Ампер в мампер: The page cannot be found

Содержание

Клуб Mitsubishi Space Star

Документация:
—Руководство по эксплуатации (1)
—Книги по ремонту (1)
—Книги по ремонту (в электронном виде, PDF) (файловый архив)
—Электронные каталоги запчастей (1)
—Электросхема (1)
—Кузовные размеры (1)
—Расшифровка OBD-2 (1, 2, типичные ошибки и средства борьбы)
—Характеристики и параметры (экологический класс, тип кузова, дата выпуска)
—Модификации (до- и послерестайл, взаимозаменяемость задних фонарей, отличия фэмили/комфорт/спорт)

Разборки, сервисы, магазины:
—Отчеты по сервисам, Москва (Мек, Саша Тушино, Анкар, MITSUbrik, JapanSTO)
—Разборки (СПб, Москва)
—Магазины (Москва и СПб, интернет-магазины для всей России, поисковики магазинов, заказ за границей, черный список)
—Неоригинальные запчасти (каталоги и алгоритм поиска, подтверждённые замены, лампы внешнего освещения)

Электрика и Электрооборудование:
Светодиоды и ксенон, шумоизоляция, нештатная музыка и сигналки ниже, в разделе Тюнинг


—Штатная антенна (сломалась)
—Звуковые сигналы (1)
—Кнопка DISP и бортовой компьютер (эмулятор DISP, переключение без DISP, средний и мгновенный расход)
—Бортовой компьютер (ремонт дисплея и подсветка, неправильные показания остатка топлива, пикает , сбивается время, сервисный режим, не работает БК и прикуриватель, датчик температуры воздуха, появилась надпись LOCK)
—Магнитола оригинальная (сама перенастраивается, не реагирует на нажатие кнопок)
—Ключ и замок зажигания (ремонт, копия, чип, иммобилайзер, бирка ключа, замок зажигания, контактная группа)
—Центральный замок и штатная «сигналка»(замена батарейки в брелке, проблемы с ЦЗ, электроприводы замков (актуаторы))
—Концевики (дверей, багажника)
—SRS, подушки безопасности, ремни (лампа неисправности включилась без аварии, блок, датчики — после удара, пассажирская-крышка, дребезжит, скрипит, в сидениях, боковые, не работают ремни безопасности)
—Чистые стёкла (режимы работы стеклоочистителей и стеклоомывателей, электрические неисправности, подрулевой, незамерзайка, бачок и датчик уровня, моторчики омывателей, шланги, форсунки омывателей, размеры щёток и неоригинал, поводки дворников, трапеция, болтается во втулке, задний дворник)
—Проводка двери багажника (не работают задний дворник, обогрев стекла, средний стоп)
—Стартер (не цепляет, не крутит, трещит, снятие)
—Аккумулятор (параметры, утечки тока на стоянке)
—Генератор (лампа, напряжение, ток зарядки, регулятор с доп. контактами FR и G, снятие, разборка и замена отдельных частей)
—Блоки предохранителей (под капотом, внутри салона)
—Поворотники и аварийка (не работает аварийка и (или) поворотники, подрулевой переключатель поворотов)
—Стеклоподъемник (прыгают, плохо закрываются/открываются, обучение, не работают в целом, реле, электрика, не работают кнопки, номер кнопки для замены, подсветка кнопок)
—Панель приборов (глюки спидометра и тахометра, датчик уровня топлива и лампа остатка бензина, замена ламп, лампа индикации габаритов, спидометр и GPS, соответствие оборотов и скорости, ошибка P0300 и неработающий тахометр (IFS сенсор), ошибка P0500 и неработающий спидометр (датчик скорости автомобиля <МКП>), правильное считывание оборотов ХХ, кнопка сброса суточного пробега, индикация при включении зажигания и при запуске, включается сама, мигание ламп, замена панели до->рестайл)
—Консоль «борода», панель отопителя, замена лампочек (рестайл, дорестайл, прикуриватель/пепельница подсветка, снятие, замена лампы подсветки селектора АКПП)
—Свет в салоне (передний и средний плафон потолка, подсветка бардачка, освещение багажника)
—Передние противотуманки (чистка выключателя, лампочки подсветки, не работают, лампа ПТФ)
—Фары обычные (оригинал и неоригинал, регулировка, лампы, разборка, чистка, замена стёкол, полировка, потеют, пищалка включенных фар)
—Внешнее освещение и сигнальные лампы в целом (перестали работать некоторые лампочки, фонарь и датчик заднего хода, тормоз или стоп-сигнал)
—Габариты (замена лампочек спереди, светятся при нажатии на тормоз)
—Задние фонари (снятие)
—Поворотники (замена лампочек в передних, рестайл)
—Электрообогрев (зеркала, заднее стекло, реле-таймер, сидения)
—Штатный навигатор (диск, загрузка, цветной дисплей)

Кузов, салон:
—Лакокрасочное покрытие (коды красок и номера подкрашивающих карандашей, сколы, полировка, ржавчина, коррозия, оцинкован?)

—Бампер (покупка или ремонт, совместимость рестайл и до, зазоры и отвисания переднего, зазоры и отвисания заднего, ремонт своими руками и снятие/установка).
—Стекло лобовое (замена, трещины, сколы)
—Зеркала («стекляшка», чем клеить, обогрев, не работает регулировка)
—Навесные элементы (подкрылки (локеры), брызговики, молдинги дверей, молдинги крыша-лобовое и клипсы, накладки на пороги). Остальное ниже, в разделе Тюнинг
—Двери — которые по бокам (задняя не открывается, регулировка замка, ремонт и регулировка внешней ручки, фиксаторы открытых дверей, гремят флажки, замки, личинки и ключи дверей, провисают двери)
—Крышка багажника, дверь багажника, задняя крышка (цены и пр., стойки, внутренняя облицовка, скрипы-стуки, замок, не открывается)
—Капот (цены, аналоги, не открывается, регулировка)
—Крыша (внутренняя обивка (потолок), люк оригинальный)
—Экстерьер (лючок бензобака)
—Уход за салоном (химчистка, дополнительные чехлы)
—Торпедо (или торпеда) (порядок снятия торпедо, шумы, скрипы, сверчки, центральная консоль, крышка пассажирской подушки безопасности скрипит)
—Сидения (ремонт сидушки, подлокотник, подогрев, задние)
—Интерьер (футляр для очков, шторка (полка) багажника)
—Коврики и корыта (в салон, в багажник, вода в салоне)

Вентиляция, отопление, кондиционер
—Вентиляция (салонный фильтр, вентилятор печки, не греет печка, потеют стёкла, тяги заслонок)

—Кондиционер (разные неисправности, индикатор хладагента, очистка испарителя (пахнет в салоне), радиатор кондиционера)

Двигатель, и система управления, топливная и пр…:
—Не заводится (в холодную погоду, после пуска/стопа — залив свечей, нет напряжения на бензонасосе, щелчки реле под торпедой, датчик коленвала (ДПКВ),стартер жужжит, но не цепляет, на горячую, мало масла в коробке, иммобилайзер, блокирующее реле сигналки)
—Глохнет (сразу после пуска двигателя, P0340, датчик распредвала (ДПРВ), плохо едет, глохнет, постоит — заводится)
—Не тянет (тупит, провал тяги, пропала мощность, не едет, дергается при старте — что, кроме сцепления, не едет накатом при отпускании газа)

—Холостые обороты и дроссельная заслонка (неустойчивый ХХ при отпускании педали, на нейтралке, при нагрузке по электрике, чистка заслонки и адаптация (обучение), замена заслонки и молибден, провалы на первой)
—Выпуск (гофра, катализатор, глушитель, конденсат, клапан EGR и ошибка P0403, адсорбер и P0443)
—Лямбда-зонд (работа зонда и его проверка, ошибка P0421 и проставка механическая, обманка электронная, лямбда-зонд неоригинал Bosch, Denso, ошибка P0125)
—Check Engine, «чек» (бессимптомно включается лампочка, включается при резких поворотах, сброс ошибок, считать самостоятельно адаптером KL-линии, OBD-II, по миганию лампочки?, типичные ошибки и средства борьбы)
—Система питания (проверка бензонасоса, бензонасос, топливный фильтр, воздушный фильтр, чистка/промывка форсунок, утечка бензина, крышка бензобака)
—Расход топлива (меряемся расходами, ВНЕЗАПНО увеличился расход, причины повышенного расхода, неправильные показания остатка топлива по БК, ёмкость бензобака)
—Катушка(и) зажигания (ошибка 0300-0312 обнаружены случайные/множественные пропуски зажигания, свечение катушек зажигания)
—Распределитель, трамблер (заглохла и не заводится, бегунок, уголёк, течь масла)
—Свечи (выбор, замена, масло в свечных колодцах, замена наконечника высоковольтного провода, свечные провода, троит двигатель)
—Масло в двигатель (выбор, сколько лить, самостоятельная замена, промывать?, жрёт масло, компрессия)
—Датчик давления масла (течёт, мигает лампа)
—Масляный фильтр (виды)
—Привод клапанов (гидрокомпенсаторы, стук при запуске на холодную, регулировка, только на 4G13 выпуска до 05.2000)
—Ремень ГРМ и окружение (когда менять, как менять, 4G18, статистика обрывов, шкив коленвала)
—Система охлаждения (состав и цвет антифриза, замена антифриза, промывка системы, замена термостата, датчик температуры, стрелка плавает, вентиляторы, перегрев, медленно прогревается, помпа, основной радиатор, утечка антифриза, парит из-под капота)
—Двигатель в целом (подушки (опоры), приводные ремни генератора, ГУР, кондиционера и их шкивы, поддон прогнил)
—Дизель (отзывы, ТО и расходники, катализатор, клапан EGR, сажевый фильтр, глохнет на ХХ, турбина)

Трансмиссия
—АКПП (замена масла, переключается с рывками, датчики скорости, ошибки АКПП: P0715, P0720, замена лампы подсветки селектора, снятие рукоятки селектора)
—Сцепление (диагностика, регулировка, подбор, замена, привод — педаль провалилась, педаль скрипит, педаль жёсткая)
—МКПП (не втыкается, кулиса, втулки, сальник штока, масло, замена, разборка коробки, подшипник первички, течёт, упали иголки, аналоги?)
—Шумы, скрипы, хруст (разнообразные, связанные со сцеплением и коробкой)
—Рычаг МКПП (замена пыльника, замена чехла и рукоятки)

Тормозная система
—Общее (задние не тормозят, а виноват главный тормозной цилиндр (ГТЦ), замена трубопроводов (тормозные трубки))
—Тормозная жидкость (замена, удаление воздуха — прокачка, мигает лампочка (!))
—Колёсные тормозные механизмы (выбор колодок, замена тормозных колодок, дисков, суппортов и шлангов, механизм задних дисковых тормозов — суппорт и привод ручника, направляющие суппортов, задние барабанные тормоза, замена цилиндров в барабанных тормозах)
—ABS (датчик неоригинал, загорелась лампочка)
—Ручной тормоз (регулировка ручника (на рычаге), тросики)

Рулевое управление, подвеска, приводы, колеса
—Руль (скрипит руль при повороте, бьёт-люфтит в рулевой колонке)
—Гидроусилитель (ГУР) (что заливать, как менять жидкость, выдавливает жидкость, протекает шланг, разборка и замена сальника, )
—Рулевая рейка и приводы (люфт, потеет, течет, замена полностью, рулевые тяги, рулевые наконечники)
—Передние стойки (снятие стойки и спецключ, пружины, амортизаторы, верхние опоры (тарелки) пружин, опорные подшипники)
—Передняя подвеска (передние рычаги и шаровая опора, стойки стабилизаторов)
—Задняя подвеска (рычаги, пружины, амортизаторы, стойки стабилизаторов)
—Подвеска в целом (проставки, непонятные стуки и скрипы в подвеске, скрип подвески в мокрую погоду, как сделать подвеску мягче, вибрация на (после) определенной скорости)
Развал-схождение (регулировка, уводы в сторону, неравномерный износ резины, положение руля)
—Крепление колес (гайки, секретки, замена шпильки)
—Шины и диски (диски, давление, шины летние, шины зимние, нестандартные размеры)
—ШРУСы (внутренний — трипоид, замена пыльника, внешний, замена)
—Ступицы и подшипники (перед и зад)

Тюнинг и дополнительное оборудование
—Сигнализация (ставим сами, управляем стеклоподъёмниками, рольфовская Excellent, замок капота)
—Колхоз-тюнинг (всякие доработки своими руками)
—Кузов (обвесы и вообще, багажник на крышу, рейлинги, фаркоп, брызговики неоригинал, задний спойлер, задний спойлер от Оки, дефлекторы на окна, дефлектор на капот, люк, газовые упоры капота)
—Металлическая защита картера (чертеж)
—Покрытия (аэрография, пленка «под карбон», винил, тонировка стёкол)
—Двигатель (чип-тюнинг, замена на другой объём, тип, модификацию, реинкарнацию, aka swap, свап, своп, газ)
—Улучшения в салоне (1)
—Свет простой (автоматическое включение штатного ближнего света фар (ДХО, скандинавский свет), противотуманки неоригинал)
—Нетрадиционные лампы в фарах (в целом о газоразрядных, светодиодных, законодательство, ксенон, варианты, биксенон, варианты, биксенон с ангельскими глазками)
—Светодиодное освещение, кроме фар (светодиодные дневные ходовые огни на место ПТФ, в ПТФ, в габариты, светодиоды в задние фонари)
—Музыка (линейный вход у штатных магнитол, про кассетные адаптеры и замену кассетного блока не плеер, FM-трансмиттер, модулятор, подключение не штатной (переходник ISO), всё-в-одном, шумоизоляция для хорошей музыки + акустика, шумоизоляция для тишины, помехи)
—Дополнительная электроника (диагностика OBD, парктроник, видеорегистратор, КПК, GPS и навигация, камера заднего вида, питание гаджетов, CarPC, компьютер, провода из моторного отсека в салон)
—Дополнительная электротехника (альтернативная подсветка панели приборов, электрический подогреватель двигателя, доп. попгрейка, внедрение климат-контроля от Калины)
—В гостях у сказки (чудодейственные примочки для автомобиля)

Общие замечания и советы
—Купил! (что сделать в первую очередь)
—Про машину (отзывы владельцев, хочу купить, расход топлива, 95 vs 92, 1.3, 1.6 vs 1.8, альтернативы, публикации в прессе, продавать или восстанавливать?)
—По пробегу (100-175, >200, движок миллионник)
—Сезонные хлопоты (осень->зима, весна->лето, мойка двигателя, кто сколько греется)
—Дачники (что влезает в машину, проходимость)
—Едем отдыхать (подготовка, спим в машине)
—Рулим правильно (АКПП, МКПП, переключение передач, ABS)
—ГАИ (камеры)
—Разное (огнетушитель, аптечка и прочая мелочёвка в машине, инструмент, артефакты (необычные разъёмы, детали) в машине, что-то пищит внутри автомобиля)
—Клубные наклейки (как клеить)

На какой дифференциальный ток установить УЗО 10 мА или 30 мА

Приветствую всех читателей сайта «Электрик в доме». Для домашнего применения самими популярными являются устройства защитного отключения с дифференциальным током в 10 мА и 30 мА. Сегодня поговорим о том, с каким током утечки 10 мА или 30 мА устанавливать УЗО в квартире, а также где и в каких помещениях предпочтительнее установить защиту с той или иной уставкой.

УЗО имеет много общего с обычным автоматическим выключателем. Но, несмотря на схожесть, УЗО предназначено немного для других целей. УЗО предотвращает возникновение возгораний, связанных с неисправностью электропроводки, еще один немаловажный фактор его работы – не допустить поражения электрическим током человека.

Многие сомневаются в целесообразности установки УЗО. Скажем прямо: сомнений быть не должно, это действительно нужное и полезное устройство, благодаря которому можно больше выиграть, чем проиграть, особенно если учесть что на кону ваша собственная жизнь.

Как это работает. Допустим, в результате повреждения в электропроводке возникла утечка тока. УЗО сравнивает: сколько тока ушло в провод и сколько вернулось обратно. На незначительные утечки естественного происхождения это устройство не реагирует. Если же, в результате сравнения устройство “понимает”, что произошла критическая ситуация, то оно срабатывает, разрывает цепь, тем самым полностью прекратив подачу питания в кабель.

Обратите внимание на прибор. У некоторых возникает сложность с терминологией. Это касается таких понятий, как “дифференциальный ток” и “номинальный ток”. Ток утечки называется дифференциальным током, он нас и интересует в первую очередь. Обозначается этот параметр I∆n (величина уставки). Так какой же ток УЗО 10 мА или 30 мА нужен в квартире?

Что говорят нормативные документы

Согласно нормам, устройство защитного отключения обязано срабатывать от 0.5 до 1 тока утечки на который оно рассчитано. Грубо говоря, механизм срабатывает, начиная с половины от заявленного устройством тока сработки. Если устройство на 30 мА, то срабатывать оно будет при утечке от 0.015 до 0.03 Ампер (от 15 до 30 миллиампер).

Почему мы рассматриваем ток отключения УЗО именно в 30 миллиампер? Да потому-что существует такой параметр, как “ток неотпускания”. Другими словами, ток неотпускания – ток, при котором человек не сможет оторваться от провода без посторонней помощи. А 30 мА – это и есть ток неотпускания.

Соответственно, чтобы защитить человека от электрического удара током, необходимо устанавливать УЗО, рассчитанное на номинал отключающего тока в 10 — 30 миллиампер (не более 30 мА).

Где искать параметр, обозначающий ток утечки? Смотрите корпус защитного устройства, находите обозначение I∆n, это и есть номинал тока отключения, там сразу станет понятно: ток УЗО 10 мА или 30 мА.

УЗО с уставкой в 10 миллиампер чаще всего используют для помещений, в которых значительно повышена влажность, что само по себе небезопасно при использовании там электроприборов. Такие УЗО отличаются своей конструкцией, поскольку производители позаботились о том, чтобы в одно устройство было невозможно подключить много потребляющих линий. Это делается из-за наличия в каждой линии естественного тока утечки, и в результате их сложений может получится так, что суммарная величина этих токов станет равной уставке УЗО, и устройство сработает.

Также приведем список потребителей, для которых используется УЗО с уставкой 10 мА:

  1. 1. Освещение и розетки на балконах или лоджиях
  2. 2. Теплый пол в туалете, ванной, душевой
  3. 3. Освещение в ванной
  4. 4. Розетки в ванной, туалете
  5. 5. Посудомоечные машины
  6. 6. Стиральные машины

Иногда встречается практика установки двойной дифференциальной защиты. Другими словами, это когда одно устройство, например теплый пол, подключено к УЗО 16/10 мА, а это УЗО подключено к УЗО 40/30 мА.

Почему это немного неудобно? Потому-что всегда будет неизвестно, какое именно устройство сработает: чаще всего будет срабатывать групповое УЗО, отключая при этом остальных потребителей. Нужно понимать, что ток УЗО 10 мА или 30 мА – разные устройства с разными задачами. И только от вас зависит.

Многие «диванные специалисты» скептически относятся к устройствам с током утечки в 10 мА, мотивируя это тем, что уставка очень маленькая и УЗО будет ложно срабатывать и постоянно отключаться без причины.

Самое главное: если монтаж электропроводки выполнен качественно, соблюдены все нормативы, то УЗО ложно никогда не будет срабатывать.

Наивно полагать, что УЗО придуманы только для защиты человека от удара током. Существуют УЗО номиналом в 100, 300, 500 мА. Их называют противопожарными. Из названия становится понятно, о чем идет речь, поэтому не будем подробно останавливаться на этом вопросе.

Где ставить УЗО на 30 мА

УЗО с таким дифференциальным током устанавливается на большинство потребителей, при этом вы можете грамотно рассчитать количество потребителей на одном УЗО. Если вместимость электрощитка позволяет разместить несколько защитных устройств, то можно все имеющиеся розетки равномерно распределить между УЗО. Это оговорено в таких нормативах как СП 256.1325800.2016 (свод правил), ну и конечно же ПУЭ п.7.1.79

Все бытовые розеточные группы и освещение защищают УЗО и дифавтоматами на 30 мА

 

Где ставят УЗО на 10 мА

Как мы уже говорили, такое УЗО устанавливается во влажных местах, и обязательно отдельно на каждый потребитель. Для других помещений используется УЗО на 30 мА. Еще запомните, что устройства защитного отключения с током 10 мА и 30 мА используется для защиты человека, УЗО с номиналами, превышающими этот диапазон – противопожарные.

УЗО с дифференциальным током на 10 мА устанавливают в мокрых зонах (ванные, душевые, сауны), а также на отдельную линию для подключения одного потребителя (стиральной или посудомоечной машины, водонагреватель, теплый пол и т.п.)

Теперь вы всегда можете выбрать ток УЗО 10 мА или 30 мА, и разобраться, что именно необходимо вам для успешного решения вашей задачи. Не забывайте о том, что электричество не прощает ошибок, поэтому будьте осторожны, соблюдайте технику безопасности, а самое главное – монтируйте компоненты согласно нормативным документам.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Действие электрического тока на организм человека

Электротравматизм по сравнению с другими видами производственного травматизма составляет небольшой процент, но по числу случаев со смертельным исходом занимает одно из первых мест. Из каждых 100 расследованных случаев, связанных с электрическим током, 90 заканчиваются летальным исходом. Вот почему обслуживание-электрических установок относят к работам, выполняемым в условиях повышенной опасности. Опасность поражения электрическим током усугубляется еще и тем, что пострадавший не может сам оказать себе помощь.

Действие электрического тока на человека носит сложный и разнообразный характер. При замыкании электрической цепи через организм человека ток оказывает термическое, электролитическое, биологическое и механическое воздействие.

Термическое действие тока проявляется в виде ожогов как наружных участков тела, так и внутренних органов, в том числе кровеносных сосудов и нервных тканей. Электроожоги излечиваются значительно труднее и медленнее обычных термических, сопровождаются внезапно возникающими кровотечениями, омертвением отдельных участков тела.

Тело человека является проводником электрического тока. Однако разные ткани тела оказывают току неодинаковое сопротивление. Большое сопротивление оказывают кожа, особенно ее верхний слой, называемый эпидермисом, кости и жировая ткань. Малое сопротивление оказывают внутренние органы, головной и спинной мозг, кровь, оголенные мышцы. Сопротивление Rlt зависит от пола и возраста людей. У женщин это сопротивление меньше, чем у мужчин, у детей — меньше, чем у взрослых, у молодых людей — меньше, чем у пожилых. Объясняется это толщиной и степенью огрубения верхнего слоя кожи.

Сопротивление тела человека воздействию электрического тока -величина переменная и зависит от многих факторов, в том числе от параметров электрической цепи, физиологического состояния человека, условий окружающей среды и т. п. Во всех расчетах по обеспечению электробезопасности принимают 1000 Ом, т. е. такое сопротивление, когда человек находится в наихудших для себя условиях (нервно-психическое или болезненное состояние, повышенная влажность окружающей среды, наличие большого числа металлических конструкций и т. п.).

Основным поражающим фактором является сила электрического тока, проходящего через тело человека.

Человек начинает ощущать воздействие переменного тока величиной 0,5 … 1,5 мА (1 А = 103 мА). Это порог ощутимого тока, который не представляет серьезной опасности, так как человек самостоятельно может нарушить контакт с токоведущей частью электроустановки.

Величину тока 10 … 15 мА называют порогом неотпускающего тока. Эта величина тока при промышленной частоте 50 Гц вызывает непроизвольное сокращение мышц кисти руки и предплечья, сопровождающееся резкой болью. При воздействии этого тока на организм человек не может разжать руку, отбросить от себя провод, т. е. он не в состоянии самостоятельно нарушить контакт с токоведущей частью и оказывается как бы прикованным к ней.

Ток 40 мА поражает органы дыхания и сердечно-сосудистую систему, вызывает фибрилляцию сердца. Фибрилляция — это такое состояние сердца, когда оно перестает сокращаться как единое целое в определенной последовательности. При этом происходят отдельные подергивания волокон сердечной мышцы, насосная функция сердца прекращается. Отсутствие кровообращения вызывает в организме недостаток кислорода, что в свою очередь приводит к прекращению дыхания. Такое состояние человека называют клинической смертью -переходным периодом от жизни к смерти. Однако в этот период почти во всех тканях организма еще продолжаются слабые обменные процессы, достаточные для поддержания минимальной жизнедеятельности. При клинической смерти первыми начинают погибать чувствительные к кислородному голоданию клетки коры головного мозга, с деятельностью которых связаны сознание и мышление. В связи с этим длительность клинической смерти определяется временем с момента прекращения сердечной деятельности и дыхания до начала гибели клеток головного мозга. В большинстве случаев это время составляет 4 … 5 мин, но не более 7 мин. Человека, находящегося в состоянии клинической смерти, вернуть к жизни можно, оказав ему оперативную помощь. При доступе свежего воздуха необходимо сделать искусственное дыхание или использовать дефибриллятор — аппарат для прекращения фибрилляции.

Ток 100 мА (0,1 А) считается смертельным, так как происходят немедленная остановка сердца и паралич дыхания.

Тело человека имеет участки, особенно уязвимые к воздействию электрического тока, так называемые акупунктурные точки. Их электрическое сопротивление всегда меньше других зон тела. Наиболее уязвимыми являются тыльная часть кисти, рука на участке выше кисти, шея, висок, спина, передняя часть ноги, плечо.

Чем продолжительнее действие тока, тем больше вероятность тяжелого или смертельного исхода. Такая зависимость объясняется тем, что с увеличением времени действия тока резко снижается сопротивление организма , а величина тока, прошедшего через тело, возрастает при постоянном напряжении электрической сети

Электролитическое действие тока вызывает электролиз крови и лимфатической жидкости, в результате чего нарушается их химический состав и ткани организма в целом.

Биологическое воздействие выражается в раздражении живых тканей организма. Электрический ток нарушает действие биотоков, управляющих внутренним движением ткани, вызывает непроизвольное, противоестественное судорожное сокращение мышц сердца и легких.

Механическое действие тока, на организм является причиной электрических травм. Характерными видами электротравм являются ожоги, электрические знаки, металлизация кожи, электроофтальмия, разрывы тканей, вывихи суставов и переломы костей.

Ожоги бывают двух видов — токовый, или контактный, и дуговой. Токовый ожог возникает в результате контакта человека с токоведущей частью и является следствием преобразования электрической энергии в тепловую.

Дуговой ожог обусловлен воздействием на тело электрической дуги, обладающей высокой температурой и большой энергией. Дуговой ожог возникает в электроустановках различных напряжений, часто является следствием случайных коротких замыканий, отключений разъединителей и рубильников под напряжением. В этом случае дуга может переброситься на человека и через него пройдет ток большой величины — до нескольких десятков ампер.

Электрические знаки представляют собой четко очерченные пятна серого или бледно-желтого цвета на поверхности кожи человека, подвергшегося действию тока. В большинстве случаев электрические знаки безболезненны и их лечение заканчивается благополучно.

Металлизация кожи — проникновение в ее верхние слои мельчайших частичек металла, расплавившегося под действием электрической дуги. С течением времени больная кожа сходит, пораженный участок приобретает нормальный вид и болезненные ощущения исчезают.

Электроофтальмия — воспаление наружных оболочек глаз, возникающее в результате воздействия мощного потока ультрафиолетовых лучей электрической дуги. При поражении глаз лечение может оказаться длительным и сложным.

Разрывы тканей, вывихи суставов и переломы костей могут произойти в результате резких, непроизвольных судорожных сокращений мышц под действием тока или при падении вниз при выполнении работ на электроустановке, расположенной на высоте.

Исход поражения электрическим током во многом зависит от индивидуальных особенностей человека. Установлено, что здоровые и физически крепкие люди легче переносят воздействие электрического тока, чем больные и слабые. Повышенной восприимчивостью к току обладают лица, страдающие болезнями кожи, сердечно-сосудистой системы, органов внутренней секреции и др. Состояние возбуждения нервной системы, депрессии, утомления, опьянения способствует более тяжелому исходу электротравматизма.

Действие электрического тока не всегда проходит бесследно, возможны отдаленные последствия электротравмы. Наблюдались случаи развития диабета, заболеваний щитовидной железы, половых органов, органического изменения сердечно-сосудистой системы и вегетативно-эндокринного расстройства.

Реле REL-MR- 24DC/21 | ООО «ПЭК»

Преимуществареле 24ВREL-MR- 24DC/21:

Безопасная развязка между обмоткой и контактами согласно DIN EN 50178

Высокая степень защиты, RT III, защита от брызг

Силовые контакты: 6 Ампер

 

Технические характеристики реле 24ВREL-MR- 24DC/21:

Размеры: 5х28х15 мм, чертеж на фото 3

Входное напряжение, Un: 24 Вольт постоянного тока

Диапазон входных напряжений, относительно Un,диаграмма на фото 6:

Входной ток, при Un: 7 мАмпер

Время срабатывания, расчетное: 5 мс

Время возврата в рабочее состояние, расчетное: 2.5 мс

Сопротивление катушки, при +20C: 3390 Ом ±10 %

Потеря мощности, при номинальных условиях: 0.17 Ватт

Количество контактов, исполнение: 1 переключающий контакт (электрическая схема на фото 4, расположение контактов на фото 5, шаг 1.25 мм)

Материал контактов: AgSnO

Напряжение переключения: 5…250 Вольт переменного/постоянного тока

Минимальный коммутационный ток: 10 мАмпер (при 12 Вольт)

Максимальный пусковой ток: 10 Aмпер (4 сек)

Максимальный ток продолжительной нагрузки: 6 Aмпер

Максимальная мощность отключения, активная нагрузка (фото 7):

— 140 Ватт, при 24 Вольт постоянного тока,

— 20 Ватт при 48 Вольт постоянного тока,

— 18 Ватт при 60 Вольт постоянного тока,

— 23 Ватт при 110 Вольт постоянного тока,

— 40 Ватт при 220 Вольт постоянного тока,

— 1500 ВА при 250 Вольт переменного тока,

Коммутационная способность, согласно DIN VDE 0660 / МЭК 60947:

— 2 Ампер при 24 Вольт, DC13;

— 0.2 Ампер при 110 Вольт, DC13;

— 0.1 Ампер при 220 Вольт, DC13;

— 3 Ампер при 24 Вольт, AC15;

— 3 Ампер при 120 Вольт, AC15;

— 3 Ампер при 230 Вольт, AC15

Степень защиты: RT III (защита от брызг)

Долговечность механическая: 2 000 000 000 коммутационных циклов

Стандарты:

МЭК 60664

EN 50178

МЭК 62103

Степень загрязнения: 3

Категория перенапряжения: III

Температура окружающей среды:

— при эксплуатации: -40…+85°C,

— при хранении, транспортировке: -40…+85°C

Подключение согласно стандарту CUL

Класс воспламеняемости, согласно UL 94: V0

Действие электрического тока на организм человека

Доброго времени суток, уважаемые читатели сайта http://zametkielectrika.ru.

Продолжаем более подробно знакомиться с электробезопасностью.

Сегодня у нас очень интересная и познавательная статья про действие  электрического тока на организм человека.

Я думаю, что каждый из Вас хоть раз задумывался об опасности электрического тока, и его последствий. А кто то может (не дай Бог конечно) испытал это на себе.

Введение

Среда, в которой мы с Вами обитаем, а также все то, что нас окружает, заключает в себе потенциальную опасность для нас. Одной из таких угроз является поражение током. Кроме природной среды (поражение молнией), есть еще бытовая и производственная, которые постоянно развиваются и прогрессируют (усовершенствование техники и применение новых разработок), а значит, несут в себе еще большую угрозу.

Несмотря на то, что проверка приборов производится очень качественно, от ошибок и непредвиденных ситуаций никто не застрахован.

К сожалению, чаще всего поражение током, как на производстве, так и в быту случается от того, что не соблюдены меры предосторожности и элементарной электробезопасности.

Не исключаются также причины неисправности электропроводки и поломки приборов (при пользовании электрическим чайником, СВЧ-печью, и другими бытовыми приборами; ошибки при подключении стиральной машины, или при переносе розетки, либо при замене розетки и многое другое), используемых в быту, и электрических агрегатов и электрооборудования, используемого непосредственно на производстве.

Как показывает статистика, процент получаемых травм от поражения током намного ниже по сравнению с травмами, полученными другими способами.

Но при поражении током значительно выше процент тяжелых травм и летального исхода.

Что такое электрический ток?

Действие электрического тока на человека, а также его последствия можно лучше понять после того, как более детально рассмотрим, что же такое ток.

Электрический ток – это упорядоченное движение электронов в проводнике или полупроводнике.

В участке цепи сила тока прямо пропорциональна напряжению на концах участка (разности потенциалов) и обратно пропорциональна сопротивлению данного участка цепи — закон Ома.

В случае, когда человек касается проводника, который находится под напряжением, он тем самым включает себя в цепь. Через тело человека пройдет ток, если он не изолирован от земли, либо касается проводника одновременно с другим предметом, у которого противоположенный потенциал.

Данная формула применима к двухфазному, или его еще называют двухполюсному прикосновению к токоведущим частям, находящимся под напряжением. Выглядит это следующим образом:

При касании человеком двух фаз электроустановки, возникает цепь через тело человека, по которой проходит электрический ток. Величина электрического тока в данном случае зависит ТОЛЬКО от напряжения электроустановки и внутреннего сопротивления человека.

Например, фазное напряжение электроустановки 220 (В), линейное напряжение соответственно 380 (В). В нормальных условиях среднее сопротивление человека приблизительно составляет 1000 (Ом).

В данном случае ток, который пройдет через человека при одновременном его касании двух фаз (А и В) будет равен 380 (мА).  А это смертельно опасно!!!

Чуть иначе будет происходить расчет тока, проходящего через организм человека, если он прикоснется к одной фазе в сети с изолированной нейтралью.

В этом случае цепь тока будет замыкаться через организм человека, далее на землю и через сопротивление изоляции и емкости фаз.

Чем грозит действие электрического тока?

Электрический ток производит следующие воздействия на организм человека проходя сквозь него:

1. Термическое

При таком воздействии происходит перегрев, а также функциональное расстройство органов находящихся на пути прохождения тока.

2. Электролитическое

При электролитическом действии тока в жидкости, которая находится в тканях организма, происходит электролиз, в том числе и в крови, из-за чего нарушается ее физико-химического состав.

3. Механическое

Во время механического воздействия происходит разрыв тканей и их расслоение, ударное действие от испарения жидкости из тканей человеческого организма. После этого следует сильное сокращение мышц, вплоть до их полного разрыва.

4. Биологическое

Биологическое действие тока несет в себе раздражение и перевозбуждение нервной системы.

5. Световое

Данное действие служит причиной поражения глаз.

 

Последствия при действии электрического тока

Глубина и характер воздействия зависит от:

  • рода тока (переменный или постоянный) и его силы
  • времени его воздействия и пути, по которому он проходит через человека
  • психологического и физиологического состояния данного человека.

Так, например, при нормальных условиях и наличие сухой, неповрежденной кожи сопротивление человека может достигать нескольких сотен (кОм), а вот если условия будут неблагоприятные, то значение может упасть до одного килоома.

Ниже, я Вам приведу в пример таблицу, как действует электрический ток разной величины на организм человека.

Ток с силой около 1 (мА) уже будет довольно таки ощутимым. При более высоких показаниях будут испытываться болезненные и неприятные сокращения мышц у человека.

При токе силой в 12-15 (мА) человек уже не может управлять своей мышечной системой и не в состоянии самостоятельно оторваться от поражающего источника тока.

Если же ток будет выше, чем 75 (мА), то его воздействие приведет к параличу дыхательных мышц и, следовательно, к остановке дыхания.

Если сила тока будет продолжать увеличиваться, то наступит фибрилляция сердца и его остановка.

Более опасным, чем постоянный ток, является ток переменный.

Имеет не малое значение и то, какими именно участками тела прикасается человек к токоведущей части. Самыми опасными считаются те пути, во время которых поражается спинной и головной мозг (голова-ноги и голова-руки), легкие и сердце (ноги-руки).

Основные поражающие факторы

1. Электрический удар

Возбуждает мышцы тела, приводит к судорогам, а затем к остановке дыхания и сердца.

2. Электрические ожоги

Возникают в результате выделения тепла после прохождения тока через тело человека.

Есть несколько видов ожогов, которые возникают в зависимости от параметров электрической цепи, а также состояния человека в тот момент:

  • покраснение кожи
  • возникновение ожога с образованием пузырей
  • возможно обугливание тканей
  • металлизация кожи, сопровождающаяся проникновением в нее кусочков металла, в случае расплавление металла.

Напряжение соприкосновения – это напряжение, которое действует на человека во время его соприкосновения с одним полюсом, либо же с фазой источника тока.

Самыми опасными зонами тела являются области висков, спины, тыльных сторон рук, голеней, затылка, а также шеи.

Почитайте мою статью о групповом несчастном случае на производстве, который случился с двумя электромонтерами при переключениях в электроустановке напряжением 10 (кВ).

P.S. Если во время прочтения материала у Вас возникли вопросы, то спрашивайте об этом в комментариях.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


IntraLED- драйверы для светодиодов, источники питания для светодиодов, светодиодных лент

Драйверы (источники питания) для светодиодов 

Лампы накаливания и прочая светотехника, сделанная по устаревшим технологиям, постепенно повсеместно заменяется устройствами светодиодными. Они обладают целым рядом бесспорных преимуществ, самыми значительными из которых являются намного более долгий срок эксплуатации и возможность экономить на электроэнергии. Ведь светодиоды потребляют её во много раз меньше.

Для максимального продления срока службы светодиодов LED-устройства и приборы оборудуются специальными драйверами. Они имеют вид дополнительных электронных плат и очень важны для стабильной и адекватной работы светотехники на диодах.

К примеру, сроки эксплуатации этих технологичных устройств во многом зависят от температуры и её перепадов. Драйвера светодиодов функционируют в качестве стабилизаторов стандартных характеристик электротока при его поступлении на диоды. Степень напряжения при этом нивелируется до наиболее приемлемой.

Благодаря работе драйверов светодиодов, КПД светодиодной светотехники значительно повышается. После подсоединения полупроводниковых световых устройств (led лент) к драйверам электропитания одинаково нормальный режим обеспечивается для каждого светодиода в цепочке.

Сроки эксплуатации светодиодного оборудования в условиях обеспечения его неизменно стабильной работы значительно возрастают. Возможность перегревания полупроводниковых элементов сводится к минимуму, ведь электроток подаётся на них в оптимально сбалансированном ритме.

Также драйвер выполняет для светодиодного / полупроводникового прибора роль стабилизатора всех основных световых параметров, не допуская эффектов пульсации и (или) мерцания даже во время существенных скачков напряжения в электросети.

Драйверы предоставляют возможность выставления необходимого режима освещения, оптимальной регулировки его яркости.

Предназначенные для питания светодиодов элементы отбираются сообразно с силой тока, напряжений на выходе и мощностным параметрам оборудования. Мощность драйверов есть возможность рассчитать при помощи спецтехнологии. Ей на экспертном уровне владеют специалисты нашей компании.

По Вашему обращению они в сжатые сроки сделают нужный расчёт параметров и дадут грамотную консультацию насчёт подбора оптимально соответствующего целям элемента питания диодов. Для того, чтобы избежать ошибок и не усложнять себе задачу по подбору устройств, есть смысл приобретать сразу и светодиодное оборудование, и драйверы к нему – в едином комплекте.

Токовая петля 20 мА. Вопросы и ответы

Что делать, если Вам требуется считывать показания датчика температуры, работающего в условиях промышленного производства и расположенного на расстоянии 30 метров от управляющего контроллера? После долгих раздумий и тщательного изучения существующих решений, Вы наверняка выберете не Wi-Fi, Bluetooth, ZigBee, Ethernet или RS-232/423, а токовую петлю 20 мА, которая с успехом используется уже более 50 лет. Несмотря на кажущуюся архаичность этого интерфейса, такой выбор, на самом деле, является оправданным во многих случаях.

В данной статье, построенной в виде вопросов и ответов, раскрываются особенности использования токовой петли для сбора данных и управления. В статье также рассказывается о различных улучшениях и модификациях токовой петли, которые были сделаны за всю историю ее практического использования.

Что такое токовая петля 20 мА?

Токовая петля 0-20 мА или токовая петля 4-20 мА представляет собой стандарт проводного интерфейса, в котором сигнал кодируется в виде аналогового тока. Ток 4 мА соответствует минимальному значению сигнала, а ток 20 мА соответствует максимальному значению сигнала (рис. 1). В типовом приложении напряжение датчика (часто милливольтного диапазона) преобразуется в токовый сигнал из диапазона 4-20 мА. Токовая петля использовалась во всех аналоговых системах еще до появления цифрового управления и заменяла пневматические системы управления в промышленных установках.

Рис. 1. При работе с датчиком токовая петля включает пять основных элементов: датчик, передатчик, источник питания, проводящий контур (петлю) и приемник

Может ли токовая петля использоваться совместно с цифровыми сигналами?

Да, может. Обычно для представления логического «0» используется токовый сигнал 4 мА, а для кодирования логической «1» используется токовый сигнал 20 мА. Подробнее об этом рассказывается далее.

Где используется интерфейс токовой петли 4-20 мА?

Он используется в основном в промышленных приложениях, в которых датчик и контроллер или контроллер и актуатор расположены на значительном удалении друг от друга, а коммуникационные кабели пролегают в помещениях с большим уровнем электромагнитных помех.

Почему используют токовую петлю, а не традиционные интерфейсы, например, RS-232, RS-423, RS-485 и т.д.?

Существует две веские причины.

Во-первых, низкоомный контур в токовой петле обеспечивает высокую стойкость к внешним шумам. В соответствии с законом Кирхгофа сумма токов замкнутого контура равна нулю. По этой причине в токовой петле невозможно ослабление или усиление тока (рис. 2). На практике питание токовой петли осуществляется от источника напряжения 12 до 30 В, но электроника передатчика преобразует напряжение в ток. С другой стороны, интерфейсы, использующие сигналы напряжения, строятся на основе высокоомных контуров, которые оказываются весьма восприимчивыми к помехам.

Во-вторых, токовая петля имеет естественную функцию самодиагностики: если контур разрывается – ток падает до нуля, что автоматически определяется схемой. После этого формируется аварийное предупреждение и производится локализация разрыва.

Рис. 2. Принцип, лежащий в основе токовой петли, определяется первым законом Кирхгофа: сумма токов замкнутого контура равна нулю

Как токовая петля реализуется на стороне датчика и на стороне актуатора?

Устройства, подключаемые к токовой петле, можно разделить на две основные группы: датчики и актуаторы. В датчиках реализуется схема передатчика, который формирует линейный токовый сигнал в диапазоне 4…20 мА. В актуаторах используется схема приемника, который преобразует ток в управляющее напряжение. Например, для задания минимальной скорости вращения двигателя контроллер формирует токовый сигнал 4 мА, а для задания максимальной скорости – сигнал 20 мА.

Почему вместо токовой петли не использовать беспроводной интерфейс, например, Wi-Fi или другой проводной интерфейс, например, Ethernet?

Выше уже было сказано, что токовая петля обладает двумя важными преимуществами: высокой помехозащищенностью и встроенной возможностью самодиагностики. Кроме того, данный интерфейс имеет и другие достоинства, в том числе: невысокую стоимость реализации, легкость настройки и отладки, простоту диагностики, высокую надежность, возможность создания длинных линий связи вплоть до нескольких сотен метров (в том случае, если источник питания позволяет покрыть падение напряжения на проводах).

Другие проводные стандарты сложнее настраивать и обслуживать, они чувствительны к шуму, слабо защищены от взлома и отличаются высокой стоимостью реализации.

Создать беспроводную связь в промышленной среде вполне возможно, если речь идет о небольших расстояниях. Но при работе на больших дистанциях возникают трудности, связнные с необходимостью многоуровневой фильтрации, реализацией механизмов обнаружения и исправления ошибок, что приводит также и к избыточности данных. Все это увеличивает стоимость и риск разрыва связи. Такое решение вряд ли оправдано, если требуется всего лишь подключить простой датчик температуры или контроллер клапана/двигателя.

Как сигнал токового контура преобразуется в напряжение?

Все довольно просто: ток проходит через резистор, а получаемое падение напряжения усиливается с помощью операционного или дифференциального усилителя. По разным причинам для резистора токовой петли было выбрано стандартное значение сопротивления 250 Ом. Таким образом, сигналу 4 мА соответствует напряжение 1 В, а сигналу 20 мА соответствует напряжение 5 В. Напряжение 1 В оказывается достаточно большим по сравнению с фоновыми шумом и может быть легко измерено. Напряжение 5 В также является весьма удобным и лежит в диапазоне допустимых значений для большинства аналоговых схем. В то же время, максимальная мощность, рассеиваемая на резисторе токовой петли (I2R), составляет всего 0,1 Вт, что приемлемо даже для устройств с ограниченными возможностями по отводу тепла. 

Действительно ли токовая петля 20 мА является пережитком прошлого и используется только в устаревших электронных приборах?

Совсем нет. Производители интегральных микросхем и приборов все еще выпускают новые продукты, поддерживающие этот интерфейс.

Каким образом аналоговая токовая петля адаптируется к цифровому миру?

Как было сказано выше, токовая петля позволяет передавать цифровые данные. Результаты измерений от датчика можно посылать не в виде аналогового непрерывного сигнала, а в виде дискретных токовых сигналов. Типовая разрядность данных при этом составляет от 12 до 16 бит. Иногда используют разрядность 18 бит, но это скорее является исключением, так как для обычных промышленных систем вполне хватает и 16 бит. Таким образом, токовая петля может быть интегрирована в цифровые системы управления.

Что еще требуется для передачи цифровых данных?

Для выполнения обмена цифровыми данными будет недостаточно простой пересылки битов в виде токовых импульсов. Необходимо каким-то образом сообщать пользователю, когда начинается и заканчивается пакет данных. Кроме того, требуется контролировать появление ошибок и выполнять некоторые другие функции. Таким образом, для передачи цифровых данных с помощью токовой петли требуется определить формат кадров и реализовать соответствующий протокол передачи.

Что такое стандарт HART?

HART – общепринятый стандарт, который оговаривает не только физическое кодирование битов, но определяет формат и протокол передачи данных. Например, в формате кадра используются различные поля: многобайтовая преамбула, стартовый байт, многобайтовый адрес, поле команды, поле данных, поле, указывающее количество байтов данных, фактические данные и, наконец, контрольная сумма.

Разработка HART была инициирована Rosemount Corp в 1980-х годах, и вскоре он стал отраслевым стандартом де-факто. Обозначение HART (Highway Addressable Remote Transducer) было закреплено в 1990-х годах, когда стандарт стал открытым и даже был реализован в виде стандарта МЭК для использования в Европе. HART претерпел три основных модификации, но сохранил обратную совместимость со всеми предыдущими версиями, что является крайне важным для рынка промышленной электроники.

Дополнительной особенностью HART является включение информации о производителе электронного устройства в поле команды. Эта информация позволяет избежать путаницы при выполнении установки, отладки и документирования, так как существует более 100 поставщиков HART-совместимых устройств.

Какие еще улучшения дает HART?

Использование байтового поля адреса позволяет одной токовой петле работать с множеством подключенных датчиков, поскольку каждому датчику может быть присвоен уникальный номер. Это приводит к значительной экономии средств, затрачиваемых на прокладку проводов и монтаж по сравнению с соединением точка-точка.

Подключение множества устройств к одной общей токовой петле означает, что эффективная скорость передачи данных для каждого отдельного устройства уменьшается. Однако чаще всего это не является проблемой. Дело в том, что в большинстве промышленных приложений обновление данных и передача команд происходит довольно редко – порядка одного раза в секунду. Например, температура — наиболее часто измеряемая физическая величина- как правило, меняется достаточно медленно.

Таким образом, стандарт HART делает токовую петлю 20 мА востребованной даже в век цифровых технологий.

Есть ли какие-либо другие улучшения, которые повышают актуальность данного интерфейса?

Да, другое важное усовершенствование касается питания. Напомним, что токовая петля использует диапазон сигналов 4-20 мА. Источник тока может находиться в передатчике или приемнике. В то же время и датчику, и актуатору требуется дополнительный источник для питания собственной электроники (АЦП, усилители, драйверы и т.д.). Это приводит к усложнению монтажа и увеличению стоимости.

Однако по мере развития интегральных технологий потребление приемников и передатчиков уменьшалось. В результате появилась реальная возможность питания устройств непосредственно от токовой петли. Если потребление электронных компонентов, входящих в состав датчика или актуатора, не превышает 4 мА, то нет необходимости в дополнительном источнике питания. Пока напряжение сигнального контура достаточно велико, интерфейс токовой петли может питать сам себя.

Есть ли какие-либо другие преимущества у устройств с питанием от токовой петли?

Да. Многие устройства с питанием от сигнальных линий должны иметь разрешение на использование во взрывоопасных зонах. Например, они должны быть сертифицированы, как невоспламеняющиеся (N.I.) или искробезопасные (I.S.). Для устройств любого из этих классов требуется, чтобы энергии, потребляемой электроникой, было так мало, чтобы ее не хватало для возгорания как при нормальных условиях эксплуатации, так и при авариях. Потребляемая мощность устройств с питанием от токовой петли столь мала, что они обычно без проблем проходят данную сертификацию.

Что делают производители ИС для упрощения работы с токовой петлей?

Они делают то же, что и всегда: создают ИС, которые обеспечивают реализацию не только базового функционала, но множества других дополнительных возможностей. Например, Maxim Integrated MAX12900 представляет собой малопотребляющий высокоинтегрированный аналоговый интерфейс (AFE) для токовой петли 4-20 мА (рис. 3).

Рис. 3. MAX12900 – малопотребляющий высокоинтегрированный аналоговый интерфейс (AFE) для токовой петли 4-20 мА, который обеспечивает выполнение базовых функций, а также множества дополнительных полезных возможностей, в том числе питание напрямую от токовой петли

MAX12900 обеспечивает не только передачу данных, но и питание напрямую от токовой петли. Микросхема объединяет в одном корпусе множество функциональных блоков: стабилизатор напряжения LDO; две схемы для формирования ШИМ-сигналов; два малопотребляющих и стабильных ОУ общего назначения; один широкополосный ОУ с нулевым смещением; два диагностических компаратора, схему управления подачей питания для обеспечения плавного включения; источники опорного напряжения с минимальным дрейфом.

Можете ли вы привести пример реализации датчика с интерфейсом токовой петли?

Компания Texas Instruments предлагает TIDM-01000 – референсную схему датчика температуры с интерфейсом токовой петли 4-20 мА. Схема построена на базе микроконтроллера MSP430 и представляет собой бюджетное решение с минимальным набором компонентов.

Рис. 4. Референсная схема TIDM-01000 представляет собой датчик температуры (RTD) с токовым интерфейсом 4-20 мА. Схема построена на базе нескольких ИС, которые обеспечивают обработку показаний датчика и взаимодействие с токовой петлей

В TIDM-01000 для управления током используется модуль Smart Analog Combo (SAC), встроенный в микроконтроллер MSP430FR2355. Таким образом, отдельный ЦАП не требуется. Схема имеет 12-битное разрешение с шагом квантования выходного тока 6 мкА. Предложенное решение обеспечивает защиту от обратной полярности, а защита входов токовой петли отвечает требованиям IEC61000-4-2 и IEC61000-4-4 (рис. 5).

Рис. 5. Передатчик, построенный с использованием TIDM-01000, умещается на небольшой печатной плате. Компактность является еще одним достоинством токовой петли

Заключение

В статье были рассмотрены основные вопросы, посвященные использованию токовой петли 4-20 мА в промышленных приложениях. Несмотря на то, что этот интерфейс является настоящей «древностью» по меркам электроники, тем не менее, его по-прежнему широко используют, в том числе в современных цифровых устройствах. В статье также рассказывалось о том, каким образом питание от токового контура дополнительно расширяет возможности данного интерфейса.

Преобразование ампер в ма — преобразование единиц измерения

›› Перевести амперы в миллиамперы

Пожалуйста, включите Javascript для использования конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php



›› Дополнительная информация в конвертере величин

Сколько ампер в 1 мА? Ответ — 0,001.
Мы предполагаем, что вы конвертируете между ампер и миллиампер .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
ампер или ma
Базовой единицей СИ для электрического тока является ампер.
1 ампер равен 1 амперу или 1000 ма.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать амперы в миллиамперы.
Введите свои числа в форму для преобразования единиц!


›› Таблица быстрой конвертации ампер в ма

1 ампер на ма = 1000 ма

2 А на мА = 2000 мА

от 3 ампер до мА = 3000 мА

4 А на мА = 4000 мА

от 5 до мА = 5000 мА

от 6 ампер до мА = 6000 мА

от 7 ампер до мА = 7000 мА

от 8 ампер до ма = 8000 ма

от 9 до мА = 9000 мА

от 10 ампер до мА = 10000 мА



›› Хотите другие юниты?

Вы можете произвести обратное преобразование единиц измерения из ma to amp, или введите любые два модуля ниже:

›› Преобразователи общего электрического тока

ампер на сименс вольт
ампер на мегампера
ампер на ватт / вольт
ампер на микроампер
ампер на гигаамп
ампер на гилберта
ампер на гауссовский
ампер на сентиампер
ампер на франклин / секунду
ампер на наноампер


›› Определение: Amp

В физике ампер (символ: A, часто неофициально сокращается до ампер) — это базовая единица СИ, используемая для измерения электрических токов.Нынешнее определение, принятое 9-й сессией ГКПМ в 1948 году, гласит: «Один ампер — это тот постоянный ток, который, если он поддерживается в двух прямых параллельных проводниках бесконечной длины, с незначительным круглым поперечным сечением и помещен на расстоянии одного метра в вакууме, дает между этими проводниками действует сила, равная 2 × 10 -7 ньютон на метр длины ».


›› Определение: Миллиампер

Префикс системы СИ «милли» представляет собой коэффициент 10 -3 , или в экспоненциальной записи 1E-3.

Итак, 1 миллиампер = 10 -3 ампер.


›› Метрические преобразования и др.

ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

Ампер в Миллиамперы Преобразование (А в мА)

Введите ниже электрический ток в амперах, чтобы получить значение, переведенное в миллиамперы.

Как преобразовать амперы в миллиамперы

Чтобы преобразовать измерение ампера в измерение миллиампера, умножьте электрический ток на коэффициент преобразования.

Поскольку один ампер равен 1000 миллиампер, вы можете использовать эту простую формулу для преобразования:

миллиампер = ампер × 1000

Электрический ток в миллиамперах равен амперам, умноженным на 1000.

Например, вот как преобразовать 5 ампер в миллиампер, используя формулу выше.

5 А = (5 × 1000) = 5000 мА

Сколько миллиампер в амперах?

В амперах 1000 миллиампер, поэтому мы используем это значение в приведенной выше формуле.

1 А = 1000 мА

Амперы и миллиамперы — единицы измерения электрического тока.Продолжайте читать, чтобы узнать больше о каждой единице измерения.

Ампер, обычно называемый «ампер», представляет собой постоянный электрический ток, равный расходу одного кулона в секунду.

Ранее ампер определялся как постоянный ток, который при пропускании через два прямых и параллельных проводника, расположенных на расстоянии одного метра друг от друга, создаст силу, равную 0,0000002 ньютона на метр длины.

В 2019 году ампер был переопределен как электрический ток, соответствующий потоку 1 / (1.602 176 634 × 10 -19 ) элементарных зарядов в секунду. [1]

Ампер — это основная единица СИ для электрического тока в метрической системе. Иногда ампер также называют усилителем. Амперы можно обозначить как A ; например, 1 ампер можно записать как 1 А.

Закон Ома гласит, что ток между двумя точками на проводе пропорционален напряжению и обратно пропорционален сопротивлению.Используя закон Ома, можно выразить ток в амперах как выражение, используя сопротивление и напряжение.

I A = V V R Ом

Ток в амперах равен разности потенциалов в вольтах, деленной на сопротивление в омах.

Один миллиампер равен 1/1000 ампера, который представляет собой электрический ток, равный расходу одного кулона в секунду.

Миллиампер кратен амперам, который является базовой единицей СИ для электрического тока. В метрической системе «милли» является префиксом для 10 -3 . Миллиампер иногда также называют миллиампером. Миллиамперы могут быть сокращены как мА ; например, 1 миллиампер можно записать как 1 мА.

Конвертер единиц магнитного поля — Калькулятор и таблицы

Конвертер единиц магнитного поля — Калькулятор и таблицы

Вы должны включить Javascript, чтобы воспользоваться всеми функциями нашего сайта.

123calculus.com
  1. Home
  2. Преобразование единиц
  3. Магнитное поле

Этот инструмент представляет собой онлайн-конвертер единиц магнитного поля. Он также включает таблицы преобразования.

Магнитное поле

Кратные тесла
T: тесла
kT: килотесла
MT: мегатесла
GT: гигатесла

Tesla деления
T: тесла
cT: центитесла
mT:
микротесла:
микротесла:
микротесла
pT: picotesla

Другие единицы
гаусс: гаусс
гамма: гамма
maxwell / см²: maxwell на квадратный см
maxwell / м²: maxwell на квадратный метр
weber / m²: weber на квадратный метр
weber / cm² : Вебер на квадратный см
А / м: ампер на метр
А / см: ампер на см
Э: эрстед

Таблицы преобразования единиц магнитного поля

Кратные Тесла / Кратные Тесла
# T kT MT GT
1 Т = 1 0.001 1.0e-6 1.0e-9
1 кТ = 1000 1 0,001 1.0e-6
1 MT = 1.0e + 6 1000 1 0,001
1 GT = 1.0e + 9 1.0e + 6 1000 1

Кратные по делениям Тесла / Тесла
# T cT mT µT nT pT
1 Т = 1 100 1000 1.0e + 6 1.0e + 9 1.0e + 12
1 кТ = 1000 100000 1.0e + 6 1.0e + 9 1.0e + 12 1.0e + 15
1 MT = 1.0e + 6 1.0e + 8 1.0e + 9 1.0e + 12 1.0e + 15 1.0e + 18
1 GT = 1.0e + 9 1.0e + 11 1.0e + 12 1.0e + 15 1.0e + 18 1.0e + 21

Кратные тесла / Прочие единицы
# gauss gamma maxwell / cm² maxwell / m² weber / m² weber / cm² A / m A / cm Oe
1 Т = 10000 1.0e + 9 10000 1 1 0,0001 7.9577e + 5 7957.7472 10000
1 кТ = 1.0e + 7 1.0e + 12 1.0e + 7 1000 1000 0,1 7.9577e + 8 7.9577e + 6 1.0e + 7
1 MT = 1.0e + 10 1.0e + 15 1.0e + 10 1.0e + 6 1.0e + 6 100 7.9577e + 11 7.9577e + 9 1.0e + 10
1 GT = 1.0e + 13 1.0e + 18 1.0e + 13 1.0e + 9 1.0e + 9 100000 7.9577e + 14 7.9577e + 12 1.0e + 13

Деления Тесла / Кратные тесла
# T kT MT GT
1 Т = 1 0.001 1.0e-6 1.0e-9
1 сТ = 0,01 1.0e-5 1.0e-8 1.0e-11
1 мТ = 0,001 1.0e-6 1.0e-9 1.0e-12
1 мкТл = 1.0e-6 1.0e-9 1.0e-12 1.0e-15
1 нТл = 1.0e-9 1.0e-12 1.0e-15 1.0e-18
1 точка = 1.0e-12 1.0e-15 1.0e-18 1.0e-21

Подразделения Tesla / Подразделения Tesla
# T cT mT µT nT pT
1 Т = 1 100 1000 1.0e + 6 1.0e + 9 1.0e + 12
1 сТ = 0,01 1 10 10000 1.0e + 7 1.0e + 10
1 мТ = 0,001 0,1 1 1000 1.0e + 6 1.0e + 9
1 мкТл = 1.0e-6 0,0001 0.001 1 1000 1.0e + 6
1 нТл = 1.0e-9 1.0e-7 1.0e-6 0.001 1 1000
1 точка = 1.0e-12 1.0e-10 1.0e-9 1.0e-6 0.001 1

Подразделения Tesla / Прочие подразделения
# gauss gamma maxwell / cm² maxwell / m² weber / m² weber / cm² A / m A / cm Oe
1 Т = 10000 1.0e + 9 10000 1 1 0,0001 7.9577e + 5 7957.7472 10000
1 сТ = 100 1.0e + 7 100 0,01 0,01 1.0e-6 7957.7472 79.5775 100
1 мТ = 10 1.0e + 6 10 0.001 0,001 1.0e-7 795.7747 7.9577 10
1 мкТл = 0,01 1000 0,01 1.0e-6 1.0e-6 1.0e-10 0,7958 0,008 0,01
1 нТл = 1.0e-5 1 1.0e-5 1.0e-9 1.0e-9 1.0e-13 0,0008 7.9577e-6 1.0e-5
1 точка = 1.0e-8 0.001 1.0e-8 1.0e-12 1.0e-12 1.0e-16 7.9577e-7 7.9577e-9 1.0e-8

Прочие единицы / Кратные тесла
# T kT MT GT
1 гаусс = 0.0001 1.0e-7 1.0e-10 1.0e-13
1 гамма = 1.0e-9 1.0e-12 1.0e-15 1.0e-18
1 максвелл / см² = 0,0001 1.0e-7 1.0e-10 1.0e-13
1 максвелл / м² = 1 0,001 1.0e-6 1.0e-9
1 вебер / м² = 1 0,001 1.0e-6 1.0e-9
1 вебер / см² = 10000 10 0,01 1.0e-5
1 А / м = 1.2566e-6 1.2566e-9 1.2566e-12 1.2566e-15
1 А / см = 0.0001 1.2566e-7 1.2566e-10 1.2566e-13
1 э = 0,0001 1.0e-7 1.0e-10 1.0e-13

Прочие агрегаты / подразделения Tesla
# T cT mT µT nT pT
1 гаусс = 0.0001 0,01 0,1 100 100000 1.0e + 8
1 гамма = 1.0e-9 1.0e-7 1.0e-6 0.001 1 1000
1 максвелл / см² = 0,0001 0,01 0,1 100 100000 1.0e + 8
1 максвелл / м² = 1 100 1000 1.0e + 6 1.0e + 9 1.0e + 12
1 вебер / м² = 1 100 1000 1.0e + 6 1.0e + 9 1.0e + 12
1 вебер / см² = 10000 1.0e + 6 1.0e + 7 1.0e + 10 1.0e + 13 1.0e + 16
1 А / м = 1,2566e-6 0.0001 0,0013 1,2566 1256,6371 1,2566e + 6
1 А / см = 0,0001 0,0126 0,1257 125,6637 1,2566e + 5 1,2566e + 8
1 э = 0,0001 0,01 0,1 100 100000 1.0e + 8

Прочие единицы / Прочие единицы
# gauss gamma maxwell / cm² maxwell / m² weber / m² weber / cm² A / m A / cm Oe
1 гаусс = 1 100000 1 0.0001 0,0001 1.0e-8 79,5775 0,7958 1
1 гамма = 1.0e-5 1 1.0e-5 1.0e-9 1.0e-9 1.0e-13 0.0008 7.9577e-6 1.0e-5
1 максвелл / см² = 1 100000 1 0.0001 0,0001 1.0e-8 79,5775 0,7958 1
1 максвелл / м² = 10000 1.0e + 9 10000 1 1 0.0001 7.9577e + 5 7957.7472 10000
1 вебер / м² = 10000 1.0e + 9 10000 1 1 0.0001 7.9577e + 5 7957.7472 10000
1 вебер / см² = 1.0e + 8 1.0e + 13 1.0e + 8 10000 10000 1 7.9577e + 9 7.9577e + 7 1.0e + 8
1 А / м = 0,0126 1256,6371 0,0126 1,2566e-6 1,2566e-6 1.2566e-10 1 0,01 0,0126
1 А / см = 1.2566 1.2566e + 5 1.2566 0.0001 0.0001 1.2566e-8 100 1 1.2566
1 э = 1 100000 1 0,0001 0,0001 1.0e-8 79,5775 0,7958 1

См. Также

Преобразование единиц



Миллиампер

Che cos’è e quanto vale un миллиампер?

Vuoi sapere che cos’è il milliampere ?

Vuoi sapere a cosa эквивалент в миллиампер и качество это такое символ?

Se sicontina con la lettura dell’articolo.В этом случае, если вы хотите узнать больше о , вы должны быть в миллиамперном диапазоне, поэтому вы можете использовать его в качестве символа и опций .

Il миллиампер (символ: mA) — это несколько многоамперных ампер, единое целое с множеством основных элементов, являющееся большим основанием Международной системы. Così come l’ampere anche il milliampere è adottato dal S.I ..

Термин миллиампер, производный от миллиампер-да-ампер, его имя французского физического лица Андре Мари Ампер (Лион, 20 января 1775 — Марсилья, 10 января 1836 г.), рассматривает одно из первых студий электромагнетизма.

Миллиамперное определение

Миллиампер, который определен, как интенсивная энергия, которая привлекает внимание кондитерских изделий в окружающей среде, в качественном сезоне, в миллиамперном (millesimo di coulomb), ди carica elettrica ad ogni secondo.

Quanto vale un миллиампер?

Миллиампер (символ: мА ) соответствует всем миллезимам, часть ампера:

e quindi tra milliampere (mA) e ampere (A) vale la seguente uguaglianza:

1 мА = 10-3 А = 0,001 А

Эквивалент в миллиамперах

Riportiamo di seguito alcune Equivalenze con il milliampere:

1 мА = 109 пА (= 109 пикоампер)

1 мА = 106 нА (= 106 наноампер)

1 мА = 103 мкА (= 103 мкА)

1 мА = 10-1 кА (= 10-1 сантиметр)

1 мА = 10-2 дА (= 10-2 дециампер)

1 мА = 10-3 А (= 10-3 ампер)

1 мА = 10-4 даА (= 10-4 декаампера)

1 мА = 10-5 га (= 10-5 эттоампер)

1 мА = 10-6 кА (= 10-6 килоампер)

1 мА = 10-9 мА (= 10-9 мегаампер)

1 мА = 10-12 Гс (= 10-12 гигаампер)

1 мА = 10-15 ТА (= 10-15 тераампер)

Да миллиампер в ампер и наоборот

Tenuto conto della relazione esistente tra миллиампер и ампер:

1 мА = 10-3 А

рисунок че:

  • на один проход в миллиампер в амперах, которые делятся на количество миллиампер на миллион;
  • на один проход на ампер на миллиампер, если на миллиампер больше, чем на один миллиампер.

Pertanto, ad esempio:

567 мА = 0,567 А

0,21 А = 210 мА

Соотношение ссылок:

Che cos’è e a cosa serve un amperometro?

Che cos’è e quanto vale un tesla?

Che cos’è e a quanto corrisponde un watt?

Что значит квантовый эквивалент милливольт?

Come è Definito l’ampere?

Che cos’è e a quanto corrisponde un joule?

Studia con noi

17 А / кв.см в А / кв.м — Ампер на квадратный сантиметр в Ампер на квадратный метр

Сколько А / кв.м в 17 А / кв.м? Ответ: 170 000 А / кв.м, поэтому 17 А / кв.м равняется 170 000 А / кв.м . Обсудим подробнее!

Как преобразовать 17 А / кв.м в А / кв.м?

Прежде всего, мы должны знать, что А / кв. См и А / кв. М — единицы поверхностной плотности тока, А / кв. См — это аббревиатура Ампер на квадратный сантиметр, А / кв. М — сокращение от Ампер на квадратный метр.

Затем мы хотим преобразовать 17 A / кв. См в A / кв. М. Сначала мы должны получить формулу преобразования A / кв. См в A / кв. М.

К счастью, с помощью страницы конвертера А / кв.см в А / кв.метр можно легко получить формулу преобразования А / кв.см в А / кв.м: 1 А / кв.см = 10000 А / кв. м . Число 10000 называется коэффициентом перевода А / кв. См в А / кв. М.

Итак, конвертируем А / кв. См в А / кв. М, просто умножаем А / кв.см на коэффициент пересчета 10000.

    Теперь мы легко можем посчитать, сколько А / кв.м в 17 А / кв.м.

    1 А / кв.м = 10000 А / кв.м

    17 А / кв.м = 17 * 10000 А / кв.м = 170 000 А / кв.м

    Результат: 17 А / кв.м = 170 000 А / кв.м.

А не все ли просто?

Если вы все еще не поняли, успокойтесь, мы можем привести другой пример:

    преобразовать 644 A / кв. см в A / кв. м

    1 А / кв.м = 10000 А / кв.м

    644 А / кв.см = 644 * 10000 А / кв.м = 6440000 А /

    кв.м

    Таким образом, 644 А / кв.м = 6440000 А / кв.м.

Итак, благодаря приведенному выше подробному объяснению, вы должны были овладеть техникой преобразования А / кв. См в А / кв. М. Если вы все еще не можете, не волнуйтесь, просто используйте инструмент преобразования A / кв. См в A / кв. М, который мы предоставили выше, введите желаемое значение преобразования, наш калькулятор немедленно выдаст результат, и максимальная точность результата сохраняется до 10 знаков, что очень удобно и быстро. С нетерпением жду вашего использования.

Вопросы решаемы от 17 А / кв.м до

А / кв.м

Хорошо, на данный момент мы уже знаем, что 17 А / кв. См равно 170 000 А / кв. М . С помощью этого преобразования можно легко решить следующие вопросы:

  • Как преобразовать 17 А / кв. См в А / кв. М?
  • Сколько А / кв.м в 17 А / кв.м?
  • 17 А / кв.м равно сколько А / кв.м?
  • Как рассчитать А / кв.м от 17 А / кв.м?
  • Как конвертировать А / кв.см в А / кв.м?
  • Как рассчитать А / кв.м от А / кв.м?
  • Какой переводной коэффициент из A / кв. См в A / кв. М?
  • Какая формула пересчета A / кв. См в A / кв. М?
  • Какое сокращение у единицы Ампер на квадратный сантиметр?
  • Какое сокращение у единицы Ампер на квадратный метр?

Конечно, это только часть вопросов, есть еще вопросы, которые можно решить от 17 А / кв.м до А / кв.м. Если вы знаете, пожалуйста, оставьте нам сообщение, мы добавим их в этот список вопросов.Спасибо.

Преобразовать 17 А / кв. См в другие единицы поверхностной плотности тока

Помимо преобразования 17 А / кв. См в А / кв. М, вас также может заинтересовать преобразование 17 А / кв. См в другие единицы измерения поверхностной плотности тока. Итак, ниже мы приводим некоторые результаты преобразования 17 А / кв. См в другие единицы поверхностной плотности тока.

Более того, если вы хотите преобразовать 17 A / кв.м в A / кв.м, нажмите здесь!

единиц поверхностной плотности тока 17 А / кв.см
Ампер на квадратный дюйм 109.6772 А / кв. Дюйм
Ампер на квадрат мил 0.0001096772 А / кв.м
Ампер на миллиметр 8.614027143E-5 A / круг. Мил
Абампер на квадратный сантиметр 1,7 abA / кв. См

A / кв. См в A / кв. М Последние преобразования

Помимо 17 A / кв. См до A / кв. М, мы перечисляем некоторые наиболее часто используемые A / кв.преобразование сантиметров в А / кв.м, удобное для вашего использования.

Андре Мари Ампер — биография, факты и изображения

Жил 1775 — 1836.

Андре-Мари Ампер сделал революционное открытие: провод, по которому проходит электрический ток, может притягивать или отталкивать другой провод рядом с ним, который также пропускает электрический ток. Притяжение является магнитным, но для того, чтобы эффект был заметен, магниты не нужны. Он сформулировал закон электромагнетизма Ампера и дал лучшее определение электрического тока своего времени.

Ампер также предположил существование частицы, которую мы теперь называем электроном, открыл химический элемент фтор и сгруппировал элементы по их свойствам за полвека до того, как Дмитрий Менделеев создал свою периодическую таблицу.

В его честь названа единица измерения электрического тока в системе СИ — ампер.

Объявления

Начало

Андре-Мари Ампер родился в зажиточной семье в городе Лион, Франция, 20 января 1775 года.Его отцом был бизнесмен Жан-Жак Ампер; его матерью была Жанна-Антуанетта Дезутьер-Сарси, осиротевшая дочь торговца шелком. У родителей Андре-Мари уже была дочь Антуанетта, родившаяся на два года раньше Андре-Мари.

Это был интеллектуально захватывающий период во французской истории; Антуан Лавуазье произвел революцию в химии; а Вольтер и Жан-Жак Руссо, лидеры французского Просвещения, призывали к тому, чтобы общество основывалось на науке, логике и разуме, а не на религиозных учениях католической церкви.

Когда Андре-Мари было пять лет, его семья переехала в загородное поместье недалеко от деревни Полеймье, примерно в шести милях (10 км) от Лиона. Его отец настолько разбогател, что ему больше не нужно было проводить много времени в городе. Вторая дочь Жозефина родилась, когда Андре-Мари было восемь лет.

Необычное образование
Образование Андре-Мари было довольно необычным. Его отец был большим поклонником Жан-Жака Руссо, одного из лидеров французского Просвещения.Он решил последовать подходу Руссо к образованию Андре-Мари. Это означало никаких формальных уроков.

Андре-Мари мог делать все, что ему заблагорассудится, узнавая все, что ему хотелось. Ему также разрешалось читать все, что он хотел, из большой библиотеки своего отца. Вы думаете, это рецепт катастрофы? Фактически, это сработало! И это сработало исключительно хорошо. Андре-Мари развил неутолимую тягу к знаниям, вплоть до заучивания целых страниц энциклопедии наизусть.

Несмотря на то, что Андре-Мари был ребенком французского Просвещения, он не отвергал церковь и оставался практикующим католиком на протяжении всей своей жизни.

«Мой отец … никогда не требовал от меня изучения чего-либо, но он знал, как пробудить во мне огромное стремление к знаниям. Прежде чем научиться читать, мне больше всего нравилось слушать отрывки из естествознания Бюффона. Я постоянно просил его прочитать мне историю животных и птиц … »

Андре-Мари Ампер, 1775–1836 гг.

Воспоминания, переключенные от третьего лица к первому.

Математика
В 13 лет Андре-Мари начал серьезно изучать математику по книгам из библиотеки своего отца.Он подал в Лионскую академию статью о конических сечениях, но она была отклонена.

Отказ побудил его работать усерднее, чем когда-либо. Его отец купил ему специальные книги, чтобы помочь ему стать лучше. Он также взял своего сына в Лион, где аббат Дабюрон давал ему уроки математики — первые уроки, которые Андре-Мари получил в официальной форме.

Физика
Взяв сына на формальные уроки математики, отец также отвел его в лионский колледж, чтобы он посетил несколько лекций по физике, в результате чего Андре-Мари начал читать книги по физике, а также по математике.

Революция, сопровождаемая трагедиями
До сих пор жизнь Андре-Мари была мирной и приятной, но наступал период трагедий.

В 1789 году, когда Андре-Мари было 14 лет, началась Французская революция.

В 1791 году, пока Андре-Мари продолжал учебу в своем загородном имении, революционеры предоставили его отцу юридическую роль мирового судьи.

В 1792 году умерла старшая сестра Андре-Мари Антуанетта.

В 1793 году якобинская фракция революции казнила его отца на гильотине.(Великий химик Антуан Лавуазье был гильотинирован революционерами в 1794 году.)

К счастью, Андре-Мари, изучавший математику и естественные науки в семейном имении, пережил царство террора революции. Он был опустошен смертью отца и бросил учебу на год.

Продолжительность жизни Ампера в контексте

Время жизни Ампера и время жизни ученых и математиков, связанных с ним.

Стать математиком и ученым

В конце 1797 года, в возрасте 22 лет, Андре-Мари Ампер открыл магазин в качестве частного репетитора математики в Лионе.Он показал себя отличным наставником, и вскоре к нему за помощью стали стекаться студенты.

Его репетиторская работа привлекла внимание интеллигенции Лиона, которые были впечатлены знаниями и энтузиазмом Ампера.

В 1802 году он стал школьным учителем в городе Бур в 40 милях (60 км) от Лиона. Год спустя он вернулся в Лион, чтобы работать на другой преподавательской должности.

В 1804 году он переехал во французскую столицу, Париж, где преподавал на университетском уровне в Политехнической школе.Его работа настолько впечатлила других математиков, что в 1809 году он получил звание профессора математики, несмотря на отсутствие формальной квалификации.

Вклад Андре-Мари Ампера в науку

Электромагнетизм и электродинамика

В 1800 году, когда Ампер работал частным репетитором в Лионе, Алессандро Вольта изобрел электрическую батарею. Одним из результатов этого было то, что впервые ученые смогли производить постоянный электрический ток.

В апреле 1820 года Ганс Кристиан Эрстед обнаружил, что электрический ток в проводе может отклонять находящуюся поблизости стрелку магнитного компаса.Эрстед обнаружил связь между электричеством и магнетизмом — электромагнетизм.

В сентябре 1820 года Франсуа Араго продемонстрировал электромагнитный эффект Эрстеда научной элите Франции во Французской академии в Париже. Присутствовал Ампер, избранный в Академию в 1814 году.

Ампер был очарован открытием Эрстеда и решил, что попытается понять, почему электрический ток вызывает магнитный эффект.

«С тех пор, как я впервые услышал о великом открытии Эрстеда… о действии электрического тока на намагниченную иглу, я постоянно думал об этом.Все мое время было посвящено написанию великой теории об этих явлениях … и попыткам экспериментов, обозначенных этой теорией, и все они увенчались успехом ».

Андре-Мари Ампер, 1775–1836 гг.

Связь с его сыном, Жан-Жаком, 1820

Ампер начал с повторения работы Эрстеда и до конца сентября 1820 года сделал собственное открытие: он обнаружил, что если электрический ток течет в одном направлении по двум соседним параллельным проводам, провода притягиваются друг к другу; если электрические токи протекают в противоположных направлениях, провода отталкиваются друг от друга.

Ампер обнаружил, что параллельные провода с токами, протекающими в одном направлении, притягиваются друг к другу. Токи в противоположных направлениях отталкиваются друг от друга.

Ампер открыл нечто удивительное: он создал магнитное притяжение и отталкивание при полном отсутствии каких-либо магнитов. Весь магнетизм генерировался электрически. Он назвал это новое поле электродинамикой. (Сегодня электродинамика и электромагнетизм рассматриваются как одна и та же область.)

Закон Ампера

Затем Ампер блестяще нашел уравнение, связывающее размер магнитного поля с электрическим током, который его производит.Это уравнение, известное как закон Ампера, является в высшей степени математическим и требует использования и понимания математики университетского уровня. Ниже показано в дифференциальной форме связь магнитного поля (B) с плотностью тока (J).

Это уравнение применимо к ситуациям, когда электрический ток постоянный. Спустя более 40 лет Джеймс Клерк Максвелл модифицировал это уравнение, чтобы оно также применялось к ситуациям, в которых ток непостоянен. В этой форме оно стало одним из его четырех известных уравнений, устанавливающих, что свет — это электромагнитная волна.

«Экспериментальное исследование, с помощью которого Ампер установил закон механического действия между электрическими токами, является одним из самых блестящих достижений науки. Вся теория и эксперимент выглядят так, как если бы они выросли и во всеоружии вылетели из мозга «Ньютона электричества». Он совершенен по форме и непоколебим по точности, и он суммирован в формуле, из которой могут быть выведены все явления, и которая всегда должна оставаться основной формулой электродинамики.”

Джеймс Клерк Максвелл, 1831 — 1879

Электричество и магнетизм, Vol. 2, Глава 3

Электрон

Чтобы объяснить взаимосвязь между электричеством и магнетизмом, Ампер предположил существование новой частицы, ответственной за оба этих явления — электродинамической молекулы , микроскопической заряженной частицы, которую мы можем рассматривать как прототип электрона. Ампер правильно считал, что огромное количество этих электродинамических молекул движется в электрических проводниках, вызывая электрические и магнитные явления.

Открытие фтора

Ампер не ограничивал свои интересы математикой и физикой; они были широкими и включали философию и астрономию. Он особенно интересовался химией. Фактически, до своей работы в области электромагнетизма он внес значительный вклад в химию.

Ампер открыл и назвал элемент фтор. В 1810 году он предположил, что соединение, которое мы теперь называем фтористым водородом, состояло из водорода и нового элемента: новый элемент имел свойства, аналогичные свойствам хлора, по его словам.Он и Хэмфри Дэви, который был британцем, вступили в переписку (хотя Франция и Великобритания находились в состоянии войны). Ампер предположил, что фтор можно выделить электролизом, который Дэви ранее использовал для обнаружения таких элементов, как натрий и калий.

Только в 1886 году французский химик Анри Муассан наконец выделил фтор. Он добился этого с помощью электролиза, метода, рекомендованного Ампером.

«За то время, пока я занимался этими расследованиями, я получил два письма от М.Ampère of Paris, содержащий множество гениальных и оригинальных аргументов в пользу аналогии между соляными [хлорными] и фтористыми [фторными] соединениями ».

Сэр Хэмфри Дэви, 1778 — 1829

Philosophical Magazine, Volume 42., p408, 1813

Организация химических элементов

В 1816 году, за 53 года до того, как Дмитрий Менделеев опубликовал свою периодическую таблицу, Ампер предложил сгруппировать химические элементы — 48 химических элементов в то время — сгруппировать по их свойствам.Он допустил ряд ошибок, но успешно сгруппировался:

  • щелочные металлы: натрий и калий
  • щелочноземельные металлы: магний, кальций, стронций и барий
  • галогены: хлор, фтор и йод

Он также двигался в правильном направлении, обнаружив сходство в:

  • благородные металлы: родий, палладий, иридий, платина и золото (к сожалению, Ампер исключил серебро из этой группы, сгруппировав его вместо ртути, свинца и висмута)
  • переходные элементы первой серии: железо, кобальт, никель, медь (хотя уран был включен неправильно)
  • переходные элементы: ниобий, молибден, хром и вольфрам

Ампер не назвал группы так, как они названы выше, такие как благородные металлы и переходные элементы — это современные названия.

Менделеев имел преимущество перед Ампером в том, что ему были известны 65 элементов, что позволяло ему легче видеть закономерности. Важно отметить, что Менделеев также обращал внимание на атомные веса, а Ампер — нет. Честно говоря, мы должны помнить, что Дж. Берцелиус опубликовал первый достаточно точный список атомных весов в 1828 году, через 12 лет после работы Ампера с элементами.

«… Мне казалось, что нужно попытаться исключить искусственные классификации из химии и начать отводить каждому элементу то место, которое он должен занимать в естественном порядке, сравнивая его последовательно с другими…»

Андре-Мари Ампер, 1775–1836 гг.

«Анналы химии и физики», том 2.

Ампер

Единицей измерения электрического тока в системе СИ является ампер (символ A), названный в честь Ампера. Именно Ампер первым определил электрический ток как «циркуляцию электрической жидкости в замкнутом контуре».

Некоторые личные данные и конец

В 1799 году в возрасте 24 лет Ампер женился на 25-летней Катрин-Антуанетте Каррон, которую обычно звали Жюли. Год спустя у них родился сын Жан-Жак — он был назван в память о любимом отце Ампера.Трагедия случилась с Ампером, когда после менее чем четырех лет брака Жюли умерла в 1803 году от рака брюшной полости.

Ампер снова женился в 1806 году на Жанне-Франсуазе Пото. Пара быстро поняла, что их брак был ошибкой. Их дочь Альбина родилась в 1807 году, и пара официально рассталась в 1808 году. Альбина переехала жить к своему отцу и его младшей сестре Жозефине.

В 1824 году Ампер был назначен на кафедру экспериментальной физики в Коллеж де Франс в Париже, которую он занимал всю оставшуюся жизнь.

Сын Ампера, Жан-Жак, стал известным профессором лингвистики и членом Французской академии. Он и его отец, как известно, вели довольно бурные споры друг с другом, оба вспыльчивы.

В возрасте 61 года Ампер заболела пневмонией. Он умер во французском средиземноморском городе Марселе 10 июня 1836 года.

Он был похоронен в Марселе, но его останки позже были перенесены на кладбище Монмартр в Париже. На кладбище Монмартр похоронены многие другие выдающиеся люди, в том числе композиторы Гектор Берлиоз и Жак Оффенбах; художник Эдгар Дега; автор Эмиль Золя; физик Леон Фуко; математик Станислав Улам; и сын Ампера, Жан-Жак, похоронен рядом со своим отцом.

Объявления

Автор этой страницы: The Doc
Изображения, улучшенные и раскрашенные в цифровом виде с помощью этого веб-сайта. © Все права защищены.

Цитируйте эту страницу

Используйте следующую ссылку, соответствующую требованиям MLA:

 "Андре-Мари Ампер". Известные ученые. famousscientists.org. 1 октября 2015 г. Web.
. 

Опубликовано FamousScientists.org

Дополнительная литература
Сэр Хамфри Дэви
Некоторые эксперименты и наблюдения за веществами, полученными в различных химических процессах на плавиковой шпате.
Philosophical Magazine, Volume 42., p408, 1813.

.

Par M. Guibourt
Sur la классификация и химическая номенклатура
Journal de Pharmacy et des Sciences accessoires, Vol. 10, п319, 1824

Кристин Блондель
A.-M. Ampere et la creation de l’electrodynamique, 1820-1827
Bibliotheque nationale, 1982

Джеймс Р. Хофманн
Андре-Мари Ампер Просвещение и электродинамика
Cambridge University Press, 1996

🔥 КВА в Ампер Калькулятор

Киловольт-ампер (кВА)
Единица измерения кВА (киловольт-ампер) — это мощность, связанная с электрическим током.
1 кило вольт-ампер равен 1000 вольт-ампер. КВА равна квадратному корню из 3 (1,732) ампер, умноженных на вольт, деленному на 1000.

Ампер (А)
Ампер — это поток электричества в виде электрического тока.
В частности, он измеряет количество электронов, которые проходят через определенную точку в секунду, поэтому в основном один ампер определяется как ток, который течет с электрическим зарядом в один кулон в секунду.

Калькуляторы, похожие на преобразование ампер в кВА Узнайте о преобразовании ампер в кВА.

кВА для калькулятора ампер

Это онлайн-калькулятор, который преобразует киловольт-амперы и напряжение в ампер. Это простой рабочий инструмент, требующий ввода соответствующих единиц в соответствующие текстовые поля. На вкладке «Расчет» выполняется расчет после правильного ввода значений.

Первый шаг — выбрать фазы, которые могут быть однофазными или трехфазными. Затем вы должны ввести киловольт-амперы и напряжение в соответствующие поля.Один щелчок мыши выполнит расчет, и окончательный ответ будет в амперах. При нажатии на вкладку сброса все предыдущие записи будут удалены, чтобы выполнить новые вычисления.

Математические формулы для преобразования кВА в амперы следующие:

Формула для расчета однофазных кВА в Амперы
Ток I в амперах равен 1000-кратной полной мощности S в киловольт-амперах, деленной на напряжение V в вольтах:
I (A) = 1000 × S (кВА) / V (В)

3 фазы кВА в формула расчета ампер

Расчет с линейным напряжением
Фазный ток I в амперах (со сбалансированной нагрузкой) равен 1000, умноженному на полную мощность P в киловольт-амперах, деленную на квадратный корень из трех значений линейного среднеквадратичного напряжения VL-L в вольтах:
I (A) = 1000 × P (кВА) / (√3 × VL-L (V))

Расчет при напряжении между фазой и нейтралью
Фазовый ток I в амперах (со сбалансированной нагрузкой) равен 1000-кратной полной мощности S в киловольт-амперах, деленной на 3-кратное действующее значение напряжения между фазой и нейтралью VL-N в вольт:
I (A) = 1000 × S (кВА) / (3 × VL-N (В))

Вот подробное видео, чтобы проверить процесс преобразования кВА в усилители.

kVA в амперы

Выбрать фазу Киловольт-ампер (кВА) Вольт (В)
Однофазный 1,5 кВА в амперы 1 вольт
Однофазный 2 кВА в усилители 2 вольта
Однофазный 3 кВА в усилители 3 вольта
Однофазный 5 кВА в амперы 4 вольта
Однофазный 6 кВА в усилители 5 вольт
Однофазный 7.5 кВА в амперы 6 вольт
Однофазный 10 кВА в усилители 7 вольт
Однофазный 15 кВА в амперы 8 вольт
Однофазный 20 кВА в амперы 9 вольт
Однофазный 25 кВА в амперы 10 вольт
Однофазный 30 кВА в амперы 11 вольт

Преобразовать кВА в амперы

Тип фазы Киловольт-ампер (кВА) Тип напряжения Вольт (В) Ампер (А)
Трехфазный 60 кВА в амперы Линия к линии 16 вольт 2165.06 Ампер
Трехфазный 70 кВА в А Линия к линии 17 вольт 2377,32 А
Трехфазный 75 кВА в усилители Линия к линии 18 вольт 2405,62 А
Трехфазный 100 кВА в амперы Линия к линии 19 вольт 3038.68 Ампер
Трехфазный 112,5 кВА в амперы Линия к линии 20 вольт 3247,59 А
Трехфазный 125 кВА в амперы Линия к линии 21 вольт 3436,6 А
Трехфазный 150 кВА в амперы Линия к линии 22 вольт 3936.47 Ампер
Трехфазный 200 кВА в А Линия к линии 23 вольт 5020,43 А
Трехфазный 225 кВА в усилители Линия на нейтраль 24 В 3125 А
Трехфазный 250 кВА в амперы Линия на нейтраль 25 вольт 3333.333 Ампер
Трехфазный 300 кВА в амперы Линия на нейтраль 26 вольт 3846,15 А
Трехфазный 500 кВА в амперы Линия на нейтраль 27 вольт 6172,84 А
Трехфазный 750 кВА в усилители Линия на нейтраль 28 вольт 8928.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *