареи. А это, в свою очередь, повышает КПД всей установки в целом.

Более усовершенствованные модели – способны понижать напряжение на СБ и поддерживать его на требуемом уровне. Наличие данной функции способствует более полной зарядке АКБ.

Любой контроллер, в том числе и самодельный, должен отвечать определенным требованиям:

  • 1,2P ≤ I×U, где P – суммарная мощность солнечных батарей всей системы; I – выходной ток контроллера; U – напряжение системы при разряженных аккумуляторах.
  • 1,2Uвх = Uх.х, где Uвх – максимально допустимое входное напряжение, Uх.х – суммарное напряжение холостого хода всех солнечных батарей системы.

Если нет возможности купить…

Конечно, зачастую прибор, собранный своими руками, будет хуже, чем аналогичное устройство, произведенное на заводе. Но сегодня мало кому можно доверять. И дешевые контроллеры для солнечной батареи, поставляемые из Китая, также могли быть собраны в какой-нибудь подсобке. Так зачем покупать устройство, в качестве которого Вы не уверены, если есть возможность соорудить его дома.

Рисунок 1. Одна из наиболее простых схемНа рисунке 1 приведена простейшая схема, воспользовавшись которой Вы сможете своими руками собрать контроллер, пригодный для зарядки свинцово-кислотного аккумулятора 12 В с помощью маломощной СБ с током в несколько ампер. Изменив номиналы используемых элементов, Вы сможете адаптировать собранный прибор под АКБ с другими техническими характеристиками. Следует отметить, что данная схема предполагает использование вместо защитного диода полевого транзистора, управляемого компаратором.

Видео Вам в помощь:

Рисунок 2. Позаботимся о корпусеПринцип работы достаточно прост: когда напряжение на АКБ достигнет заданного значения, контроллер остановит зарядку, в случае его снижения ниже порогового значения, зарядка будет вновь включена. При напряжении меньше 11 В нагрузка будет отключаться, а при напряжении больше 12,5 В, наоборот, подключаться к аккумулятору. Этот небольшой прибор спасет Ваш аккумулятор от самопроизвольного разряда в отсутствие солнца. На рисунке 2 представлен уже собранный комплект, состоящий из двух аккумуляторов, DC/DC-конверторов и индикации.

Контроллеры заряда солнечной батареи, собранные своими руками по более сложным схемам, смогут гарантировать Вам надежную и стабильную работу. Поэтому, если Вы чувствуете в себе силы, то ниже представлена еще одна схема. Она состоит из большего числа компонентов, зато и функционирует без «глюков» (рисунок 3).

Рисунок 3. Наиболее надежная схемаСамодельный контроллер, собранный по данной схеме, подойдет для системы энергообеспечения, работающей, как от СБ, так и от ветрогенератора. Сигнал, который приходит от используемого источника альтернативной энергии, коммутируется реле, которое в свою очередь управляется полевым транзисторным ключом. Для регулировки порогов переключения режимов используются подстроечные резисторы.

Не бойтесь экспериментировать, ведь у самых лучших умов человечества тоже случались ошибки и падения, поэтому, если с первого раза Вам не удалось собрать своими руками надежный контроллер, не отчаивайтесь. Попробуйте еще раз, и, возможно, со второго раза у Вас все получится. Зато Вас будет «греть» само осознание того, что Вы сделали его сами.

Статью подготовила Абдуллина Регина

Как доработать устройство для контроля заряда:

Какой контроллер выбрать для солнечной батареи: стоимость, виды

Во время использования солнечной батареи самый сложный этап – это сохранить накопление энергии. Вырабатывается электричество только в светлый период времени, а расход идет и днем и ночью. Конечно, есть и аккумуляторы, но их использовать напрямую нельзя, ведь выйдет из строя все. В таком случае необходимо использовать специальные контроллеры, которые и будут регулировать расход. В этой статье мы вам расскажем, какой контроллер выбрать для солнечной батареи своими руками и расскажем основные секреты.

Виды контроллеров для солнечных батарей

Существует несколько типов контролеров, все они отличаются своей стоимостью и соответственно функциональностью. Итак, основные виды контроллеров:

  1. ON/OFF контроллер. Его можно назвать самым простым, принцип его работы заключается только в том, что он выключает подачу электричества, когда батарея полностью заряжена. Но, здесь есть и первый недостаток, батарея реагирует не на 100% а на 70%, поэтому быстро выходит из строя. Из преимуществ такого устройства можно назвать его низкую стоимость, плюс ко всему контроллер солнечных батарей своими руками собрать сможет каждый.
  2. ШИМ или PWM – это более продвинутые устройства. Они обеспечивают ступенчатую зарядку АКБ, позволяя продлить ему срок службы. Режимы заряда выбираются автоматически, АКБ может заряжаться до 100%, что уже считается отличным числом. Однако, есть и потеря заряда аккумулятора до 40% – это недостаток.
  3. MPPT контролер. Его можно назвать лучшим, он позволяет организовать экономичную и качественную работу АКБ и солнечных батарей. Данное устройство работает по вычислительной технологии и самостоятельно выбирает оптимальный заряд АКБ. Также рекомендуем почитать о том, какие лучшие производители ваакумированных солнечных батарей. 

Какой контроллер выбрать для солнечной батареи

Исходя из выше представленного описания, можно понять, что ON/OFF контролер не подходит для длительного использования. Его можно установить только в качестве тестера для работы всей системы. Его использовать, мы не рекомендуем, ведь цены на АКБ помнят все.

Лучше смотреть на ШИМ или PWM или MPPT, они являются более функциональными. Конечно, на них кусается и стоимость, но оно того стоит. Если говорить за технологию MPPT то она существенно продлевает жизнь АКБ, ведь заряд держится на уровне 93-97%, у ШИМ или PWM 60-70%.

Цена на контроллеры

Любая солнечная электростанция собирается только для экономии, так что, переплачивать лишние деньги для покупки дорогих комплектующих – это плохо. Интересная статья по теме: как выбрать недорогой аккумулятор для солнечной электростации.

Мы собрали для вас два самых популярных контролера для солнечных батарей, которые являются универсальными и лучшими в соотношении цена/качеств:

  1. MPPT Tracer 2210RN Solar Charge Controller Regulator он стоит 75 долларов, универсальный, распознает день/ночь, есть сертификаты качества и отличный КПД – 93%.
  2. Solar controller 20a его мы выделили из-за низкой цены – всего 20 долларов. Работает по технологии ШИМ или PWM, можно управлять с помощью компьютера. Установлен простой и понятный интерфейс, он позволяет с легкостью устанавливать все стандартные настройки.

Как сделать контроллер для солнечной батареи своими руками видео


Каждый должен понимать, что контролер для солнечных батарей можно собрать своими руками, однако для этого необходимо купить некоторые дополнительные элементы. Но, это выгодно, ведь собрать ШИМ или PWM можно всего за 10 долларов. Все это вы найдете в видео, которое мы нашли для вас в сети. Стоит отметить, что сделать контроллер MPPT в домашних условиях – невозможно.

Статья по теме: Лучшие производители солнечных батарей.

Контроллеры для солнечных батарей. Работа и особенности

В системах электростанций, работающих на солнечных батареях, для подачи полученной энергии на аккумуляторную батарею используют всевозможные схемы подключения, которые выполнены на разных алгоритмах на основе технологии микропроцессорной электроники. На основе таких схем созданы устройства, которые называются контроллеры для солнечных батарей.

Принцип действия
Существует несколько методов передачи электроэнергии от солнечных элементов к аккумуляторной батареи:
  • Без применения приборов коммутации и регулировки, напрямую.
  • Через контроллеры для солнечных батарей

Первый способ обуславливает прохождение электрического тока от источника на аккумуляторы для повышения их напряжения. Сначала напряжение повысится до предельного определенного значения, которое зависит от типа и разновидности конструкции аккумуляторной батареи и температуры внешней обстановки. Далее превысит этот уровень.

В начальный период зарядка аккумуляторов идет в норме. Далее начинаются процессы, характеризующиеся отрицательными моментами: зарядный ток продолжает поступать, вызывает увеличение напряжения выше допустимой величины, наступает перезаряд, и как следствие, повышается температура электролита. Это приводит его к закипанию и выбросу водяного пара со значительной интенсивностью из отдельных элементов батареи. Такой процесс может продолжаться до момента высыхания банок. Понятно, что ресурс батареи аккумуляторов от этого явления не возрастает.

Чтобы ограничить ток заряда, пользуются специальными устройствами – контроллерами заряда, или делают это вручную. Последним способом практически никто не пользуется, так как это доставляет неудобство следить за величиной напряжения по приборам, делать переключения руками, требуется назначать для этого специального работника, чтобы он обслуживал контроллеры для солнечных батарей.

Порядок действий контроллера во время заряда
Контроллеры для солнечных батарей изготавливают различных модификаций по принципам и сложности метода ограничения напряжения:
  • Простое отключение и включение. Контроллер переключает зарядное устройство к аккумулятору в зависимости от значения напряжения на клеммах.
  • Преобразования широтно-импульсного вида.
  • Контроль наибольшей мощности.
Первый принцип простой коммутации

Это самый простой вид работы, однако он менее надежный. Основным недостатком метода является то, что при увеличении напряжения на клеммах батареи аккумуляторов до максимального значения, окончательного заряда не наступает. Заряд доходит до 90% от номинала. Аккумуляторы постоянно находятся в состоянии недозаряда. Это пагубно влияет на их срок службы.

Широтно-импульсный принцип

Такие приборы производятся на основе микросхем. Они управляют силовым блоком для поддержания напряжения на входе в определенном интервале сигналами обратной связи.

Контроллеры с широтно-импульсным управлением имеют возможности:
  • Измерять температуру электролита в батарее датчиком температуры выносного или встроенного типа.
  • Образовывать компенсацию температуры напряжением заряда.
  • Подстраиваться под свойства конкретного типа аккумуляторов с разными значениями по графику напряжения.

Чем больше функций встроено в контроллеры для солнечных батарей, тем их надежность и стоимость выше.

График действия солнечной батареи

Ограничение напряжения по точке наибольшей мощности

Эти устройства тоже могут работать по широтно-импульсному способу. Их точность высока, так как идет учет максимального значения мощности, отдаваемой солнечной батареей. Значение мощности вычисляется и сохраняется.

Для гелиобатарей с напряжением 12 вольт максимальная мощность находится на 17,5 вольтах. Простой контроллер выключит заряд аккумулятора уже при 14 В, а контроллер со специальной технологией позволяет применять запас солнечных батарей до 17,5 вольт.

Чем сильнее разрядилась батарея, тем больше потери энергии от солнечных элементов, контроллеры для солнечных батарей снижают эти потери. В результате, контроллеры, применяя преобразования широтно-импульсного вида, на всех зарядных циклах повышают отдачу энергии солнечной батареей. Процент экономии может достигать до 30%, в зависимости от различных факторов. Выходной ток аккумулятора при этом будет выше входного.

Свойства

При осуществлении выбора типа контроллера нужно обращать внимание не только на принципы работы, но и на условия, предназначенные для его работы. Такими показателями устройств являются:

  • Величина напряжения входа.
  • Значение общей мощности солнечных элементов.
  • Вид нагрузки.
Напряжение

На схему контроллера может идти напряжение от нескольких батарей, которые соединены по-разному. Для правильного функционирования устройства нужно, чтобы общая величина напряжения вместе с холостым ходом не была больше предела, указанного изготовителем в инструкции.

Назовем некоторые факторы, благодаря которым необходимо делать 20% запас напряжения:
  • Нужно учесть фактор рекламного завышения данных контроллера.
  • Процессы, происходящие в фотоэлементах, нестабильны, при чрезмерных солнечных вспышках света энергия, которая создает напряжение холостой работы батареи, может быть превышена.
Мощность солнечной батареи

Эта величина важна в работе контроллера, так как устройство должно иметь достаточную мощность, чтобы передавать ее аккумуляторным батареям, если мощности не будет хватать, то схема прибора выйдет из строя.

Для вычисления мощности значение выходного тока из контроллера умножают на напряжение, которое выработано солнечной батареей, не забывая про 20% резерв.

Вид нагрузки

Контроллер должен использоваться по своему назначению. Не нужно применять его как обычный источник напряжения, подключать к нему разные устройства бытового назначения. Может быть, некоторые из них будут нормально работать, и не выведут контроллер из строя.

Другой вопрос, сколько времени это будет продолжаться. Устройство работает на принципе преобразований широтно-импульсного типа, применяет технологии микропроцессорного производства. Эти технологии учитывают нагрузку, заложенную в свойствах аккумуляторной батареи, а не разного рода потребителях, имеющих своеобразные свойства поведения при изменении нагрузки.

Как сделать контроллер своими руками

Чтобы изготовить такое устройство, достаточно иметь некоторые знания электротехники и электроники. Самодельное устройство будет уступать промышленному образцу по наличию функций и эффективности, но для простых сетей с небольшой мощностью, такой самодельный контроллер вполне подойдет.

Самодельный контроллер должен иметь следующие параметры:
  • 1,2 P ≤ I × U. В данном выражении применяются обозначения общей мощности источников (Р), тока выхода контроллера (I), напряжения при разряженном аккумуляторе (U).
  • Наибольшее напряжение входа контроллера должно соответствовать общему напряжению аккумуляторов на холостом ходу без нагрузки.
Простая схема модуля самодельного контроллера:

Контроллеры для солнечных батарей, собранные самостоятельно, имеют свойства:
  • Напряжение заряда – 13,8 вольт, меняется от номинального тока.
  • Отключающее напряжение – 11 вольт, может настраиваться.
  • Включающее напряжение – 12,5 вольта.
  • Снижение напряжения на ключах – 20 милливольт при токе 0,5 А.

Контроллеры для солнечных батарей входят в состав любых гелиосистем, а также систем на солнечных батареях и ветряных генераторах. Они дают возможность создания нормального режима зарядки батарей аккумуляторов, увеличивают эффективность и снижают износ, могут собираться собственными силами.

Разбор схемы контроллера для гибридного питания

Для примера будем рассматривать источник аварийного освещения или охранной сигнализации, работающей в круглосуточном режиме.

Применение энергии солнечной батареи позволяет сократить расход электрической энергии от питающей центральной сети, а также защитить электроустройства от возможности веерного отключения питания.

В темное время, когда нет солнечного света, система переключается на сетевое питание 220 вольт. Запасным источником стала аккумуляторная батарея на 12 вольт. Эта система функционирует в любую погоду.

Схема простейшего контроллера

Фоторезистор осуществляет управление транзисторами Т1 и Т2.

Днем, когда есть солнечный свет, транзисторы закрываются. Напряжение 12 вольт подается на батарею аккумуляторов от панели через диод D2. Он не дает разряжаться аккумулятору через панель. При достаточном освещении панель выдает ток мощностью 15 ватт, 1 ампер.

Когда аккумуляторы получат полный заряд до 11,6 вольта, то стабилитрон открывается и включается красный светодиод (LED Red). При снижении напряжения на контактах аккумулятора до 11 вольт, красный светодиод отключается. Это обозначает, что батарея аккумуляторов требует зарядки. Резисторы R1 и R3 осуществляют ограничение тока светодиода и стабилитрона.

Ночью, или в темное время, когда нет света солнца, сопротивление фотоэлемента снижается, подключаются транзисторы Т1 и Т2. Аккумуляторная батарея получает заряд от блока питания. Ток заряда от линии питания 220 вольт через трансформатор, выпрямитель, резистор и транзисторы поступает на аккумуляторную батарею. Емкость С2 сглаживает пульсации напряжения сети.

Предел светового потока, при котором включается фотодатчик, настраивают переменным резистором.

Похожие темы:
  • Зарядные устройства
  • Контроллеры для светодиодных лент. Виды
  • Инверторы для солнечных батарей. Виды и особенности. Принцип действия
  • Солнечные зарядные устройства. Разновидности. Принцип действия. Устройство

Как выбрать контроллер заряда для солнечной батареи? © Солнечные.RU

Если Вы знакомы с особенностями солнечных батарей, а именно с тем, что они представляют собой источники тока, что как раз и необходимо для зарядки аккумуляторов, то может возникнуть следующий вопрос.

Зачем вообще нужен контроллер заряда для солнечной батареи? И действительно, достаточно просто соединить солнечную батарею с аккумулятором, и при наличии хоть какого-то света, а еще лучше — Солнца, от солнечной батареи пойдет зарядный ток в аккумулятор и без использования контроллера.

Так для чего же тогда покупать контроллер заряда, какие функции он выполняет и в чем отличие разных типов контроллеров (MPPT, PWM, ON/OFF)? Попробуем разобраться с этим.

Печатная плата контроллера заряда Morningstar PS-15 (PWM)Итак, что будет, если не применять его совсем? При прямом подключении солнечной батареи к аккумулятору пойдет зарядный ток и напряжение на клеммах аккумулятора начнет постепенно расти. Пока оно не достигнет предельного напряжения зарядки (которое зависит от типа аккумулятора и его температуры), прямое подключение будет равнозначно присутствию контроллера моделей PWM или ON/OFF, поскольку в этом режиме эти модели просто соединяют вход и выход.

При достижении предельного напряжения (около 14 Вольт), ON/OFF контроллер, который является самым дешевым из всех типов, просто отключит солнечную батарею от аккумулятора и заряд прекратится, хотя в реальности аккумулятор заряжен еще не полностью и для полной зарядки требует поддержания на нем предельного напряжения в течение еще нескольких часов. Эту задачу решает PWM контроллер, который при помощи широтно-импульсного преобразования (ШИМ или, по английски — PWM) понижает напряжение солнечной батареи до нужного значения и поддерживает его.

Если же Вы не используете никакого контроллера, то Вам нужно постоянно следить при помощи вольтметра за зарядным напряжением и в нужный момент отключить солнечную батарею. И если Вы забудете ее отключить, то это приведет к перезаряду, выкипанию электролита и сокращению срока службы аккумуляторов. Однако, если Вы и отключите ее вовремя или же используете простой ON/OFF контроллер, аккумуляторы останутся заряженными не полностью (примерно на 90%), а регулярный недозаряд в конечном итоге приведет к значительному сокращению их срока службы.

Существуют еще два важных фактора, которые должны быть учтены при заряде аккумуляторов. Качественные контроллеры заряда обязательно должны учитывать температуру аккумулятора и иметь температурную компенсацию зарядных напряжений, а также иметь выбор типа аккумуляторной батареи (AGM, GEL, жидко-кислотный), поскольку разные типы имеют разные зарядные кривые (разные напряжения в одних и тех же режимах). Отметим также, что для температурной компенсации может использоваться как встроенный температурный датчик, так и выносной. При использовании выносного температурного датчика, точность работы контроллера повышается.

Подведем промежуточный итог.

Мы рассмотрели вариант отказа от контроллера заряда, а также использование двух типов контроллеров — PWM и ON/OFF и пришли к выводу, что наилучшим из перечисленных вариантов является PWM тип. При этом крайне важно наличие у него температурной компенсации и возможности выбора типа аккумуляторных батарей.

Окончание

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *