Что такое пусковой ток электродвигателя?
ЧТО ТАКОЕ ПУСКОВОЙ ТОК ЭЛЕКТРОДВИГАТЕЛЯ?
В целом, пусковой ток можно описать как ток, который необходим для создания начального пускового момента, проворачивания ротора электродвигателя и обеспечения выхода вращения двигателя на рабочую частоту. В зависимости от выбранного режима и технологии изготовления электродвигателя пусковой ток может в семь и более раз превышать номинальный потребляемый ток.
Для наглядности проведем аналогию с потреблением топлива автомобилем: во время разгона, мгновенный расход среднестатистического автомобиля может достигать 12-13 литров на 100 км, а после выезда на шоссе, где он движется с равномерной скоростью потребление топлива снижается до 7-8 литров на 100 км. Именно по такой аналогии электродвигатель «разгоняется» до необходимых ему оборотов.
Важно также заметить что метод разгона как на автомобиле, так и у электродвигателя, зависит от его интенсивности (синхронные и асинхронные электродвигатели имеют разные показатели стартовых токов). Для автомобиля снизить расход топлива может метод плавного разгона, а снизить пусковые токи для электродвигателя – системы плавного пуска и частотные преобразователи.
Подобные пусковые токи могут наблюдаться не только в электродвигателях, но и в других бытовых и промышленных приборах: в: компрессорах кондиционеров и холодильников, дроссельных систем освещения, индукционных приборах, мощных электромагнитных установках и др. Почему мы рассматриваем пусковой ток электродвигателя? Потому что самые высокие пусковые токи наблюдаются именно у электродвигателей, особенно у тех, которые применяются в насосных станциях, погружных циркуляционных насосах, электрических помп др. схожего оборудования, где пусковые токи могут достигать 7-9 крат от номинала.
Как работает двигатель в момент запуска. Пусковой ток возникает вследствие того, что для запуска необходимо создать очень мощное магнитное поле в обмотке, чтобы сдвинуть ротор и провернуть его. В момент включения на обмотках двигателя измеряется минимальное сопротивление, из-за чего растет ток при постоянном значении напряжения. По мере раскручивания двигателя в обмотках появляется индуктивное сопротивление тогда ток стремится к своему номинальному значению.
Электрические двигатели находят применение практически во всех сферах человеческой деятельности: от электробритвы до насосно-перекачивающих станций, поэтому очень важно учитывать пусковой ток электродвигателя при выборе стабилизаторов напряжения, источников бесперебойного питания и резервных электростанций, ведь такое оборудование очень чувствительно к сильным перегрузкам.
Автор статьи: Борисов Сергей, НТС-групп (ТМ Электрокапризам-НЕТ!), 01.06.2018. При копировании статьи или ее частей — ссылка на первоисточник обязательна.
Пусковые токи асинхронных электродвигателей — ООО «СЗЭМО Электродвигатель»
Пусковым называется ток, необходимый для осуществления запуска электрического двигателя. Пусковые токи асинхронных электродвигателей обычно в несколько раз превышают показатели, достаточные для работы в нормальном режиме.
Пусковые токи асинхронных электродвигателей
Двигатели асинхронного типа в момент подключения к электросети потребляют значительное количество энергии для того, чтобы:
- привести ротор в движение;
- поднять скорость вращения с нуля до рабочего уровня.
Этим объясняется необходимость использования большого пускового тока, который существенно отличается от количества электроэнергии, позволяющего поддерживать постоянное число оборотов. Это характерно не только для асинхронных, но и для однофазных двигателей постоянного тока, хотя принцип действия последних совершенно иной.
Проблема высоких пусковых токов: решение
Высокий пусковой ток может спровоцировать резкое, хотя и кратковременное падение напряжения, при котором прочие подключенные к сети устройства испытают недостаток энергии. Это нежелательно, поскольку негативно влияет на безопасность работы и долговечность оборудования.
Для решения задачи предусмотрены специальные дополнительные устройства, установка которых в процессе подключения и наладки двигателей позволяет:
- максимально уменьшить значение пускового тока;
- повысить плавность запуска;
- снизить затраты на запуск агрегата, так как становится возможным применение менее мощных дизельных электростанций, стабилизаторов, проводов с меньшим сечением и пр.
Наибольшей эффективностью отличаются такие современные устройства, как частотные преобразователи и софтстартеры. Они обеспечивают высокую (более минуты) продолжительность поддержания пускового тока.
Как рассчитать пусковой ток электродвигателя
Чтобы объективно оценить сложность условий запуска двигателя, необходимо предварительно узнать величину необходимого для этого пускового тока. Основные этапы расчета следующие:
- вычисление номинального тока;
- определение значения пускового тока (в амперах).
Для того чтобы получить значение номинального тока для используемой модели электродвигателя, применяют формулу, которая имеет вид Iн=1000Pн / (Uн*cosφ*√ηн). Pн и Uн – это номинальные показатели мощности и напряжения, cosφ и ηн – номинальные коэффициенты мощности и полезного действия.
Собственно пусковой ток, который обозначается как Iп, определяется при помощи формулы Iп = Iн * Kп, где Kп – это кратность постоянного тока по отношению к его номинальному значению (Iн). Всю необходимую для проведения расчетов информацию (значения Kп, Pн, ηн, cosφ, Uн) можно найти в технической документации, которая прилагается к электродвигателю.
Корректный расчет пускового тока двигателя способствует правильному выбору автоматических выключателей, предназначенных для защиты линии включения, а также приобретению дополнительного оборудования (генераторы и пр.) с подходящими параметрами.
Про пусковые токи в аккумуляторах
Подписывайтесь на наш канал youtube.com и ставьте лайки, чтобы увидеть больше интересных видео! 😉
У каждого водителя была такая ситуация, когда хочешь купить аккумулятор, смотришь на пусковой ток, и посещает мысль: «маловато…» 🙁
Вот только многие не знают, что показатели пускового тока бывают разные и измеряются по разным стандартам. Попробуем распутать этот клубок и описать все как можно более доступным языком. Поехали!
ССА (Cold Cranking Amps\Ток Холодного Пуска или Ток Холодной Прокрутки)
В свое время, а было это давно, организация Battery Council International разработала серию тестов для автомобильных аккумуляторов, чтобы все производители во всем мире могли пользоваться единым стандартом. И один из этих тестов был посвящен пусковому току.
Пусковой ток в аккумуляторе – немного истории.
Ученые, инженеры и просто славные ребята поместили полностью заряженный аккумулятор (это важно) в холодную среду -18оС. В каких-то источниках писали: они пили кофе, играли в карты и совсем не спали в течение 24 часов, до тех пор, пока аккумулятор реально не охладился. Затем, если говорить по-простому, инженеры давали аккумулятору непрерывную нагрузку в течение 30 секунд и тест считался успешным если напряжение на аккумуляторе не падало ниже 7,2В.
Кэп намекает: из аббревиатуры CCA слово «cold – холод» означает, что автомобильные аккумуляторы подходят для эксплуатации в холодном климате. А при чем здесь холодный климат? Так вы спросите у людей, которые живут в холодных странах, как заводятся их дизельные автомобили? 😉
Пусковой ток в аккумуляторе – теперь конкретно.
Благодаря этому тесту, инженеры определили, сколько при производстве нужно заложить пускового тока для автомобильных аккумуляторов определенной емкости, чтобы они с легкостью запустили двигатель определенной мощности. А дальше водителю оставалось только правильно подобрать емкость под свой автомобиль и непосредственно купить аккумулятор. Дело в шляпе!
Маркетинг в аккумуляторах.
Но потом вмешались маркетологи, рекламщики и конкуренция на рынке между производителями аккумуляторов. Как мировые автоконцерны соревнуются друг с другом в том, у кого в спорткаре больше «лошадок» под капотом, так и производители аккумуляторов делают то же самое со своей продукцией. Ведь продавать аккумуляторы надо! И чем больше, тем лучше! Поэтому производители готовы на все: обман, то есть маркетинг, экономию на сырье и перенос производства в дешевые страны. Помните об этом!
Долгие годы компании и их бренды гипнотизировали честных водил перед покупкой аккумулятора: «больше значит лучше». И сейчас очень многие уже принимают это как должное. Но если подумать, может больше это и лучше, но не всегда необходимо и однозначно дороже. Разве не так?
Какой пусковой ток в аккумуляторе оптимальный?
Все зависит от климата и многих других факторов, таких как качество автомобильного аккумулятора, уровень заряда и т.д. Непреложной истиной остается факт: что чем ниже температура окружающей среды, тем больше пускового тока нужно автомобилю чтобы завестись. И наоборот. И важно знать, что все автомобили потребляют (при температуре выше нуля) не больше половины того, что может реально выдать аккумулятор. Все делается с запасом!
Ломаем стереотипы в аккумуляторах.
Многие водители хотят купить аккумулятор с большим пусковым током, только потому что боятся не завестись в ответственный момент… ну а еще из-за банальной человеческой жадности. Это что, сосед купил новую машину? Вот козел! Взяточник, по любому! 😉
Некоторые водители думают, что, если аккумулятор с высоким пусковым током разрядится, то остаточного пускового тока все еще хватит что бы завестись. Как бы не так! Вы, когда болеете тоже лечите симптомы, вместо того чтобы лечить саму болячку? Если аккумулятор разрядился – это симптом. Значит была утечка тока или кто-то (не будем тыкать пальцами) забыл свет выключить. А чтобы вылечить саму болезнь, нужно зарядить аккумулятор и кататься дальше на заряженном. И не важно высокий пусковой ток или низкий в аккумуляторе.
Последствия неправильной эксплуатации аккумулятора.
Если большим пусковым током компенсировать неполный заряд своего аккумулятора, то это его постепенно убивает. Тогда появляется черный электролит, аккумулятор теряет емкость и уже не заряжается до максимума. Гораздо экономичнее и правильнее будет следить, чтобы заряд аккумулятора всегда был полным и покупать аккумулятор в первую очередь учитывая климатические условия. Если зимы нет, то и мощный аккумулятор не нужен.
Пусковые токи: другие стандарты.
Помимо CCA существуют и другие стандарты измерения пускового тока в стартерном автомобильном аккумуляторе. Большинство из них используются или крайне редко; или в других странах; или имеют свою специфику. Это не так важно. Гораздо важнее, что эти стандарты активно используются при производстве аккумуляторов и нужно понимать, как их расшифровать. Поехали по порядку…
SAE (Society of Automotive Engineers)
Процесс тестирования пускового тока в автомобильных аккумуляторах для этого стандарта такой же, как и для CCA. Это факт. Мы не узнавали почему и в чем тут путаница. Суть остается прежней: полностью заряженный аккумулятор помещается в холодную среду -18оС. Затем, на него подают непрерывную нагрузку в течение 30 секунд и тест считается успешным если напряжение на аккумуляторе не падает ниже 7,2В.
CA (Cranking Amps)
Процесс тестирования пускового тока в автомобильном аккумуляторе для этого стандарта такой же, как и для CCA, с разницей лишь в том, что тест проводят при нулевой температуре. Полностью заряженный аккумулятор помещается в температурную среду 0оС. Затем, на него подают непрерывную нагрузку в течение 30 секунд и тест считается успешным если напряжение на аккумуляторе не падает ниже 7,2В. Показатели пускового тока после такого теста будут выше чем после теста CCA. Это обусловлено более высокой температурой окружающей среды.
Маркетологи из американской компании-производителя аккумуляторов OPTIMA проводили исследование, в ходе которого выяснили, что 89% покупателей отдадут предпочтение при покупке аккумуляторам с более высоким показателем пускового тока CA, вместо CCA, даже если они будут стоить на 20% дороже.
EN (European Normal)
Процесс тестирования пусковых токов в автомобильных аккумуляторах для этого стандарта делится на две методики:
EN1 – полностью заряженный аккумулятор помещается в холодную среду -18оС. Затем, на него подают непрерывную нагрузку в течение 10 секунд, чтобы напряжение на аккумуляторе упало до показателя 7,5В. После перерыва в аналогичные 10 секунд, на аккумулятор возобновляется уже увеличенная нагрузка и продолжается в течение 73 секунд, до полного разряда.
EN2 – полностью заряженный аккумулятор помещается в холодную среду -18оС. Затем, на него подают непрерывную нагрузку в течение 10 секунд, чтобы напряжение на аккумуляторе упало до показателя 7,5В. После перерыва в аналогичные 10 секунд, на аккумулятор возобновляется уже увеличенная нагрузка и продолжается в течение 133 секунд, до полного разряда в 6В.
Для аккумуляторов, которые поставляются в Европу (и Украину) – это самый распространенный вариант. Вот только не ищите на этикетках EN1 или EN2. Производители всегда пишут просто EN.
DIN (German Industrial Standard)
Полностью заряженный автомобильный аккумулятор помещается в холодную среду -18оС. Затем, на него подают непрерывную нагрузку. Тест считается успешным, если напряжение аккумулятора не упадет ниже 9В в течение 30 секунд, и 6В в течение 150 секунд.
Такая маркировка частенько встречается на «родных» аккумуляторах немецких производителей автомобильных аккумуляторов и автомобилей.
MСА (Marine Cranking Ampere)
Морской стандарт. Процесс тестирования пускового тока в аккумуляторе для этого стандарта такой же, как и для CA. Для морских судов этого обычно хватает с головой. Суть остается прежней: полностью заряженный аккумулятор помещается в температурную среду 0оС. Затем, на него подают непрерывную нагрузку в течение 30 секунд и тест считается успешным если напряжение на аккумуляторе не падает ниже 7,2В.
JIS (Japanese Industrial Standard)
Полностью заряженный автомобильный аккумулятор помещается в холодную среду -15оС. Затем, на него подают непрерывную нагрузку силой 150А в течение 30 секунд или 300А в течение 10 секунд. Японский тест считается успешным, если напряжение аккумулятора не упадет ниже 6В.
Пусковые токи по JIS обычно зашифрованы в специальных обозначениях. Например, если на аккумуляторе написано 65D23L, то параметры пускового тока для таких аккумуляторов серии SMF будут примерно 540А, а для аккумуляторов серии CMF будут примерно 580А, согласно таблицы. Таблица приведена ниже.
Данные в таблице неполные, и могут содержать неточности, так как первоисточник происхождения таблицы не проверен! А еще, согласно концепции подачи информации, данные могут меняться, корректироваться и банально устаревать.
Чтобы расшифровать остальные символы в кодах JIS предоставим короткий пример:
1-й, 2-й и 3-й символы – тип корпуса
4-й и 5-й символы – приблизительный диапазон емкости (вычисляется по формуле)
6-й символ – отвечает за ширину и высоту аккумулятора
7-й и 8-й символы – длинна в сантиметрах
9-й символ – полярность
Пример: SMF55D23L
SMF – необслуживаемый тип корпуса
55 – приблизительный диапазон емкости
D – отвечает за ширину и высоту аккумулятора
23 – длинна в сантиметрах
L – полярность
Это не ошибка, полярности маркируются наоборот, или же в Азии принято определять полярность с другой стороны аккумулятора.
IEC (International Electrotechnical Commission)
Полностью заряженный автомобильный аккумулятор помещается в холодную среду -18оС. Затем, на него подают непрерывную нагрузку в течение 10 секунд, чтобы напряжение опустилось до 7,5В. После, на него продолжают подавать нагрузку в течение еще 20 секунд, чтобы напряжение опустилось до 7,2В. Затем аккумулятор берет паузу на 20 секунд. В этот момент уровень его заряда должен составлять 60%. На последнем этапе на аккумулятор подают нагрузку еще в течение 40 секунд, и, если напряжение опустится не ниже 6В, тест будет считаться успешным.
По версии некоторых источников, этот сложный тест утратил свою популярность.
HCA (Hot Cranking Amps)
Процесс тестирования пускового тока в автомобильных аккумуляторах для этого стандарта такой же, как и для CA, с разницей лишь в том, что тест проводят при плюсовой температуре. Полностью заряженный аккумулятор помещается в температурную среду +26оС. Затем, на него подают непрерывную нагрузку в течение 30 секунд и тест считается успешным если напряжение на аккумуляторе не падает ниже 7,2В.
Этот тест обычно мало актуален для большинства стран, так как он исключает холодный климат.
___________________________________________________________________________________________________________________________________________
Таблица перевода пусковых токов в аккумуляторах.
Ниже приведена таблица перевода токов холодного пуска, которую можно повсеместно встретить в интернете (CCA\SAE, EN, IEC, DIN)
Вот что интересно. Существуют специальные формулы, по которым можно вычислить разницу между пусковыми токами разных стандартов. Эти формулы мы взяли с официального сайта японского производителя аккумуляторов YUASA.
IEC = DIN / 0,85
EN = DIN х 1,7
DIN = (SAE — 40) x 0,66
Если взять таблицу выше и все пересчитать, то окажется что показатели не точны. Вот пример более точной таблицы перевода токов холодного пуска.
Если наши вычисления верны, можно подумать, что для первой таблицы, с маркетинговой точки зрения пусковой ток в 572А является не таким привлекательным как 570А. Или это обычное округление цифр… Но все это лишь наше субъективное предположение, и попытка разобраться в определенных вопросах…
Чему равен пусковой ток асинхронного двигателя. Пусковой ток
Полный ток нагрузки Ia, подаваемый на двигатель, рассчитывается по следующим формулам:
где
Ia: полный ток (А)
U: междуфазное напряжение для 3-фазного двигателя и напряжение между зажимами для 1-фазного двигателя (В). 1-фазные двигатели могут подсоединяться на фазное или линейное напряжение
η: КПД, т.е. выходная мощность (кВт)/ входная мощность (кВт)
cos φ : коэффициент мощности, т.е. входная мощность (кВт)/входная мощность(кВА)
Сверхпереходный ток и уставка защиты
- Пиковое значение сверхпереходного тока может быть крайне высоким. Обычно это значение в 12-15 раз превышает среднеквадратическое номинальное значение Inm. Иногда это значение может в 25 раз превышать значение Inm.
- Выключатели, контакторы и термореле рассчитываются на пуски двигателей при крайне высоких сверхпереходных токах (сверхпереходное пиковое значение может в 19 раз превышать среднеквадратическое номинальное значение Inm).
- При внезапных срабатываниях защиты от сверхтоков при пуске это означает выход пускового тока за нормальные пределы. В результате могут достигаться предельные значения параметров распределительных устройств, срок службы может укорачиваться и даже некоторые устройства могут выходить из строя. Во избежание такой ситуации необходимо рассмотреть вопрос о повышении номинальных параметров распределительных устройств.
- Распределительные устройства рассчитываются на обеспечение защиты пускателей двигателей от КЗ. В зависимости от риска, таблицы показывают комбинации выключателя, контактора и термореле для обеспечения координации типа 1 или 2.
Пусковой ток двигателя
Хотя рынок предлагает двигатели с высоким КПД, на практике их пусковые токи приблизительно такие же, как у стандартных двигателей.
Применение пускателей с соединением треугольником, статических устройств для плавного пуска или регулируемых приводов позволяет снизить значение пускового тока (например, 4 Ia вместо 7,5 Ia).
Компенсация реактивной мощности (квар), подаваемой на асинхронные двигатели
Как правило, по техническим и финансовым соображениям выгоднее снижать ток, подаваемый на асинхронные двигатели. Это может обеспечиваться за счет применения конденсаторов, без влияния на выходную мощность двигателей.
Применение этого принципа для оптимизации работы асинхронных двигателей называется «повышением коэффициента мощности» или «компенсацией реактивной мощности».
Как обсуждается в Главе Компенсация реактивной мощности и фильтрация гармоник , полная мощность (кВА), подаваемая на двигатель, может значительно снижаться путем использования параллельно подключенных конденсаторов.
Компенсация реактивной мощности особенно рекомендуется для двигателей с длительными периодами работы при пониженной мощности.
Как указывается выше,
Поэтому, снижение входной полной мощности (кВА) приводит к увеличению (т.е. улучшению) значения cos φ.
Ток, подаваемый на двигатель, после компенсации реактивной мощности рассчитывается по формуле:
где: cos φ – коэффициент мощности до компенсации, cos φ’ – коэффициент мощности после компенсации, Ia – исходный ток.
Рис. A4 ниже показывает (в зависимости от номинальной мощности двигателя) стандартные значения тока для нескольких значений напряжения питания.
кВт | л.с. | 230 B | 380 — 415 B | 400 B | 440 — 480 B | 500 B | 690 B |
---|---|---|---|---|---|---|---|
A | A | A | A | A | A | ||
0,18 0,25 0,37 | — — — | 1,0 1,5 1,9 | — — — | 0,6 0,85 1,1 | — — — | 0,48 0,68 0,88 | 0,35 0,49 0,64 |
— 0,55 — | 1/2 — 3/4 | — 2,6 — | 1,3 — 1,8 | — 1,5 | 1,1 — 1,6 | — 1,2 — | — 0,87 — |
— 0,75 1,1 | 1 — — | — 3,3 4,7 | 2,3 — — | — 1,9 2,7 | 2,1 — — | — 1,5 2,2 | — 1,1 1,6 |
— — 1,5 | 1-1/2 2 — | — — 6,3 | 3,3 4,3 — | — — 3,6 | 3,0 3,4 — | — — 2,9 | — — 2,1 |
2,2 — 3,0 | — 3 — | 8,5 — 11,3 | — 6,1 — | 4,9 — 6,5 | — — | 3,9 — 5,2 | 2,8 — 3,8 |
3,7 4 5,5 | — — — | — 15 20 | — 9,7 — | — 8,5 11,5 | — 7,6 — | — 6,8 9,2 | — 4,9 6,7 |
— — 7,5 | 7-1/2 10 — | — — 27 | 14,0 18,0 — | — — 15,5 | 11,0 14,0 — | — — 12,4 | — — 8,9 |
11 — — | — 15 20 | 38,0 — — | — 27,0 34,0 | 22,0 — — | — 21,0 27,0 | 17,6 — — | 12,8 — — |
15 18,5 — | — — 25 | 51 61 — | — — 44 | 39 35 — | — — 34 | 23 28 — | 17 21 — |
22 — — | — 30 40 | 72 — — | — 51 66 | 41 — — | — 40 52 | 33 — — | 24 — — |
30 37 — | — — 50 | 96 115 — | — — 83 | 55 66 — | — — 65 | 44 53 — | 32 39 — |
— 45 55 | 60 — — | — 140 169 | 103 — — | — 80 97 | 77 — — | — 64 78 | — 47 57 |
— — 75 | 75 100 — | — — 230 | 128 165 — | — — 132 | 96 124 — | — — 106 | — — 77 |
90 — 110 | — 125 — | 278 — 340 | — 208 — | 160 — 195 | — 156 — | 128 — 156 | 93 — 113 |
— 132 — | 150 — 200 | — 400 — | 240 — 320 | — 230 — | 180 — 240 | — 184 — | — 134 — |
150 160 185 | — — — | — 487 — | — — — | — 280 — | — — — | — 224 — | — 162 — |
— 200 220 | 250 — — | — 609 — | 403 — — | — 350 — | 302 — — | — 280 — | — 203 — |
— 250 280 | 300 — — | — 748 — | 482 — — | — 430 — | 361 — — | — 344 — | — 250 — |
— — 300 | 350 400 — | — — — | 560 636 — | — — — | 414 474 — | — — — | — — — |
315 — 335 | — 540 — | 940 — — | — — — | 540 — — | — 515 — | 432 — — | 313 — — |
355 — 375 | — 500 — | 1061 — — | — 786 — | 610 — — | — 590 — | 488 — — | 354 — — |
400 425 450 | — — — | 1200 — — | — — — | 690 — — | — — — | 552 — — | 400 — — |
475 500 530 | — — — | — 1478 — | — — — | — 850 — | — — — | — 680 — | — 493 — |
560 600 630 | — — — | 1652 — 1844 | — — — | 950 — 1060 | — — — | 760 — 848 | 551 — 615 |
670 710 750 | — — — | — 2070 — | — — — | — 1190 — | — — — | — 952 — | — 690 — |
800 850 900 | — — — | 2340 — 2640 | — — — | 1346 — 1518 | — — — | 1076 — 1214 | 780 — 880 |
950 1000 | — — | — 2910 | — — | — 1673 | — — | — 1339 | — 970 |
Рис. A4: Номинальная мощность и токи
Содержание:При работе с различными электротехническими устройствами довольно часто возникает вопрос, что такое пусковой ток. В самом простом варианте ответа это будет такой ток, который потребен при запуске электродвигателя или другого устройства. Его значение может в несколько раз превышать номинальное, требующееся в нормальном устойчивом режиме работы. Таким образом, для того чтобы раскрутить ротор, электродвигатель должен приложить гораздо больше энергии по сравнению с работой при постоянном числе оборотов. Снизить пусковые токи можно с помощью специальных систем гашения и устройств плавного пуска.
Пусковые токи электродвигателей
В каждом приборе, устройстве или механизме возникают процессы, называемые пусковыми. Это особенно заметно при начале движения, когда необходимо тронуться с места. В этот момент для первоначального толчка требуется значительно больше усилий, чем при дальнейшей работе данного механизма.
Точно такие же явления затрагивают и электрические устройства — электродвигатели, электромагниты, лампы и другие. Наличие пусковых процессов в каждом из них зависят от того, в каком состоянии находятся рабочие элементы. Например, нить накаливания обычной лампочки в холодном состоянии обладает сопротивлением, значительно меньшим, чем при нагревании в рабочем режиме до 1000 0 С. То есть, у лампы, мощностью 100 Вт сопротивление нити во время работы составит около 490 Ом, а в выключенном состоянии этот показатель снижается до 50 Ом. Поэтому при высоком пусковом токе лампочки иногда перегорают. От всеобщего перегорания их спасает сопротивление, возрастающее при нагревании. Постепенно оно достигает постоянного значения и способствует ограничению рабочего тока до нужной величины.
Влияние пусковых токов в полной мере затрагивает все виды электродвигателей, широко применяющихся во многих областях. Для того чтобы правильно эксплуатировать электроприводы нужно знать их пусковые характеристики. Существует два основных параметра, оказывающих влияние на пусковой ток. Скольжение является связующим звеном между частотой вращения ротора и скоростью вращения электромагнитного поля. Снижение скольжения происходит от 1 до минимума по мере набора скорости. Пусковой момент является вторым параметром, определяющим степень механической нагрузки на валу. Эта нагрузка имеет максимальное значение в момент пуска и становится номинальной после того, как произошел полный разгон механизма.
Следует учитывать особенности асинхронных электродвигателей, которые при пуске становятся эквивалентны трансформатору с короткозамкнутой вторичной обмоткой. Она обладает совсем небольшим сопротивлением, поэтому величина пускового тока при скачке может достичь многократного превышения по сравнению с номиналом. В процессе дальнейшей подачи тока в обмотки, сердечник ротора начинает по нарастающей насыщаться магнитным полем. Возникает ЭДС самоиндукции, под действием которой начинает расти индуктивное сопротивление цепи. С началом вращения ротора происходит снижение коэффициента скольжения, то есть наступает фаза разгона двигателя. При росте сопротивления пусковой ток снижается до нормативных показателей.
В процессе эксплуатации может возникнуть проблема, связанная с увеличенными пусковыми токами. Причиной их возникновения, чаще всего, становится перегрев электродвигателей, перегруженные электрические сети в момент пуска, а также ударные механические нагрузки в подключенных устройствах и механизмах, таких как редукторы и другие. Для решения этой проблемы предусмотрены специальные приборы, представленные частотными преобразователями и устройствами плавного пуска. Они выбираются с учетом особенностей эксплуатации того или иного электродвигателя. Например, используются в основном для агрегатов, соединенных с вентиляторами. С их помощью достигается ограничение пускового тока до двух номиналов. Это вполне нормальный показатель, поскольку во время обычного пуска ток превышает номинальное значение в 5-10 раз. Ограничение достигается за счет измененного напряжения в обмотках.
Обычные двигатели переменного тока получили широкое распространение в промышленном производстве, благодаря очень простой конструкции и низкой стоимости. Их серьезным недостатком считается тяжелый запуск, который существенно облегчается частотными преобразователями. Наиболее ценным качеством этих устройств является способность к поддержке пускового тока в течение одной минуты и более. Самые современные приборы позволяют не только регулировать пуск, но и оптимизировать его по заранее установленным эксплуатационным характеристикам.
Пусковой ток аккумуляторной батареи
Аккумулятор не зря считается одним из важных элементов автомобиля. Его основная функция заключается в подаче напряжения на имеющееся электрооборудование. В основном это стартер, освещение и другие устройства. Для того чтобы успешно решать эту задачу, в аккумуляторе должно происходить не только накопление, но и сохранение заряда в течение длительного времени.
Одним из основных параметров батареи является пусковой ток. Данная величина соответствует параметрам тока, который протекает в стартере в момент его пуска. Пусковой ток непосредственно связан с режимом работы автомобиля. Если транспортное средство эксплуатируется очень часто, особенно в холодных условиях, в этом случае батарея должна иметь большой пусковой ток. Его номинальный параметр обычно находится в соответствии с мощностью источника питания, выдаваемой в течение 30 секунд при температуре минус 18 0 С. Он появляется в тот момент, когда ключ поворачивается в замке зажигания и начинает работать стартер. Измерение токового значения производится в амперах.
Пусковые токи могут быть совершенно разными у аккумуляторов, одинаковых по своему внешнему виду и основным характеристикам. На этот фактор существенное влияние оказывают физические свойства материалов для изготовления и конструктивные особенности каждого изделия. Например, возрастание тока может наблюдаться, если свинцовые пластины становятся пористыми, повышается их количество, используется ортофосфорная кислота. Завышенная величина тока не оказывает негативного влияния на оборудование, она лишь способствует повышению надежности пуска.
Ток, который нужен для запуска электродвигателя, называется пусковым. Как правило, пусковые токи электродвигателей в несколько раз большие, чем токи, необходимые для работы в нормально-устойчивом режиме.
Рисунок 1. Асинхронный электродвигатель Большой пусковой ток асинхронного электродвигателя необходим для того, чтобы раскрутить ротор с места, для чего требуется приложить гораздо больше энергии, чем для дальнейшего поддержания постоянного числа его оборотов. Стоит отметить, что, несмотря на совсем другой принцип действия, однофазные двигатели постоянного тока также характеризуются большими значениями пусковых токов.
Высокие пусковые токи электродвигателей — нежелательное явление, поскольку они могут приводить к кратковременной нехватке энергии для другого подключенного к сети оборудования (падению напряжения). Поэтому при подключении и наладке двигателей переменного тока (наиболее распространенных в промышленности) всегда стоит задача минимизировать значения пусковых токов, а также повысить плавность пуска двигателя за счет применения специального дополнительного оборудования. Такие мероприятия также позволяют снизить уровень затрат на пуск электродвигателя (применять провода меньшего сечения, стабилизаторы и дизельные электростанции меньшей мощности, проч.).
Одной из наиболее эффективных категорий устройств, облегчающих тяжелые условия пуска, являются софтстартеры и частотные преобразователи. Особенно ценным считается их свойство поддерживать пусковой ток двигателей переменного тока в течение продолжительного периода — более минуты. Также пусковой ток асинхронного электродвигателя можно уменьшить за счет внедрения внешнего сопротивления в обмотку ротора.
Расчет пускового тока асинхронного электродвигателя
Расчет пускового тока электродвигателя может потребоваться для того, чтобы подобрать подходящие автоматические выключатели, способные защитить линию включения данного электродвигателя, а также для того, чтобы подобрать подходящее по параметрам дополнительное оборудование (генераторы, проч.).
Расчет пускового тока электродвигателя осуществляется в несколько этапов:
Определение номинального тока трехфазного электродвигателя переменного тока согласно формуле: Iн=1000Pн/(Uн*cosφ*√ηн). Рн здесь — номинальная мощность двигателя, Uн выступает номинальным напряжением, а ηн — номинальным коэффициентом полезного действия. Cosφ — это номинальный коэффициент мощности электромотора. Все эти данные можно найти в технической документации по двигателю.
Расчет величины пускового тока по формуле Iпуск=Iн*Кпуск. Здесь Iн — номинальная величина тока, а Кпуск выступает кратностью постоянного тока к номинальному значению, которая также должна указываться в технической документации к электродвигателю.
Точно зная пусковые токи электродвигателей, можно правильно подобрать автоматические выключатели, которые будут защищать линию включения.
Приветствую вас, дорогие читатели. Прежде, чем разбираться с методиками подключения и характеристиками токов моторов асинхронного типа, не лишним будет вспомнить о том, что это такое.
Движком асинхронного типа зовут машину особого вида, которая преобразует энергию электричества в механическую. Главным рабочим принципом такого устройства считают вот какие свойства. Проходя по статорным обмоткам, переменный ток, состоящий из трех фаз, создает условия для появления вращающегося магнитного поля. Это поле и заставляет ротор вращаться.
Естественно, что при подключении двигателя надо учитывать все эти факторы, ведь вращение ротора будет производиться в ту сторону, в которую вращается магнитное поле. Частота вращения ротора, однако, ниже частоты вращения возбуждающего поля. По конструкции эти машины бывают самыми различными (то есть предназначенными для работы в разных условиях).
Как рабочие, так и пусковые характеристики таких устройств на много превосходят такие же показатели моторов однофазного типа.
Любой из таких моторов имеет две основные части – подвижную (роторную) и неподвижную (статорную). На обеих частях имеются обмотки. Разница между ними может быть лишь в типе обмотки ротора: она может иметь роторные кольца, либо быть короткозамкнутой. Подключение движков, имеющих короткозамкнутый ротор и мощность до двух сотен киловатт, производится напрямую к сети. Моторы же большей мощности необходимо подключать, сперва, к пониженному напряжению и лишь потом переключать на номинал (с целью снижения в несколько раз пускового тока).
Подключение асинхронного двигателя
Статорная обмотка практически любого такого устройства имеет шесть выводов (из них три – начала и три – концы). В зависимости от того, какова питающая сеть мотора, эти выводы соединяют либо в «звезду», либо в «треугольник». С этой целью корпус каждого мотора имеет коробку, в которой выведены начальные и конечные провода обмоток (они обозначаются, соответственно, С1, С2, С3 и С4, С5, С6).
Подключение звездой
Так называют метод соединения обмоток, при котором все три обмотки имеют одну общую точку (нейтраль). Линейное напряжение такого соединения выше фазного в 1,73 раза. Положительным качеством этого вида соединений считают малые токи пуска, хотя мощностные потери при этом довольно значительны.
Метод соединения в треугольник отличается тем, что при этом методе соединение выполняется таким образом, что конец одной обмотки становится началом следующей.
Подключение треугольником
При этом, соединении фазное и линейное напряжения одинаковы, следовательно, при линейном напряжении в 220 вольт, правильным соединением обмоток будет именно треугольник. Положительной стороной этого соединения является большая мощность, тогда как отрицательной – большие токи пуска.
Для выполнения реверса (смены направления вращения) трехфазного движка асинхронного типа, достаточно поменять местами выводы двух его фаз. На производстве это делается при помощи пары магнитных пускателей с зависимым включением.
Значительные величины токов пуска у асинхронных моторов являются весьма нежелательным явлением, потому как они могут привести к эффекту нехватки напряжения для других видов оборудования, подключенного к той же сети. Это стало причиной того, что подключая и налаживая двигатели этого типа, появляется задача минимизации токов пуска и повышения плавности запуска моторов методом использования специализированного оборудования. Наиболее эффективым типом таких приспособлений считаются софтстартеры и частотные преобразователи. Одним из наиболее ценных их качеств считают то, что они способны поддержать ток запуска мотора довольно долгое время (обычно больше минуты).
Помимо стандартного способа включения моторов асинхронного типа, существуют и методы включения их в питающую сеть, имеющую лишь одну фазу.
Конденсаторный пуск асинхронного двигателя
Для этого, в основном, применяют конденсаторный способ включения. Конденсатор может устанавливаться как один, так и пара (один пусковой, а второй рабочий). Пара кондеров ставится тогда, когда есть надобность в процессе пуска-работы менять емкость, что делают при помощи подключения-отключения одного из кондеров (пускового). Для этого, как правило, применяются емкости бумажного исполнения, поскольку они не имеют полярности, а при работе на переменном токе это очень важно.
Для расчета рабочего конденсатора существует следующая формула:
Пусковой конденсатор должен иметь емкость в пару-тройку раз большую емкости рабочего и рабочее напряжение в полтора раза превышающее напряжение питания.
Пусковой и рабочий конденсаторы соединяют параллельно, причем так, что параллельно пусковому, включено шунтирующее сопротивление и одним концом пусковой кондер включается через ключ. При пуске двигателя ключ замыкают, поднимая ток запуска, затем, размыкают.
Однако, не нужно забывать, что к однофазной сети можно подключить далеко не каждый движок. Кроме того, мощность мотора в таком подключении будет составлять лишь 0.5-0.6 мощности трехфазного включения.
Пусковые токи асинхронного двигателя
Теперь приведу таблицу допустимых значений токов холостого хода трехфазных моторов:
Мощность электромотора, кВт | Ток холостого хода, в процентах от номинального, | |||||
при скорости вращения, об./мин. | ||||||
3000 | 1500 | 1000 | 750 | 600 | 500 | |
0.12 – 0.55 | 60 | 75 | 85 | 90 | 95 | — |
Прежде, чем производить замеры тока на двигателях, их необходимо обкатать (опробовать на холостом ходу 30-60 минут — движки мощностью меньше 100 кВт и от 2 часов движки, чья мощность выше 100 кВт). Данная таблица носит справочный характер, следовательно, реальные данные могут расходиться с этими процентов на 10-20.
Токи пуска двигателя можно вычислить, применив следующую пару формул:
Iн=1000Рн/(Uн*cosф*√nн),
где Рн — номинал мощности мотора, Uн — номинал его напряжения, nн — номинал его КПД.
где Iн — номинал тока, а Кп — кратность постоянного тока к номиналу (обычно указана в паспорте мотора).
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем еще что-нибудь полезное. Всего доброго.
Как подобрать аккумулятор на..
Какой аккумулятор выбрать?
Если не хотите обращаться в сервис или к помощи продавца, то алгоритм выбора должен быть следующий.
Брать надо такую батарею, которая гарантированно уместится в отведенной ей нише, будь то моторный отсек, багажник или что-то еще. Согласитесь: глупо промахнуться на пару сантиметров! Одновременно определяем полярность: смотрим на старую батарею и соображаем, какая клемма у нее справа, а какая слева? Само собой, что если машина не европейская, то и сами клеммы могут отличаться от большинства привычных — как по форме, так и по расположению.
Так же стоит обратить внимание на корпус аккумуляторной батареи, их может быть несколько видов, но самые распространенные европейский и азиатский корпус, они отличаются размерами и расположением клемм на корпусе.
Подберем аккумулятор по характеристикам
Все автомобильные АКБ имеют три основные характеристики: напряжение, емкость и пусковой ток. Напряжение аккумулятора автомобиля для всех легковых моделей одинаково: 12 вольт. Конечно, есть и батареи с напряжением в 24 вольт, но это касается только грузовиков, и то не всех.
Следующая характеристика – емкость. Емкость аккумулятора – показатель времени, на протяжении которого батарея может выдавать при разряде свои эксплуатационные параметры. То есть чем больше емкость, тем дольше можно слушать музыку или оставлять световые приборы включенными при незаведенном двигателе.
Емкость автомобильных аккумуляторов измеряется в ампер-часах (Ач). Например, маркировка на корпусе 60 Ач говорит о том, что емкости данной батареи хватит на 1 час при нагрузке в 60 ампер или на 60 часов при нагрузке 1 ампер.
На разных моделях автомобилей завод-производитель рекомендует разную емкость батарей. К примеру, для малолитражек это 40-60 Ач, а для более объемных моторов около 60-100 Ач. Зависимость емкости аккумуляторов от объема двигателя исходит из того, что емкость напрямую связана с пусковым током.
А пусковой ток как раз и влияет на запуск. Чем больше объем двигателя, тем больше силы тока нужно, чтобы его провернуть стартером, соответственно, тем больший должен быть пусковой ток.
Пусковой (стартерный) ток – это способность батареи выдавать максимальную силу тока за короткий промежуток времени. Измеряется пусковой ток в амперах (А) и на корпусе будет обозначаться как 520 А, 710 А, 880 А и т. д.
Чтобы завести малолитражный бензиновый автомобиль при температуре в 0 °C, понадобится около 200-300 ампер. Если же в этих условиях заводить бензиновый автомобиль с объемом 2,5 и более литров, то пусковой ток нужен больше 400 ампер. При понижении температуры возрастает потребность в пусковом токе.
В сильный мороз для запуска понадобится чуть ли не в 2 раза больше пускового тока, чем при плюсовой температуре для одного и того же автомобиля. Нужно это учитывать при выборе батареи, особенно для регионов с холодным климатом.
Можно купить аккумулятор для машины с большим пусковым током, чем рекомендует производитель, но никак не меньшим. Больший пусковой ток будет плюсом. Например, при долгом простое автомобиля, особенно при отрицательной температуре, пусковой ток все еще будет достаточен для запуска двигателя, ведь аккумулятор выбирался «с запасом». И в такой же ситуации пускового тока может не хватить если эта характеристика выбрана «впритык».
Как уже понятно, пусковой ток – один из самых важных параметров аккумулятора, и чем он больше, тем лучше. Также пусковой ток влияет и на срок службы аккумулятора автомобиля, чем больше пусковой ток, тем аккумулятору легче крутить стартер, тем его разряд становится менее глубоким.
Глубокий разряд очень негативно сказывается на ресурсе АКБ. Обычно достаточно 2-3 раза полностью разрядить аккумулятор, и он уже не будет иметь своих начальных характеристик или вовсе выйдет из строя.
Пусковой ток маркируется по-разному, в зависимости от производителя. Маркировка бывает такой:
- EN – европейский вариант маркировки. В России может обозначаться как ГОСТ 959-2002. На корпусе выглядит так – 540А(EN), 620A(EN), 840A(EN) и т. д.;
- DIN – немецкий вариант маркировки. На корпусе выглядит так – 290А(DIN), 310A(DIN), 510A(DIN) и т. д.;
- SAE – американский вариант маркировки. На корпусе выглядит так – 560А(SAE), 640A(SAE), 880A(SAE) и т. д.
Таблица перевода тока холодного пуска EN, CCA, SAE, IEC, DIN
ССА — это аббревиатура от английского Cold Cranking Amps (CCA) означающая ток холодного пуска (ток холодной прокрутки) стартерной аккумуляторной батареи. Ток
холодной прокрутки измеряется в амперах по определенной методике измерения. Различают следующие отраслевые стандарты измерения тока холодной прокрутки (CCA):
SAE (JS537) /CCA
Американский стандарт (полностью заряженную батарею по методике SAE JS537 охлаждают до -18С в течение 24 часов. Затем батарею нагружают силой тока, равной номинальному CCA батареи. Тест считается пройденным, если напряжение батареи не упадет ниже 7,2В в течение 30 секунд)
EN (EN50342.1A1) ГОСТ 959-2002
Европейский стандарт (полностью заряженную батарею по методике SAE JS537 охлаждают до -18С в течение 24 часов. Затем батарею нагружают силой тока, равной номинальному CCA батареи. Тест считается пройденным, если напряжение батареи не упадет ниже 7,2В в течение 10 секунд)
IEC (60095-1)
Международная электротехническая комиссия (полностью заряженную батарею по методике SAE JS537 охлаждают до -18С в течение 24 часов. Затем батарею нагружают силой тока, равной номинальному CCA батареи. Тест считается пройденным, если напряжение батареи не упадет ниже 8,4В в течение 60 секунд)
DIN
Немецкий стандарт (полностью заряженную батарею по методике SAE JS537 охлаждают до -18С в течение 24 часов. Затем батарею нагружают силой тока, равной номинальному CCA батареи. Тест считается пройденным, если напряжение батареи не упадет ниже 9В в течение 30 секунд и 6В в течение 150 секунд)
JIS (D5301)
Японский индустриальный стандарт (полностью заряженную батарею по методике SAE JS537 охлаждают до -15С в течение 24 часов. Затем батарею нагружают силой тока 150-300А в течение 10-30 секунд. Тест считается пройденным, если напряжение батареи не упадет ниже 6В )
MCA (СА) — Морской стандарт (полностью заряженную батарею по методике SAE JS537 охлаждают до 0С в течение 24 часов. Затем батарею нагружают силой тока, равной номинальному CCA батареи. Тест считается пройденным, если напряжение батареи не упадет ниже 7,2В в течение 30 секунд)
ГОСТ Р 53165-2008 — ток холодной прокрутки (CCA) — это ток разряда, А, указанный изготовителем, который может обеспечить батарея для пуска двигателя в заданных условиях. ГОСТ Р 53165-2008 базируется на международном стандарте IEC 60095-1.
С права приведена таблица перевода тока холодного пуска (EN, CCA, SAE, IEC, DIN).
В России принято пользоваться именно ГОСТ 959-2002, то есть европейским стандартом (EN). При выборе нужно ориентироваться именно на этот стандарт. Если на корпусе аккумулятора нанесена маркировка DIN, то следует конвертировать данные в европейский стандарт по таблице приведенной выше.
Также можно приобрести и АКБ с большей емкостью, чем рекомендует производитель. Больше емкость – дольше автономная работа потребителей. Но с емкостью можно и переборщить.
Чем больше емкость, тем дольше такая батарея будет заряжаться после N количества дней простоя. А если автомобиль используется довольно редко и поездки, как правило, короткие, то батарея (с большей емкостью) может не успевать зарядиться на 100%. А эксплуатация недозаряженной батареи сильно влияет на срок её службы, и он становится существенно короче.
Если же в машине стоит аккумулятор с существенно большей емкостью и автомобиль эксплуатируется часто, не реже, чем через день и минимум по нескольку часов, то тогда проблем с недозарядом не будет и увеличенная емкость будет приносить только плюс.
При обычных условиях эксплуатации аккумуляторную батарею можно приобрести с емкостью не более +30% от рекомендуемой.
И финальная стадия подбора аккумулятора, выбираем бренд. Тут мы однозначно советуем руководствоваться списком наших лидеров по своим техническим свойствам и качеству сборки последних лет и никогда не «клевать» на новичков или аутсайдеров. Даже если их этикетки самые красивые. Вот некоторые имена из тех, которые обычно нас не подводили: Tyumen batbear (тюменские батареи), Varta, Bosch, Hankook, Crossfire, Tab, «АкТех» Завод производитель, «Зверь».
Ещё следует знать что напряжение на новом аккумуляторе должно быть не ниже 12.5 вольт, что соответствует 85-90% заряда согласно таблице:
100% – 12.71в
95% – 12.65в
90% – 12.57в
85% – 12.53в
80% – 12.47в
78% – 12.41в
70% – 12.37в
65% – 12.33в
60% – 12.29в
55% – 12.25в
50% – 12.21в
40% – 12.13в
30% – 12.05в
20% – 11.99в
10% – 11.95в
Методики измерения пускового тока для соответствия требованиям Постановления Правительства
Скачать PDF версию|0,4 Мб
В соответствии с общепринятой терминологией, пусковой ток в электронных блоках питания (БП) – это самый первый импульс тока, возникающий сразу после включения БП в питающую сеть. Амплитуда такого тока зачастую в десятки раз превышает рабочий ток (nominal current), что связано с «нулевым сопротивлением» входных емкостей, являющихся элементами фильтра ЭМС/ЭМИ без которых невозможно создать БП соответствующий всем нормам и требованиям.
- Амплитуда и длительность пускового тока (inrush current) всеми известными мировыми производителями блоков питания для светодиодных светильников (MOONS’, MEAN WELL, INVENTRONICS, HELVAR, OSRAM, PHILIPS и др.) измеряется в соответствии с требованиями мирового стандарта NEMA 410-2015 (Performance Testing for Lighting Controls and Switching Devices with Electronic Drivers and Discharge Ballasts) и приведена в Приложении №1.
- В соответствии с Постановлением Правительства РФ от 3 ноября 2018 г. № 1312 пункт 27: «Пусковой ток светильников на этапе 2 не должен быть более 5-кратного рабочего тока источника питания». Поскольку определение «пусковой ток» и методика его измерения в российской нормативной базе не описана, то мы можем сами определять, какой именно ток в нашем светильнике «пусковой». То есть мы можем в качестве пускового указать значение тока не в момент включения БП в питающую сеть, а через 300–800 мс. Этот ток правильно называется «стартовый», но, еще раз повторим, нам никто не запрещает назвать его применительно к нашему изделию «пусковым». Методика измерения Амплитуды пускового тока приведена в Приложении №2. В связи с тем, что выполнить эти требования «честно» представляется возможным только применяя специальные дополнительные устройства, например, SPD-230_OVP от MOONS’, что приводит к существенному удорожанию светильников, то были введены в действие результаты работы так называемой регуляторной гильотины, отсекшей ряд Постановлений Правительства, касающихся требований к светотехнической продукции. В частности, в Постановлении Правительства РФ от 11 июля 2020 г. № 1036 признаны утратившими силу с 1 января 2021 года:
- Постановление Правительства РФ от 10 ноября 2017 г. № 1356 «Об утверждении требований к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения».
- Постановление Правительства Российской Федерации от 3 ноября 2018 г. № 1312 «О внесении изменений в требования к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения».
Приложение 1
ТИПОВАЯ МЕТОДИКА ИЗМЕРЕНИЯ ПУСКОВОГО ТОКА ПО NEMA 410-2015 ДЛЯ ЛЮБОГО БЛОКА ПИТАНИЯ ИЛИ СВЕТИЛЬНИКА
- Необходимо подать напряжение на блок питания строго в момент времени максимального значения амплитуды (пик) напряжения, так как именно в этот момент времени значение пускового тока будет максимально. Это можно сделать, например, с помощью специального лабораторного оборудования в виде электронного генератора сети переменного тока, как указано ниже:
- Использовать эквивалент питающей сети – 450 мОм 800 мкГн;
- Подключить осциллограф с 2 каналами (с гальванической изоляцией измерительных каналов от питающей сети) ко входу блока питания, чтобы наблюдать форму входного тока относительно формы входного напряжения;
- Зафиксировать осциллограмму (режим Триггер) и измерить амплитуду пускового тока, а также измерить длительность импульса при 10% и 50% от значения амплитуды импульса. Типовые значения Амплитуды пускового тока >20 А, а длительность тока в среднем составляет от 150 до 400 мксек;
- Провести такое измерение 5 раз, чтобы в итоге в паспорте на изделие указать среднее значение.
Приложение 2
МЕТОДИКА ИЗМЕРЕНИЯ ПУСКОВОГО ТОКА БЛОКОВ ПИТАНИЯ MOONS’
В отличие от методики NEMA 410-2015 в которой измеряется амплитуда и длительность пускового тока, в данной методике необходимо измерить только амплитуду стартового тока (в Паспорте на свой светильник Вы имеете право назвать стартовый ток пусковым, так как отсутствует определение Пускового тока) – соответственно не требуется подавать напряжение на блок питания строго в момент максимального значения амплитуды напряжения, так как на стартовый ток это никак не влияет.
Если Вы используете в своих светильниках БП MOONS’, то мы рекомендуем указывать максимальное кол-во подключаемых БП на один автоматический выключатель, эту информацию Вы найдете в спецификации на БП или обратитесь в компанию «Планар-СПб».
- Подключить блок питания через токовый шунт 0,5 Ом (мощностью 1 Вт для блоков питания мощностью до 320 Вт) к питающей сети напряжения 220/230 В 50 Гц;
- Подключить осциллограф с 2 каналами (с гальванической изоляцией измерительных каналов от питающей сети) ко входу блока питания, чтобы наблюдать форму входного тока относительно формы входного напряжения;
- Зафиксировать осциллограмму (режим работы Триггер) и измерить амплитуду стартового тока – импульс тока, следующий после пускового тока через ориентировочно 300-800 мсек характеризующий включение БП. Типовые значения амплитуды стартового тока превышают значения номинального входного тока в зависимости от мощности БП в 1,5-2 раза;
- Провести такое измерение 5 раз, чтобы в итоге в паспорте на изделие указать среднее значение;
- Осциллограмма блоков питания MOONS’ ME075Mxxx приведена ниже и на них мы видим, что жёлтым показано входное напряжение, синим – входной ток, а стартовый ток выделен красным и полностью соответствует требованиям Постановления Правительства.
Устройство плавного пуска электродвигателя. Как это работает.
Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.
Назначение
Управление процессом запуска, работы и остановки электродвигателей. Основными проблемами асинхронных электродвигателей являются:
- невозможность согласования крутящего момента двигателя с моментом нагрузки,
- высокий пусковой ток.
Во время пуска крутящий момент за доли секунды часто достигает 150-200%, что может привести к выходу из строя кинематической цепи привода. При этом стартовый ток может быть в 6-8 раз больше номинального, порождая проблемы со стабильностью питания. Устройство плавного пуска позволяют избежать этих проблем, делая разгон и торможение двигателя более медленными. Это позволяет снизить пусковые токи и избежать рывков в механической части привода или гидравлических ударов в трубах и задвижках в момент пуска и остановки двигателей.
Принцип действия устройство плавного пуска
Основной проблемой асинхронных электродвигателей является то, что момент силы, развиваемый электродвигателем, пропорционален квадрату приложенного к нему напряжения, что создаёт резкие рывки ротора при пуске и остановке двигателя, которые, в свою очередь, вызывают большой индукционный ток.
Софтстартеры могут быть как механическими, так и электрическими, либо сочетать то и другое.
Механические устройства непосредственно противодействуют резкому нарастанию оборотов двигателя, ограничивая крутящий момент. Они могут представлять собой тормозные колодки, жидкостные муфты, магнитные блокираторы, противовесы с дробью и прочее.
Данные электрические устройства позволяют постепенно повышать ток или напряжение от начального пониженного уровня (опорного напряжения) до максимального, чтобы плавно запустить и разогнать электродвигатель до его номинальных оборотов. Такие УПП обычно используют амплитудные методы управления и поэтому справляются с запуском оборудования в холостом или слабо нагруженном режиме. Более современное поколение УПП (например, устройства ЭнерджиСейвер) используют фазовые методы управления и потому способны запускать электроприводы, характеризующиеся тяжелыми пусковыми режимами «номинал в номинал». Такие УПП позволяют производить запуски чаще и имеют встроенный режим энергосбережения и коррекции коэффициента мощности.
Выбор устройства плавного пуска
При включении асинхронного двигателя в его роторе на короткое время возникает ток короткого замыкания, сила которого после набора оборотов снижается до номинального значения, соответствующего потребляемой электрической машиной мощности. Это явление усугубляется тем, что в момент разгона скачкообразно растет и крутящий момент на валу. В результате может произойти срабатывание защитных автоматических выключателей, а если они не установлены, то и выход из строя других электротехнических устройств, подключенных к той же линии. И в любом случае, даже если аварии не произошло, при пуске электромоторов отмечается повышенный расход электроэнергии. Для компенсации или полного устранения этого явления используются устройства плавного пуска (УПП).
Как реализуется плавный пуск
Чтобы плавно запустить электродвигатель и не допустить броска тока, используются два способа:
- Ограничивают ток в обмотке ротора. Для этого ее делают состоящей из трех катушек, соединенных по схеме «звезда». Их свободные концы выводят на контактные кольца (коллекторы), закрепленные на хвостовике вала. К коллектору подключают реостат, сопротивление которого в момент пуска максимальное. По мере его снижения ток ротора растет и двигатель раскручивается. Такие машины называются двигателями с фазным ротором. Они используются в крановом оборудовании и в качестве тяговых электромоторов троллейбусов, трамваев.
- Уменьшают напряжение и токи, подаваемые на статор. В свою очередь, это реализуется с помощью:
а) автотрансформатора или реостата;
б) ключевыми схемами на базе тиристоров или симисторов.
Именно ключевые схемы и являются основой построения электротехнических приборов, которые принято назвать устройствами плавного пуска или софтстартерами. Обратите внимание, что частотные преобразователи так же позволяют плавно запустить электродвигатель, но они лишь компенсируют резкое возрастание крутящего момента, не ограничивая при этом пускового тока.
Принцип работы ключевой схемы основывается на том, что тиристоры отпираются на определенное время в момент прохождения синусоидой ноля. Обычно в той части фазы, когда напряжение растет. Реже – при его падении. В результате на выходе УПП регистрируется пульсирующее напряжение, форма которого лишь приблизительно похожа на синусоиду. Амплитуда этой кривой растет по мере того, как увеличивается временной интервал, когда тиристор отперт.
Критерии выбора софтстартера
По степени снижения степени важности критерии выбора устройства располагаются в следующей последовательности:
- Мощность.
- Количество управляемых фаз.
- Обратная связь.
- Функциональность.
- Способ управления.
- Дополнительные возможности.
Мощность
Главным параметром УПП является величина Iном – сила тока, на которую рассчитаны тиристоры. Она должна быть в несколько раз больше значения силы тока, проходящего через обмотку двигателя, вышедшего на номинальные обороты. Кратность зависит от тяжести пуска. Если он легкий – металлорежущие станки, вентиляторы, насосы, то пусковой ток в три раза выше номинального. Тяжелый пуск характерен для приводов, имеющих значительный момент инерции. Таковы, например, вертикальные конвейеры, пилорамы, прессы. Ток выше номинального в пять раз. Существует и особо тяжелый пуск, который сопровождает работу поршневых насосов, центрифуг, ленточных пил… Тогда Iном софтстартера должен быть в 8-10 раз больше.
Тяжесть пуска влияет и на время его завершения. Он может длиться от десяти до сорока секунд. За это время тиристоры сильно нагреваются, поскольку рассеивают часть электрической мощности. Для повторения им надо остыть, а на это уходит столько же, сколько на рабочий цикл. Поэтому если технологический процесс требует частого включения-выключения, то выбирайте софтстартер как для тяжелого пуска. Даже если ваше устройство не нагружено и легко набирает обороты.
Количество фаз
Можно управлять одной, двумя или тремя фазами. В первом случае устройство в большей степени смягчает рост пускового момента, чем тока. Чаще всего используются двухфазные пускатели. А для случаев тяжелого и особо тяжелого пуска – трехфазные.
Обратная связь
УПП может работать по заданной программе – увеличить напряжение до номинала за указанное время. Это наиболее простое и распространенное решение. Наличие обратной связи делает процесс управления более гибким. Параметрами для нее служат сравнение напряжения и вращающего момента или фазный сдвиг между токами ротора и статора.
Функциональность
Возможность работать на разгон или торможение. Наличие дополнительного контактора, который шунтирует ключевую схему и позволяет ей остыть, а также ликвидирует несимметричность фаз из-за нарушения формы синусоиды, которое приводит к перегреву обмоток.
Способ управления
Бывает аналоговым, посредством вращения потенциометров на панели, и цифровым, с применением цифрового микроконтроллера.
Дополнительные функции
Все виды защиты, режим экономии электроэнергии, возможность пуска с рывка, работы на пониженной скорости (псевдочастотное регулирование).
Правильно подобранный УПП увеличивает вдвое рабочий ресурс электродвигателей, экономит до 30 процентов электроэнергии.
Зачем нужно устройство плавного пуска (софтстартера)
Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска (софтстартер). С чем это связано? В нашей статье мы постараемся осветить этот вопрос.
Асинхронные двигатели используются уже более ста лет, и за это время относительно мало изменилось их функционирование. Запуск этих устройств и связанные с ним проблемы хорошо известны их владельцам. Пусковые токи приводят к просадкам напряжения и перегрузкам проводки, вследствие чего:
— некоторая электротехника может самопроизвольно отключаться;
— возможен сбой оборудования и т. д.
Своевременно установленный приобретенный и подключенный софтстартер позволяет избежать лишних трат денег и головной боли.
Что такое пусковой ток
В основе принципа действия асинхронных двигателей лежит явление электромагнитной индукции. Наращивание обратной электродвижущей силы (э. д. с), которая создается путем применения изменяющегося магнитного поля во время запуска двигателя, приводит к переходным процессам в электрической системе. Этот переходной режим может повлиять на систему электропитания и другое оборудование, подключенное к нему.
Во время запуска электродвигатель разгоняется до полной скорости. Продолжительность начальных переходных процессов зависит от конструкции агрегата и характеристик нагрузки. Пусковой момент должен быть наибольшим, а пусковые токи – наименьшими. Последние влекут за собой пагубные последствия для самого агрегата, системы электроснабжения и оборудования, подключенного к нему.
В течение начального периода пусковой ток может достигать пяти-восьмикратного тока полной нагрузки. Во время пуска электродвигателя кабели вынуждены пропускать больше тока, чем во время периода стабильного состояния. Падение напряжения в системе также будет намного больше при пуске, чем во время стабильной работы – это становится особенно очевидным при запуске мощного агрегата или большого числа электродвигателей одновременно.
Способы защиты электродвигателя
Поскольку использование электродвигателей стало широко распространенным, преодоление проблем с их запуском стало проблемой. На протяжении многих лет для решения этих задач были разработано несколько методов, каждый из которых имеет свои преимущества и ограничения.
В последнее время были достигнуты значительные успехи в использовании электроники в регулировании электроэнергии для двигателей. Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска. Всё дело в том, что прибор имеет ряд особенностей.
Особенностью устройства пуска является то, что он плавно подаёт на обмотки двигателя напряжение от нуля до номинального значения, позволяя двигателю плавно разгоняться до максимальной скорости. Развиваемый электродвигателем механический момент пропорционален квадрату приложенного к нему напряжения.
В процессе пуска УПП постепенно увеличивает подаваемое напряжение, и электромотор разгоняется до номинальной скорости вращения без большого момента и пиковых скачков тока.
Виды устройств плавного пуска
На сегодняшний день для плавного запуска техники используются три типа УПП: с одной, двумя и со всеми управляемыми фазами.
Первый тип применяется для однофазного двигателя для обеспечения надежной защиты от перегрузки, перегрева и снижения влияния электромагнитных помех.
Как правило, схема второго типа помимо полупроводниковой платы управления включает в себя байпасный контактор. После того как двигатель раскрутится до номинальной скорости, байпасный контактор срабатывает и обеспечивает прямую подачу напряжения на электродвигатель.
Трехфазный тип является самым оптимальным и технически совершенным решением. Он обеспечивает ограничение тока и силы магнитного поля без перекосов по фазам.
Зачем же нужно устройство плавного пуска?
Благодаря относительно невысокой цене популярность софтстартеров набирает обороты на современном рынке промышленной и бытовой техники. УПП для асинхронного электродвигателя необходимо для продления его срока службы. Большим преимуществом софтстартера является то, что пуск осуществляется с плавным ускорением, без рывков.
Есть отличная альтернатива устройству плавного пуска. Стоимость отличается, но и функциональные возможности расширенные.
Преобразователь частоты – это решение задачи, когда требуется регулирование скорости электродвигателя и автоматизация работы технологичного оборудования через обратную связь посредством датчика. При помощи преобразователя Вы сможете решить более сложные и разносторонние вопросы по автоматизации электропривода.
Устройства плавного пуска Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)
Общие сведения о пусковых (пусковых) токах двигателя и статья 430.52 NEC — Jade Learning
Общие сведения о пусковых (пусковых) токах двигателя и статья 430.52 NEC
Автор: Стэн Тюркель | 5 марта 2019 г.
Пусковой ток, также называемый «током заторможенного ротора», — это чрезмерный ток, протекающий внутри двигателя и его проводников в течение первых нескольких моментов после подачи питания (включения) двигателя. Это потребление тока иногда называют «током заторможенного ротора», потому что ток, необходимый при запуске для начала вращения невращающегося, обесточенного вала двигателя, очень похож на чрезмерное потребление тока в моменты, когда двигатель перегружен до заедания.В обоих случаях потребление тока таково, что требуется, когда двигатель пытается преодолеть холостой вал двигателя.
Устройства защиты от перегрузки по току, защищающие двигатель и его схемы, должны выдерживать этот кратковременный , но очень сильный всплеск тока , обеспечивая при этом соответствующую защиту от короткого замыкания на землю и условий перегрузки двигателя.
Это отличное место для прогулки.
Пусковой ток двигателя является необходимым условием перегрузки
Итак, что такое пусковой ток двигателя? При первом включении двигателя переменного тока в цепи питания двигателя потребляется чрезмерный ток, значительно превышающий уровни тока, указанные на паспортной табличке двигателя. При запуске двигателя из статического (холостого) положения часто встречается высокое сопротивление, и для начала вращения вала двигателя необходимо чрезмерное потребление тока.
Часто во время начального полупериода протекания электрического тока при запуске двигателя (Примечание: полупериод в электрической системе с частотой 60 Гц равен 1/120 секунды времени) пусковые токи достигают уровней, в 20 раз превышающих чем нормальные уровни тока, возникающие при нормальной рабочей скорости двигателя.После этого начального скачка тока двигатель начинает вращаться. В этот момент начальный пусковой ток ослабевает, снижаясь до уровня, равного 4-8-кратному нормальному рабочему току для этого двигателя. Этот пониженный, но все же в значительной степени преувеличенный ток поддерживается только на короткое время, поскольку двигатель быстро достигает полной скорости вращения, после чего ток снижается до нормального рабочего уровня.
Пусковой ток и компоненты двигателя
При рассмотрении пускового тока помогает понять, что происходит внутри асинхронного двигателя переменного тока, когда мы впервые включаем его. Мы знаем, что обмотки статора получают питание сразу после включения. Переменный ток (AC), подаваемый на эту обмотку, создает переменное магнитное поле, а затем индуцирует это поле в роторе.
Разница в магнитных полях между обмоткой статора (неподвижная группа медных обмоток в двигателе) и обмоткой ротора (обмотка вращающегося вала) является самым большим фактором начального пускового тока, возникающего при запуске. Как только ротор начинает вращаться, а затем догоняет магнитное поле статора, разница между двумя полями уменьшается, и пусковой ток падает пропорционально.
Конечно, мы знаем, что стандартный асинхронный двигатель переменного тока всегда испытывает или градусов скольжения; два магнитных поля никогда не синхронизируются полностью, поскольку ротор всегда в некоторой степени отстает от поля обмотки статора. Это «скольжение» двигателя определяется как процентов от скольжения , а конечный крутящий момент, передаваемый валом двигателя, является результатом магнитной силы, наведенной на вал двигателя, за вычетом этого скольжения.
Защита цепей двигателя
Национальный электрический кодекс требует нескольких уровней защиты при установке систем управления двигателями.Эта защита необходима для фидерной цепи двигателя (защита от короткого замыкания и замыкания на землю ), ответвленной цепи двигателя (защита от короткого замыкания и защита от замыкания на землю ), а также защиты двигателя от перегрузки, при которой ток проходит через двигатель измеряется на каждой отдельной фазе цепи, питающей двигатель в сборе.
Понимание потенциала пускового тока двигателя (пускового тока) в дополнение к номинальному напряжению двигателя, указанному на паспортной табличке, номинальной мощности (л.с.) и номинальному току при полной нагрузке (FLA) в сочетании с NEC дает нам информация, необходимая для правильного определения защиты от перегрузки по току / перегрузки для этого двигателя.
Хотя мы хотим, чтобы OCPD (устройство защиты от перегрузки по току), , будь то автоматический выключатель или предохранитель , обеспечивал максимальную защиту от короткого замыкания и перегрузки, нам также необходимо игнорировать эти защитные устройства, для короткого замыкания период времени, неизбежный пусковой ток, который будет возникать при запуске двигателя.
Автоматические выключатели с обратнозависимой выдержкой времени и плавкие предохранители с выдержкой времени, предоставленные для использования с разрешения, указанного в 430.52 NEC, обеспечивают защиту от короткого замыкания на землю в сочетании с защитой от перегрузки .И автоматический выключатель с обратнозависимой выдержкой времени, и плавкий предохранитель с выдержкой времени предназначены для выдерживания этих мощных пусковых токов в течение нескольких сотых секунды, необходимых для преодоления первоначального запуска двигателя. Выключатели с обратнозависимой выдержкой времени достигают этого за счет использования атрибута, называемого «кривая срабатывания», который, по сути, позволяет чрезмерному, преувеличенному току оставаться на выключателе до полсекунды или дольше, при этом выполняя мгновенное отключение контактов выключателя, когда обнаруживается прямое замыкание на землю.
Увеличение допустимой нагрузки предохранителя или автоматического выключателя в диапазоне от 225% до 400% от номинальной мощности цепи, представленное в таблице 430. 52, мало помогает противостоять вышеупомянутому пусковому току. Однако , это разрешенное увеличение размера устройства максимального тока (прерывателя или предохранителя), поддерживает цепь в течение нескольких секунд сразу после этого начального пускового тока, поскольку ток спадает и снижается до нормального рабочего тока.
Встроенные свойства задержки, обнаруженные в этих двух типах устройств максимального тока, в сочетании с увеличением размера, разрешенным для этих же устройств (разрешенным в T430.52), позволяют ответвленной цепи двигателя выдерживать кратковременные бомбардировка сильными пусковыми токами, возникающими при запуске двигателя.
Следующее руководство поможет вам сделать правильный выбор для защиты CB.
Для стандартной защиты от короткого замыкания с использованием автоматического выключателя с обратнозависимой выдержкой времени используется следующее:
- Используйте таблицы 430.247–430.250 для определения FLC двигателя. (Обратите внимание, что мы не используем информацию с паспортной таблички двигателя).
- Из таблицы 430.52 находим правильное максимальное значение уставки для стандартной защиты от короткого замыкания
- Умножаем FLC двигателя на значение в таблице 430.52
- Округлим ближайший доступный стандартный рейтинг, указанный в таблице 240.6 (A).
В разделе Кодекса 430.52 (C) (1) (c) мы находим исключение из разрешений, предоставленных для определения номиналов автоматического выключателя с обратнозависимой выдержкой времени, которые указаны в Таблице 430.52. Мы читаем: Если номинал автоматического выключателя, определенный T430.52, недостаточен для пускового тока (пускового тока), испытываемого двигателем, электрик может увеличить номинал автоматического выключателя еще больше, до максимум 400% для нагрузок, которые не превышают 100 ампер. И максимум до 300% для нагрузок, которые больше , чем 100 ампер.
Предохранители, используемые вместо автоматических выключателей
Что касается плавких предохранителей, выбранных в качестве устройства защиты от максимального тока, вместо автоматического выключателя с обратнозависимой выдержкой времени, мы, , по-прежнему используем таблицу 430.52 для начального выбора номинала, но существуют дополнительные и более строгие правила, которые существуют для увеличения номинала этих предохранителей за пределами Таблицы, чтобы преодолеть пусковой ток. Эти дополнительные правила и ограничения можно найти в разделе Кодекса 430.52 (C) (1).
Как рассчитать пусковой ток двигателя
«Пусковой ток», иногда называемый током заторможенного ротора или пусковым током, относится к электрическому току, протекающему через компоненты двигателя в долях секунды после включения питания двигателя.В течение этого короткого промежутка времени ток быстро нарастает и ослабевает, прежде чем какая-либо из частей двигателя фактически начнет двигаться, и система перейдет к динамическому электрическому равновесию, в течение которого достигается установившийся ток.
Повторяющиеся короткие всплески тока со значениями силы, во много раз превышающими установившееся состояние, представляют собой потенциальное нарушение работы системы, так как они могут привести к ненужному срабатыванию неисправных устройств в виде «ложной тревоги».
Характеристики двигателя, такие как постоянный ток, изменение источника питания и пускорегулирующие устройства, могут увеличить величину пускового тока.Вам может потребоваться знать значение этого тока, чтобы вы могли оборудовать свой двигатель подходящим ограничителем пускового тока, чтобы защитить его от срабатывания, упомянутого выше, подобно сетевому фильтру в бытовом удлинителе.
Обычно вам необходимо знать максимальную выходную мощность двигателя и входное напряжение. Другая полезная информация включает время сброса, однофазную или трехфазную схему, величину емкости, сопротивления и КПД двигателя.
Для таких проблем обычно используются соотношения:
V пик = I в R, где V пик = √2 (V)
Например, предположим, что у вас есть двигатель с входным напряжением 200 В и минимальным сопротивлением 15 Ом.
Шаг 1. Соберите переменные
В этой задаче у вас нет энергии или емкости, но у вас есть напряжение и сопротивление. Таким образом, представляющее интерес уравнение является первым из приведенных выше, или:
Шаг 2: Расчет пускового тока
Шаг 3: Интерпретация результатов
Это означает, что любые элементы двигателя, которые срабатывают, останавливаются при таких высоких значениях силы тока может вызвать проблемы при запуске, и вам может потребоваться изменить такие параметры, как напряжение и сопротивление.
Какой пусковой ток двигателя?
Посмотреть все
Почему в двигателе высокий пусковой ток?
Отражение этого большого тока на первичной обмотке (обмотке статора) и есть так называемый высокий пусковой ток асинхронного двигателя. По мере того как ротор набирает скорость, разница между скоростью вращающегося магнитного поля и скоростью ротора уменьшается. Меньшая наведенная ЭДС в катушках ротора вызывает меньший ток в катушках ротора.
Что используется для расчета пускового тока двигателя?
Пусковой ток асинхронного двигателя.Я рассчитал ток полной нагрузки, разделив мощность на напряжение (p = VI).
Как долго длится пусковой ток двигателя?
Пусковые токи двигателя
Обычно в течение начального полупериода пусковой ток часто превышает нормальный ток полной нагрузки более чем в 20 раз. После первого полупериода двигатель начинает вращаться, и пусковой ток снижается в 4-8 раз по сравнению с нормальным током в течение нескольких секунд.
Какой пусковой ток двигателя постоянного тока?
Ответ: Пусковой ток высокий, поскольку в цепи якоря нет противо-ЭДС или противо-ЭДС, поскольку ЭДС счетчика при пуске равна нулю.Якорь имеет меньшее сопротивление, так как при запуске требуется больший ток. Следовательно, пускатели постоянного тока используются для ограничения пускового тока двигателя.
Сколько ампер в двигателе мощностью 1 л.с.?
Преобразование общей мощности в амперы
Лошадиная сила | Амперы | Напряжение |
---|---|---|
,5 л.с. | 3,45 A | 120 В |
1 л.с. | 6.91 A | 120 В |
1,25 л.с. | 8,63 A | 120 В |
еще 11 рядов
Что такое пусковой ток для двигателя?
«Пусковой ток», иногда называемый током заторможенного ротора или пусковым током, относится к электрическому току, протекающему через компоненты двигателя в долях секунды после включения питания двигателя. Обычно вам нужно знать максимальную выходную мощность двигателя и входное напряжение.
Какой ток полной нагрузки двигателя?
ток полной нагрузки в электротехнике
Ток полной нагрузки — это самый большой ток, который двигатель или другое устройство рассчитано выдерживать в определенных условиях. Ток полной нагрузки — это самый большой ток, на который рассчитан двигатель или другое устройство в определенных условиях.
Как вы измеряете ток заторможенного ротора?
Чтобы найти LRA и начальную кВА, введите номинальное рабочее напряжение (например, 120 или 240), значение HP, кодовую букву с паспортной таблички и нажмите кнопку «Рассчитать».Общее уравнение для однофазных устройств следующее: LRA = 1000 * (кВА / л.с.) / Напряжение. Обратите внимание, что это определяет пусковой ток при полном номинальном напряжении.
Что такое перегрузка двигателя?
Перегрузка двигателя возникает, когда двигатель находится под чрезмерной нагрузкой. Основными симптомами, сопровождающими перегрузку двигателя, являются чрезмерное потребление тока, недостаточный крутящий момент и перегрев. Действительно, чрезмерный нагрев двигателя является основной причиной преждевременного износа электрических и механических компонентов, что в конечном итоге приводит к отказу двигателя.
Как рассчитать время запуска двигателя?
кривая скорости асинхронного двигателя. инерция известна, мы можем легко вычислить значение времени пуска. = 741 об / мин, P = 400 кВт, имеют инерцию J = 30 кгм2 на холостом ходу и средний ускоряющий момент = 1,5. (без нагрузки) максимальное время, указанное производителем, составляет 15 сек.
В чем разница между пусковым током и пусковым током?
В чем разница между пусковым током и пусковым током, или они оба одинаковы? После установления поля ток падает до установившегося пускового тока до тех пор, пока скорость двигателя не достигнет полной скорости, когда ток упадет до тока, необходимого для привода нагрузки.
Как определить момент инерции двигателя?
Предлагаемый зажим · 59 секунд
Расчет инерции двигателя — YouTube
YouTube
Начало предлагаемого ролика
Конец предлагаемого зажима
Методы запуска для ограничения пускового тока и крутящего момента двигателя постоянного тока
Запуск двигателя постоянного тока
Пуск электродвигателя постоянного тока несколько отличается от запуска всех других типов электродвигателей.Эта разница объясняется тем фактом, что двигатель постоянного тока, в отличие от двигателей других типов, имеет очень высокий пусковой ток, который может повредить внутреннюю цепь двигателя постоянного тока, если не ограничен некоторым ограниченным значением. Это ограничение пускового тока двигателя постоянного тока осуществляется с помощью стартера. Таким образом, отличительной особенностью методов пуска двигателя постоянного тока является то, что это облегчается с помощью стартера. Или, скорее, устройство, содержащее переменное сопротивление, подключенное последовательно к обмотке якоря, чтобы ограничить пусковой ток двигателя постоянного тока до желаемого оптимального значения с учетом аспекта безопасности двигателя.
Теперь сразу возникает вопрос , почему двигатель постоянного тока имеет такой высокий пусковой ток?
Чтобы ответить на этот вопрос, давайте рассмотрим основное уравнение рабочего напряжения двигателя постоянного тока, которое определяется как,
Где, E — напряжение питания, I a — ток якоря, R a — сопротивление якоря. А обратная ЭДС дается E b .
В случае двигателя постоянного тока обратная ЭДС очень похожа на генерируемую ЭДС генератора постоянного тока, поскольку она создается вращательным движением токопроводящего проводника якоря в присутствии поля. Эта противо-ЭДС двигателя постоянного тока задается номером
и играет важную роль в случае запуска двигателя постоянного тока .
Из этого уравнения мы видим, что E b прямо пропорционально скорости N двигателя.
Теперь, поскольку при запуске N = 0, E b также равно нулю, и в этих обстоятельствах уравнение напряжения изменяется на
Для всех практических методов достижения оптимальной работы двигателя сопротивление якоря остается очень маленьким. обычно в порядке 0.5 Ом и минимальное напряжение питания 220 В. Даже в этих условиях пусковой ток I a достигает 220 / 0,5 А = 440 А.
Такой высокий пусковой ток двигателя постоянного тока создает две основные проблемы.
- Во-первых, ток порядка 400 А может вызвать повреждение внутренней цепи обмотки якоря двигателя постоянного тока в самом начале.
- Во-вторых, поскольку уравнение крутящего момента двигателя постоянного тока задается формулой
- Очень высокий электромагнитный пусковой крутящий момент двигателя постоянного тока создается за счет высокого пускового тока, который может создавать огромную центробежную силу, способную летать. с обмотки ротора из пазов.
Способы пуска двигателя постоянного тока
Как прямое следствие двух вышеупомянутых фактов, то есть высокого пускового тока и высокого пускового момента двигателя постоянного тока, вся система двигателя может подвергнуться полному беспорядку и привести к инженерной резне и -функциональность. Чтобы предотвратить такое происшествие, было принято несколько методов пуска двигателя постоянного тока . Основным принципом этого является добавление внешнего электрического сопротивления R ext к обмотке якоря, чтобы увеличить эффективное сопротивление до R a + R ext , тем самым ограничивая ток якоря до номинального значения.Новое значение пускового тока якоря желательно низкое и равно.
Теперь, когда двигатель продолжает вращаться и набирать скорость, противо-ЭДС последовательно развивается и увеличивается, противодействуя напряжению питания, что приводит к снижению сетевого рабочего напряжения. Таким образом, теперь
В этот момент, чтобы поддерживать ток якоря на его номинальном значении, R ext постепенно уменьшается, пока не станет равным нулю, когда создаваемая обратная ЭДС достигает максимума. Это регулирование внешнего электрического сопротивления в случае запуска двигателя постоянного тока облегчается с помощью стартера.
Стартеры могут быть нескольких типов и требуют подробного объяснения и некоторого сложного понимания уровня. Но для краткого обзора основные типы пускателей, используемых в настоящее время в промышленности, можно проиллюстрировать следующим образом: —
3-х точечный пускатель и 4-х точечный пускатель используются для пуска двигателя постоянного тока с параллельной обмоткой и двигателя постоянного тока с комбинированной обмоткой. Пускатель двигателя постоянного тока с последовательной обмоткой, использующий катушку отключения нагрузки.
Все они играют очень важную роль в ограничении пускового тока двигателя постоянного тока для правильного запуска и работы двигателя постоянного тока и подробно описаны в соответствующих подзаголовках.
Каков пусковой ток асинхронного двигателя. Пусковой ток
Общий ток нагрузки Ia, подаваемый на двигатель, рассчитывается по следующим формулам:
, где
Ia: общий ток (A)
Pn: номинальная мощность (кВт)
U: линейное напряжение для трехфазного двигателя и напряжение между клеммами для однофазного двигателя (В). Однофазные двигатели могут быть подключены к фазному или линейному напряжению
η: КПД, т.е. выходная мощность (кВт) / входная мощность (кВт)
cos φ: коэффициент мощности, т.е.е. входная мощность (кВт) / входная мощность (кВА)
Супер переходный ток и уставка защиты
- Пиковое значение сверхтока может быть очень высоким. Обычно это значение в 12-15 раз больше номинального действующего значения Inm. Иногда это значение может в 25 раз превышать значение Inm.
- Автоматические выключатели, контакторы и тепловые реле предназначены для пуска двигателя при очень высоких сверхтяжелых токах (пиковое значение сверхпереходного процесса может в 19 раз превышать действующее значение Inm).
- В случае внезапного срабатывания защиты от сверхтока во время пуска это означает, что пусковой ток выходит за нормальные пределы. В результате могут быть достигнуты предельные значения параметров распределительного устройства, может быть сокращен срок службы и даже некоторые устройства могут выйти из строя. Чтобы избежать такой ситуации, необходимо подумать о повышении номинала КРУ.
- Распределительные устройства предназначены для защиты пускателей двигателей от короткого замыкания.В зависимости от риска в таблицах показаны комбинации выключателя, контактора и теплового реле для обеспечения координации типа 1 или 2.
Пусковой ток двигателя
Хотя рынок предлагает двигатели с высоким КПД, на практике их пусковые токи примерно такие же, как у стандартных двигателей.
Использование пускателей с треугольным соединением, статических устройств для плавного пуска или приводов с регулируемой скоростью позволяет снизить пусковой ток (например, 4 Ia вместо 7. 5 Я).
Компенсация реактивной мощности (квар), подаваемой на асинхронные двигатели
Как правило, по техническим и финансовым причинам более выгодно уменьшить ток, подаваемый на асинхронные двигатели. Этого можно достичь, используя конденсаторы, не влияя на выходную мощность двигателей.
Применение этого принципа для оптимизации производительности асинхронных двигателей, называемое «повышение коэффициента мощности» или «компенсация реактивной мощности».
Как обсуждалось в главе «Компенсация реактивной мощности и фильтрация гармоник», полная мощность (кВА), подаваемая на двигатель, может быть значительно снижается за счет параллельного использования конденсаторов.Уменьшение входной полной мощности означает соответствующее уменьшение входного тока (поскольку напряжение остается постоянным).
Компенсация реактивной мощности особенно рекомендуется для двигателей с длительными периодами работы на пониженной мощности.
Как указано выше,
Следовательно, уменьшение входной полной мощности (кВА) приводит к увеличению (т. Е. Улучшению) значения cos φ.
Ток, подаваемый на двигатель после компенсации реактивной мощности, рассчитывается по формуле:
где: cos φ — коэффициент мощности до компенсации, cos φ ‘- коэффициент мощности после компенсации, Ia — начальный ток.
Рисунок: A4 ниже показывает (в зависимости от номинальной мощности двигателя) стандартные значения тока для нескольких напряжений питания.
кВт | л.с. | 230 В | 380-415 Б | 400 B | 440–480 B | 500 B | 690 B |
---|---|---|---|---|---|---|---|
А | А | А | А | А | А | ||
0,18 0,25 0,37 | — — — | 1,0 1,5 1,9 | — — — | 0,6 0,85 1,1 | — — — | 0,48 0,68 0,88 | 0,35 0,49 0,64 |
— 0,55 — | 1/2 — 3/4 | — 2,6 — | 1,3 — 1,8 | — 1,5 — | 1,1 — 1,6 | — 1,2 — | — 0,87 — |
— 0,75 1,1 | 1 — — | — 3,3 4,7 | 2,3 — — | — 1,9 2,7 | 2,1 — — | — 1,5 2,2 | — 1,1 1,6 |
— — 1,5 | 1-1 / 2 2 — | — — 6,3 | 3,3 4,3 — | — — 3,6 | 3,0 3,4 — | — — 2,9 | — — 2,1 |
2,2 — 3,0 | — 3 — | 8,5 — 11,3 | — 6,1 — | 4,9 — 6,5 | — 4,8 — | 3,9 — 5,2 | 2,8 — 3,8 |
3,7 4 5,5 | — — — | – 15 20 | — 9,7 — | — 8,5 11,5 | — 7,6 — | — 6,8 9,2 | — 4,9 6,7 |
— — 7,5 | 7-1 / 2 10 — | — — 27 | 14,0 18,0 — | — — 15,5 | 11,0 14,0 — | — — 12,4 | — — 8,9 |
11 — — | – 15 20 | 38,0 — — | — 27,0 34,0 | 22,0 — — | — 21,0 27,0 | 17,6 — — | 12,8 — — |
15 18,5 — | — — 25 | 51 61 — | — — 44 | 39 35 — | — — 34 | 23 28 — | 17 21 — |
22 — — | — 30 40 | 72 — — | — 51 66 | 41 — — | — 40 52 | 33 — — | 24 — — |
30 37 — | — — 50 | 96 115 — | — — 83 | 55 66 — | — — 65 | 44 53 — | 32 39 — |
— 45 55 | 60 — — | – 140 169 | 103 — — | — 80 97 | 77 — — | — 64 78 | — 47 57 |
— — 75 | 75 100 — | — — 230 | 128 165 — | — — 132 | 96 124 — | — — 106 | — — 77 |
90 — 110 | — 125 — | 278 — 340 | — 208 — | 160 — 195 | — 156 — | 128 — 156 | 93 — 113 |
— 132 — | 150 — 200 | — 400 — | 240 — 320 | — 230 — | 180 — 240 | — 184 — | — 134 — |
150 160 185 | — — — | — 487 — | — — — | — 280 — | — — — | — 224 — | — 162 — |
— 200 220 | 250 — — | — 609 — | 403 — — | — 350 — | 302 — — | — 280 — | — 203 — |
— 250 280 | 300 — — | — 748 — | 482 — — | — 430 — | 361 — — | — 344 — | — 250 — |
— — 300 | 350 400 — | — — — | 560 636 — | — — — | 414 474 — | — — — | — — — |
315 — 335 | — 540 — | 940 — — | — — — | 540 — — | — 515 — | 432 — — | 313 — — |
355 — 375 | — 500 — | 1061 — — | — 786 — | 610 — — | — 590 — | 488 — — | 354 — — |
400 425 450 | — — — | 1200 — — | — — — | 690 — — | — — — | 552 — — | 400 — — |
475 500 530 | — — — | — 1478 — | — — — | — 850 — | — — — | — 680 — | — 493 — |
560 600 630 | — — — | 1652 — 1844 | — — — | 950 – 1060 | — — — | 760 – 848 | 551 – 615 |
670 710 750 | — — — | — 2070 — | — — — | — 1190 — | — — — | — 952 — | — 690 — |
800 850 900 | — — — | 2340 — 2640 | — — — | 1346 — 1518 | — — — | 1076 — 1214 | 780 — 880 |
950 1000 | — — | – 2910 | — — | – 1673 | — — | – 1339 | – 970 |
Рисунок: A4: Номинальная мощность и ток
Состав:При работе с различными электрическими приборами часто возникает вопрос, что такое пусковой ток. В самом простом ответе это будет ток, который потребляется при запуске электродвигателя или другого устройства. Его значение может быть в несколько раз выше номинала, необходимого для нормальной стабильной работы. Таким образом, чтобы вращать ротор, электродвигатель должен потреблять гораздо больше энергии по сравнению с работой с постоянной скоростью. Снизить пусковые токи можно с помощью специальных систем пожаротушения и устройств плавного пуска.
Пусковые токи электродвигателей
В каждом устройстве, устройстве или механизме есть процессы, называемые запуском.Особенно это заметно в начале движения, когда необходимо трогаться с места. В этот момент для первоначального толчка требуется гораздо больше усилий, чем при дальнейшей работе этого механизма.
Точно такие же явления влияют и на электрические устройства — электродвигатели, электромагниты, лампы и другие. Наличие пусковых процессов в каждом из них зависит от состояния рабочих элементов. Например, нить накаливания обыкновенной лампочки в холодном состоянии имеет сопротивление намного ниже, чем при нагреве в рабочем режиме до 1000 0 С. То есть для лампы мощностью 100 Вт сопротивление нити накала при работе будет около 490 Ом, а в выключенном состоянии этот показатель снижается до 50 Ом. Поэтому при большом пусковом токе лампочки иногда перегорают. От общего перегорания их спасает сопротивление, которое увеличивается при нагревании. Постепенно он достигает постоянного значения и помогает ограничить рабочий ток до желаемого значения.
Влияние пусковых токов полностью влияет на все типы электродвигателей, которые широко используются во многих сферах.Чтобы правильно эксплуатировать электроприводы, необходимо знать их пусковые характеристики. Есть два основных параметра, которые влияют на пусковой ток. Скольжение — это связь между скоростью ротора и электрической скоростью. магнитное поле … Проскальзывание уменьшается от 1 до минимума с увеличением скорости. Пусковой крутящий момент — второй параметр, определяющий степень механической нагрузки на вал. Эта нагрузка имеет максимальное значение в момент пуска и становится номинальной после полного разгона механизма.
Необходимо учитывать особенности асинхронных электродвигателей, которые при запуске становятся эквивалентными вторичной обмотке трансформатора короткого замыкания … У нее очень небольшое сопротивление, поэтому величина пускового тока при скачке может доходят в разы выше номинала. В процессе дальнейшей подачи тока на обмотки сердечник ротора начинает насыщаться магнитным полем. Возникает ЭДС самоиндукции, под действием которой индуктивное сопротивление цепи начинает расти.С началом вращения ротора коэффициент скольжения уменьшается, то есть начинается фаза разгона двигателя. С увеличением сопротивления пусковой ток снижается до нормативных значений.
Во время работы может возникнуть проблема, связанная с повышенными пусковыми токами. Причиной их возникновения, чаще всего, является перегрев электродвигателей, перегрузка электричеством сети в момент пуска, а также ударные механические нагрузки в подключенных устройствах и механизмах, таких как редукторы и другие. Для решения этой проблемы предусмотрены специальные устройства, представленные преобразователями частоты и устройствами плавного пуска. Их подбирают с учетом особенностей работы конкретного электродвигателя. Например, они в основном используются для агрегатов, подключенных к вентиляторам. С их помощью пусковой ток ограничивается двумя номиналами. Это вполне нормальный показатель, так как при нормальном пуске ток превышает номинал в 5-10 раз. Ограничение достигается изменением напряжения в обмотках.
Обычные электродвигатели переменного тока широко используются в промышленном производстве благодаря очень простой конструкции и низкой стоимости. Их серьезным недостатком считается сложный запуск, чему очень способствуют преобразователи частоты. Самое ценное качество этих устройств — их способность поддерживать пусковой ток в течение одной минуты и более. Самые современные устройства позволяют не только регулировать запуск, но и оптимизировать его по заданным рабочим характеристикам.
Пусковой ток батареи
Аккумулятор не зря считается одним из важных элементов автомобиля.Его основная функция — подача напряжения на существующее электрооборудование. В основном это стартер, освещение и другие приборы. Чтобы успешно решить эту проблему, аккумулятор должен не только накапливать, но и долго сохранять заряд.
Одним из основных параметров аккумулятора является пусковой ток. Это значение соответствует параметрам тока, протекающего в пускателе в момент его пуска. Пусковой ток напрямую зависит от режима работы транспортного средства.Если автомобиль используется очень часто, особенно в холодных условиях, то аккумулятор должен иметь высокий пусковой ток. Его номинальный параметр обычно соответствует мощности блока питания, предусмотренному на 30 секунд при температуре минус 18 0 С. Он появляется в момент, когда ключ в замке зажигания повернут и стартер заработает. Текущее значение измеряется в амперах.
Пусковые токи могут быть совершенно разными для аккумуляторов, одинаковых по своему внешнему виду и основным характеристикам. На этот фактор существенно влияют физические свойства материалов для изготовления и конструктивные особенности каждого продукта. Например, увеличение тока может наблюдаться, если свинцовые пластины становятся пористыми, их количество увеличивается, применяется ортофосфорная кислота. Завышенное значение тока не оказывает негативного влияния на оборудование, а только способствует повышению надежности пуска.
Ток, необходимый для запуска электродвигателя, называется пусковым током.Как правило, пусковые токи электродвигателей в несколько раз превышают токи, необходимые для работы в нормально стабильном режиме.
Рис. 1. Асинхронный двигатель Асинхронный двигатель с большим пусковым током необходим для того, чтобы вращать ротор с места, для чего требуется гораздо больше энергии, чем для дальнейшего поддержания постоянного числа его оборотов. Следует отметить, что, несмотря на совершенно иной принцип работы, однофазные двигатели постоянного тока также характеризовались большими значениями пусковых токов.
Высокие пусковые токи электродвигателей нежелательны, так как они могут привести к кратковременным перебоям в подаче электроэнергии для другого оборудования, подключенного к сети (падение напряжения). Поэтому при подключении и настройке электродвигателей переменного тока (наиболее распространенных в отрасли) всегда стоит задача минимизировать значения пусковых токов, а также повысить плавность пуска двигателя за счет использования специальных дополнительных оборудование. Такие меры также позволяют удешевить запуск электродвигателя (использовать провода меньшего сечения, стабилизаторы и дизельные электростанции меньшей мощности и т. Д.).
Одной из наиболее эффективных категорий устройств для облегчения тяжелых условий пуска являются устройства плавного пуска и преобразователи частоты. Их способность поддерживать пусковой ток двигателей переменного тока в течение длительного периода, более минуты, считается особенно ценной. Кроме того, пусковой ток асинхронного двигателя может быть уменьшен путем введения внешнего сопротивления в обмотку ротора.
Расчет пускового тока асинхронного электродвигателя
Расчет пускового тока электродвигателя может потребоваться для выбора подходящих автоматических выключателей, способных защитить линию коммутации этого электродвигателя, а также для выбора дополнительного оборудования, подходящего по параметрам (генераторы , так далее.).
Расчет пускового тока электродвигателя осуществляется в несколько этапов:
Определение номинального тока трехфазного электродвигателя переменного тока по формуле: In = 1000Pn / (Un * cosφ * √ηn). Рн здесь — номинальная мощность двигателя, Uн действующее номинальное напряжение, а ηн — номинальный коэффициент полезного действия … Cosφ — номинальный коэффициент мощности электродвигателя. Все эти данные можно найти в технической документации на двигатель.
Расчет значения пускового тока по формуле Iстарт = В * Кпуск. Здесь Iн — номинальное значение тока, а Кпуск действует как кратное постоянному току номинальному значению, что также должно быть указано в технической документации на электродвигатель.
Зная точные пусковые токи электродвигателей, можно правильно выбрать автоматические выключатели, которые защитят линию включения.
Приветствую вас дорогие читатели. Прежде чем заняться способами подключения и характеристиками токов двигателей асинхронного типа, не лишним будет вспомнить, что это такое.
Асинхронный двигатель — это особый тип машины, преобразующей электричество в механическую энергию. Следующие свойства считаются основным принципом работы такого устройства. Проходя через обмотки статора, переменный ток, состоящий из трех фаз, создает условия для возникновения вращающегося магнитного поля. Именно это поле заставляет ротор вращаться.
Естественно, при подключении двигателя все эти факторы необходимо учитывать, ведь ротор будет вращаться в том направлении, в котором вращается магнитное поле.Однако скорость ротора ниже, чем у возбуждающего поля. По конструкции эти машины очень разные (то есть рассчитаны на работу в разных условиях).
И по рабочим, и по пусковым характеристикам такие устройства намного превосходят аналогичные показатели однофазных двигателей.
Любой из этих двигателей состоит из двух основных частей — подвижной (ротор) и неподвижной (статор). На обеих частях есть обмотки. Разница между ними может заключаться только в типе обмотки ротора: она может иметь кольца ротора или быть короткозамкнутой.Двигатели с короткозамкнутым ротором мощностью до двухсот киловатт подключаются непосредственно к сети. Двигатели большей мощности необходимо сначала подключить к пониженному напряжению, а уже потом переключать на номинальное (чтобы в несколько раз снизить пусковой ток).
Подключение асинхронного двигателя
Обмотка статора почти любого такого устройства имеет шесть выводов (из которых три — начало, а три — концы). В зависимости от сети питания двигателя эти выводы подключаются по схеме «звезда» или «треугольник».Для этого в корпусе каждого двигателя имеется коробка, в которой выведены провода начальной и конечной обмоток (они обозначены соответственно С1, С2, С3 и С4, С5, С6).
Звезда
Так называется способ соединения обмоток, при котором все три обмотки имеют одну общую точку (нейтраль). Линейное напряжение такого подключения в 1,73 раза превышает фазное напряжение. Положительным качеством такого типа подключений считаются низкие пусковые токи, хотя потери мощности довольно значительны.
Метод соединения треугольником отличается тем, что в этом методе соединение выполняется таким образом, что конец одной обмотки становится началом следующей.
Соединение треугольником
В этом случае соединения фазы и напряжения сети одинаковы, поэтому при напряжении сети 220 вольт правильным соединением обмоток будет треугольник. Положительная сторона этого соединения — высокая мощность, а отрицательная сторона — пуск с высокими токами.
Для выполнения реверса (изменения направления вращения) трехфазного двигателя асинхронного типа достаточно поменять местами выводы двух его фаз. В производстве это делается с помощью парных магнитных пускателей с зависимым включением.
Значительные пусковые токи для асинхронных двигателей очень нежелательны, потому что они могут привести к эффекту отсутствия напряжения для других типов оборудования, подключенного к той же сети. Это стало причиной того, что при подключении и настройке двигателей этого типа возникает проблема минимизации пусковых токов и повышения плавности пуска двигателей за счет использования специализированного оборудования.Наиболее эффективными типами таких устройств считаются устройства плавного пуска и преобразователи частоты. Одно из их самых ценных качеств — они способны поддерживать пусковой ток двигателя довольно длительное время (обычно более минуты).
Помимо стандартного способа включения асинхронных двигателей, существуют способы их включения в сеть, имеющую только одну фазу.
Конденсаторный пуск асинхронного двигателя
Для этого в основном используется метод переключения конденсаторов.Конденсатор может быть установлен как один, так и пара (один пусковой, а второй рабочий). Пара проводников устанавливается, когда есть необходимость изменить емкость в процессе пуска, что осуществляется путем подключения и отключения одного из проводов (пуск). Для этого, как правило, используются бумажные емкости, так как они не имеют полярности, а при работе на переменном токе это очень важно.
Для расчета рабочего конденсатора используется следующая формула:
Пусковой конденсатор должен иметь емкость, в два-три раза превышающую рабочую емкость, и рабочее напряжение, в полтора раза превышающее напряжение питания.
Пусковой и рабочий конденсаторы включаются параллельно, так что параллельно пусковому включается шунтирующее сопротивление и один конец пускового конденсатора подключается через ключ. При запуске двигателя ключ замыкается, повышая пусковой ток, затем он открывается.
Однако не следует забывать, что к однофазной сети можно подключить не каждый двигатель. К тому же мощность двигателя при таком подключении составит всего 0,5-0,6 от трехфазной коммутируемой мощности.
Пусковые токи асинхронного двигателя
Сейчас приведу таблицу допустимых значений токов холостого хода трехфазных двигателей:
Мощность электродвигателя, кВт | Ток холостого хода, в процентах от номинального, | |||||
при частоте вращения, об / мин | ||||||
3000 | 1500 | 1000 | 750 | 600 | 500 | |
0. 12 — 0,55 | 60 | 75 | 85 | 90 | 95 | — |
Перед измерением силы тока на двигателях, они должны быть обкатаны (испытание на холостом ходу 30-60 минут — двигатели мощностью менее 100 кВт и от 2 часов, двигатели мощностью более 100 кВт) . Эта таблица носит справочный характер, поэтому реальные данные могут отличаться от этих процентов на 10-20.
Пусковые токи двигателя можно рассчитать по следующей паре формул:
В = 1000Рн / (Un * cosph * √nn),
где Rn — номинальная мощность двигателя, Un — номинальное напряжение, nn — номинальная эффективность.
где In — номинальный ток, а Kp — частота постоянного тока с номиналом (обычно указывается в паспорте двигателя).
Пишите комментарии, дополнения к статье, может я что то упустил. Загляните, буду рад, если вы найдете на моем еще что-нибудь полезное. Всего наилучшего.
Анализ цепей пуска с захватом пускового тока
Регулярный мониторинг двигателей во время пуска является важной частью программы испытаний двигателей на надежность. Собранные данные могут быть чрезвычайно полезны для определения развития электрических и механических неисправностей, а также для измерения времени включения цепей.
Безусловно, наиболее распространенной схемой запуска является «запуск через линию». Он используется, когда уровень пускового тока не является проблемой. Во время пуска двигателя пусковой ток может в 2-10 раз превышать ток при полной нагрузке. Это связано с чрезвычайно низким сопротивлением ротора в остановленном состоянии.
С этой конфигурацией схемы мы можем определить максимальный пусковой ток и время перехода во время работы. Более низкий пусковой ток и более длительное время перехода могут указывать на проблемы с ротором. Более высокий пусковой ток и более длительный переходный период могут указывать на механические неисправности.
Твердотельный пуск с пониженным напряжением (мягкий пуск)
Другой распространенной схемой пуска может быть «Твердотельный пуск с пониженным напряжением» или обычно называемый «плавным пуском». «Мягкий пуск используется в приложениях, которые потребляют значительный ток при запуске через линию. Устройства плавного пуска включают в себя кремниевые выпрямители (SCR). SCR уменьшают приложенное напряжение, так что двигатель воспринимает только его часть. SCR управляются логическими схемами, которые получают различные сигналы обратной связи, чтобы обеспечить ускорение двигателя до рабочей скорости. Soft Stars используются как в системах низкого, так и среднего напряжения.
В этом начальном приложении мы все еще можем отслеживать аномалии, например, при запуске через линию.Кроме того, мы можем контролировать производительность и заданные значения при плавном запуске.
Пуск с пониженным напряжением с полным сопротивлением серии
В схеме пуска этого типа используется либо дополнительное сопротивление, либо индуктивность последовательно с обмотками двигателя во время пуска. Эти сопротивления пропадают через несколько секунд. Увеличение импеданса снижает напряжение и ток во время запуска. Эти типы пусковых цепей используются в системах с напряжением менее 600 В.
Для приложений среднего напряжения реактор подключается последовательно с двигателем во время запуска.Это, как и в цепи последовательного сопротивления, снижает напряжение и ток.
Частотно-регулируемый привод
Частотно-регулируемый привод или ЧРП разработан для пониженного пускового тока. Рабочие характеристики таковы, что во время запуска они могут подавать полное напряжение на низкой частоте. Это позволяет постепенно увеличивать скорость двигателя со значительным крутящим моментом и уменьшенным током.
Пуск с пониженным напряжением с помощью автотрансформатора
Пуск с пониженным напряжением с помощью автотрансформатора снижает напряжение за счет увеличения фазового сопротивления двигателя.Обмотки автотрансформатора подключаются последовательно с каждой фазой во время пуска. Повышенный импеданс снижает пусковой ток. Трансформаторы обычно имеют предустановленные выходные отводы на 80%, 65% и 50%. Они используются в цепях, где требуется значительный пусковой ток и высокий пусковой момент.
Пуск по схеме звезда-треугольник
Пуск по схеме звезда-треугольник — относительно распространенный тип схемы пуска. Эта схема соединяет статор последовательно во время пуска, увеличивая реактивное сопротивление и уменьшая отраженное на статоре напряжение на квадратный корень из трех.Это приводит к снижению тока примерно на 30% и к снижению пускового момента на 25–30%. Учитывая такое снижение крутящего момента, он используется в приложениях, где требуется низкий пусковой крутящий момент.
Знание типа пусковой цепи необходимо для правильной оценки пускового тока. Периодический анализ тенденций может предоставить бесценные данные для определения развивающихся электрических, роторных и механических неисправностей.
Двигатели стоят денег. Чтобы защитить ваши инвестиции, необходимы регулярные запланированные тесты надежности, и часть вашего тестирования надежности должна включать анализ пусковых цепей. Независимо от типа двигателя (ей), который вы используете, для него существует проверка цепи запуска. Используйте этот тип тестирования, и ваши двигатели будут работать сильнее и дольше!
Калькулятор запуска двигателя — нарушение напряжения
Запуск асинхронного двигателя при полном напряжении (также известный как запуск от сети или прямой запуск от сети) имеет нежелательный эффект, заключающийся в потреблении в пять-десять или более раз тока полной нагрузки. . Обычно этот пусковой ток сохраняется до тех пор, пока двигатель не достигнет своей синхронной скорости (номинальной скорости).Асинхронные двигатели в пусковых условиях имеют чрезвычайно низкий коэффициент мощности около 10-30%. Сочетание большого пускового тока и низкого коэффициента мощности вызовет большое падение напряжения на полном сопротивлении системы.
Следующие ниже калькуляторы могут использоваться для расчета падения пускового напряжения двигателя и пускового тока включения трехфазного асинхронного двигателя с использованием предположения о бесконечности источника, а также при наличии данных импеданса источника электросети.
Калькулятор пускового тока двигателя и падения напряжения
Используйте указанный ниже калькулятор, если полное сопротивление источника электросети или генератора неизвестно. .
Используйте калькулятор ниже, если известно полное сопротивление источника электросети или генератора . Этот калькулятор даст более точные результаты по сравнению с приведенным выше, который не учитывает полное сопротивление источника питания. Прочтите расчет импеданса источника в энергосистемах для получения дополнительной информации о расчете MVA короткого замыкания.
NEMA определяет конструктивные буквы для обозначения крутящего момента, скольжения и пусковых характеристик трехфазных асинхронных двигателей.
Конструкция A : Эти двигатели аналогичны двигателям типа «B», за исключением того, что NEMA не ограничивает пусковые токи для двигателей конструкции A.
Конструкция B : Это промышленные двигатели общего назначения с низким пусковым током, нормальным крутящим моментом и скольжением (около 3%).