Зарядка для литий ионных аккумуляторов на лм317 с индикатором: Схемы самодельных зарядок для литий-ионных аккумуляторов (18650, 14500 li-ion), как правильно заряжать литий-полимерные АКБ

Содержание

Зарядка для литиевых аккумуляторов. Зарядное устройство для литий-ионных аккумуляторов

Это простое зарядное устройство для литий-ионных аккумуляторов , а так же и литий-полимерных аккумуляторов построено на широко известном LM317.

Процесс заряда показан на графике ниже. В первый момент процесса зарядки ток заряда постоянен, при достижении целевого уровня напряжения (Umax) на аккумуляторе, зарядное устройство переходит в режим, когда напряжение остается постоянным, а ток асимптотически стремится к нулю.

Выходное напряжение литий-ионных и литий-полимерных аккумуляторов, как правило, составляет 4,2В (для некоторых типов 4,1 В). Обычно, выходное напряжение не совпадает с номинальным напряжением которое составляет 3,7В (иногда 3,6В).

Не рекомендуется заряжать данный тип аккумуляторов до полных 4,2В, так как это уменьшает срок службы аккумулятора. Если уменьшить выходное напряжение до 4,1В, емкость падает на 10%, но в тоже время срок службы (количество циклов) увеличится почти в два раза.

При эксплуатации аккумуляторов, нельзя доводить номинальное напряжение ниже 3,4…3,3В.

Описание зарядного устройства

Как уже было сказано, зарядка построена на стабилизаторе LM317. Li-Ion и Li-Pol довольно требовательны к точности зарядного напряжения. Если вы хотите, произвести заряд до полного напряжения (обычно 4,2В), то необходимо выставить это напряжение с точностью плюс/минус 1%. После зарядки до 90% емкости (4,1В), точность может быть немного меньше (около 3%).

Схема с применением LM317 обеспечивает достаточно точную стабилизацию напряжения. Целевое напряжение устанавливается R2. Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно, стабилизировать его с помощью шунтирующего резистора Rx и NPN транзистора (VT1).

Если падение напряжения на резисторе Rx достигает примерно 0,95В, то транзистор начинает открываться. Это уменьшает напряжение на контакте «Общий» стабилизатора Lm317 и тем самым стабилизируется ток.

Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путем изменения сопротивления Rx. Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax. Указанное на схеме значение резистора Rx соответствует току в 200мА.

Входное напряжение питания зарядного устройства должно находиться в диапазоне от 9 до 24 вольт. Превышение данного уровня увеличивает потери мощности в цепи LM317, снижение — нарушит правильную работу (нужно пересчитывать падение напряжения на шунте и минимальное напряжения на контакте «Общий»). Транзистор VT1 можно заменить на BC237, KC507, C945 или отечественный

Изобретения и использование инструмента с источниками автономного питания стало одним из визитных карточек нашего времени. Разрабатывается и внедряются всё новые активные компоненты, улучшающие работу батарейных сборок. К сожалению аккумуляторы не могут работать без подзарядки. И если на устройствах, имеющих постоянный доступ электросети вопрос решается встроенными источниками, то для мощных источников питания, например, шуруповерта, необходимо отдельные зарядные устройства для литиевых аккумуляторов с учетом особенности различных типов аккумуляторов.

Последние годы всё активнее используются изделия на литий-ионном активном компоненте. И это вполне понятно, так — как эти источники питания зарекомендовали себя с очень хорошей стороны:

  • у них отсутствует эффект памяти;
  • практически полностью ликвидирован саморазряд;
  • могут работать при минусовых температурах;
  • хорошо удерживают разряд.
  • количество доведен до 700 циклов.

Но, каждый тип батарей имеет свои особенности. Так, литий — ионный компонент требует конструкцию элементарных батареек с напряжением 3, 6В, что требует некоторые индивидуальные особенности для подобных изделий.

Особенности восстановления

При всех достоинствах литий-ионных аккумуляторах у них есть свои недостатки — это возможность внутреннего замыкания элементов при перенапряжении зарядки из — за активные кристаллизации лития в активном компоненте. Также имеется ограничение по минимальному значению напряжения, которое приводит к невозможности приема электронов активным компонентом. Чтобы исключить последствия, батарея оснащается внутренними контроллером, которое разрывает цепь элементов с нагрузкой при достижении критических значений. Хранятся такие элементы лучше всего при зарядке 50 % при +5 — 15° С. Еще одно из особенностей литий-ионных аккумуляторов является то, что время эксплуатации батарейки зависит от времени ее изготовления, вне зависимости от того была ли она в эксплуатации или нет, или другими словами подвержена «эффекту старения», который ограничивает сроком эксплуатации — пять лет.

Зарядка литий — ионных аккумуляторов

Простейшее устройство зарядки одного элемента

Для того чтобы понять более сложные схемы зарядки литий — ионных аккумуляторов, рассмотрим простое зарядное устройство для литиевых аккумуляторов, точнее для одной батарейки.

Основа схемы оставляет управление: микросхема TL 431 (выполняет роль регулируемого стабилитрона) и одном транзисторе обратной проводимости.
Как видно из схемы управляющий электрод TL431 включен в базу транзистора.

Настройка аппарата сводится к следующему: нужно на выходе устройства установить напряжение 4,2В — это устанавливается регулировкой стабилитрона подключением на первую ножку сопротивления R4 — R3 номиналом 2,2 кОм и 3 кОм. Эта цепочка отвечает за регулировку выходного напряжения, регулировка напряжения устанавливается только один раз и является стабильной.

Далее регулируется ток заряда, регулировка производится сопротивлением R1 (на схеме номиналом 3Ом) в случае, если эмиттер транзистора будет включён без сопротивления, тогда входное напряжение будет и на клеммах зарядки, то есть — это 5В, что может не соответствовать требованиям.

Так же, в этом случае не будет светиться светодиод, а он сигнализирует об протекании процесса насыщения током. Резистор может быт номиналом от 3 до 8 Ом.

Для быстрой подстройки напряжение на нагрузке, сопротивление R3 можно установить регулируемое (потенциометр). Напряжение настраивается без нагрузки, то есть, без сопротивления элемента, номиналом 4, 2 — 4,5В. После достижения необходимого значения достаточно замерить величину сопротивление переменного резистора и поставить основную деталь нужного номинала вместо него. Если нет необходимого номинала его можно собрать из нескольких штук параллельным или последовательным соединением.

Сопротивление R4 предназначено для открывания базы транзистора, его номинал должен быть 220Ом.При увеличении заряда аккумулятора напряжение будет повышаться, управляющий электрод базы транзистора будет увеличивать переходное сопротивление эмиттер — коллектор, уменьшая ток зарядки.

Транзистор можно использовать КТ819, КТ817 или КТ815, но тогда придется ставить радиатор для охлаждения. Также радиатор будет необходим если токи будут превышать 1000мА. В общем, эта классическая схема простейшая зарядки.

Усовершенствование зарядного устройства для литиевых li — ion аккумуляторов

Когда появляется необходимость зарядить литий ионных батарей, соединенных из нескольких спаянных элементарных ячеек, то лучше всего заряжать ячейки отдельно с применением контрольной схемы, которая будет следить за зарядкой индивидуально каждой отдельной батарейкой. Без этой схемы значительное отклонение характеристик одного элемента в последовательно спаянной батареи приведет к неисправности все аккумуляторы, а сам блок будет даже опасным по причине его возможного перегрева или даже воспламенения.

Зарядное устройство для литиевых аккумуляторов 12 вольт. Устройство балансира

Термин балансировка в электротехнике означает режим зарядки, который производит контроль за каждым отдельным элементом, участвующим в процессе, не допуская увеличения или снижения напряжения менее необходимого уровня. Необходимость подобных решений вытекает из особенностей сборок с li — ion. Если из за внутренней конструкции один из элементов зарядиться быстрее остальных, что очень опасно для состояния остальных элементов, и как следствие всей батареи. Схемное решение балансира выполнена таким образом, что элементы схемы берут на себя избыток энергии, тем самым регулируя процесс зарядки отдельной ячейки.

Если сравнивать принципы зарядки никель-кадмиевых аккумуляторов, то они имеют отличия от литий-ионного, прежде всего у Ca — Ni окончание процесса свидетельствует повышение напряжения полярных электродов и уменьшение тока до 0, 01мА. Также перед зарядкой этот источник должен быть разряжен не менее 30% от первоначальной емкости, если не выдержать это условия в батарее возникает «эффект памяти», который снижает емкость батареи.

С Li-Ion активным компонентом все наоборот. Полная разрядка этих элементов может привести к необратимым последствиям и резко понизить способность заряжаться. Нередко некачественные контроллеры могут не обеспечить контроль за уровнем разрядки батареи, что может привести неисправности всей сборки из-за одной ячейки.

Выходом из ситуации может стать применение выше рассмотренной схемы на регулируемом стабилитроне TL431. Нагрузку 1000 мА или больше может обеспечить установка более мощным транзистором. Такие ячейки подключается к непосредственно к каждой ячейке предохранит от неправильной зарядки.

Выбирать транзистор следует от мощности. Мощность подсчитывается по формуле P = U*I, где U — напряжение, I – зарядный ток.

Например, при токовой зарядки 0,45 А транзистор должен иметь рассеиваемую мощность не менее 3,65 В*0,45А = 1,8 Вт. а это для внутренних переходов большая токовая нагрузка, поэтому выходные транзисторы лучше установить в радиаторы.

Ниже приведен примерный расчет величины резисторов R1 и R2 на различное напряжение заряда:

22,1к + 33к => 4,16 В

15,1к + 22к => 4,20 В

47,1к + 68к => 4,22 В

27,1к + 39к => 4,23 В

39,1к + 56к => 4,24 В

33к + 47к => 4,25 В

Сопротивление R3 – нагрузка на базе транзистора. Его сопротивление может быть 471Ом — 1, 1 кОм.

Но, при реализации этих схемных решений, возникла проблема, как заряжать отдельную ячейку в аккумуляторном блоке? И такое решение нашлось. Если посмотреть на контакты на зарядной ножке, то на выпускаемых в последнее время корпусах с литий-ионными батареями находится такое количество контактов, сколько отдельных ячеек в батарее, естественно, на зарядном устройстве каждый такой элемент подключается отдельный схеме контроллера.

По стоимости подобное зарядное изделие несколько дороже чем линейное устройство с двумя контактами, но это стоит того, особенно если учесть, что сборки с высококачественными литий-ионными компонентами с доходят да половины стоимости самого изделия.

Импульсное зарядное устройство для литиевых li — ion аккумуляторов

Последнее время многие ведущие — фирмы производители ручного инструмента с автономным питанием, широко рекламирует быстро зарядные устройства. Для этих целей были разработаны импульсные преобразователи на основе широтно-импульсно модулированных сигналов (ШИМ) для восстановления блоков питания шуруповертов на основе ШИМ генератора на микросхеме UC3842 собран обратноходовой AS — DS преобразователь c нагрузкой на импульсный трансформатор.

Далее будет рассмотрена работа схема наиболее распространённых источника (см прилагаемую схему) : сетевое напряжение 220В поступает на диодную сборку D1- D4, для этих целей используются любые диоды мощностью до 2A. Сглаживание пульсаций происходит на конденсаторе C1, где концентрируется напряжение порядка 300В. Это напряжение является питанием для импульсного генератора с трансформатором T1 на выходе.

Первоначальное питание для запуска интегральная микросхемы A1 поступает через резистор R1, после чего включается генератор импульсов микросхемы, которая выдает их на вывод 6. Далее импульсы подаются на затвор мощного полевого транзистора VT1 открывая его. Стоковая цепь транзистора подает питание к первичной обмотке импульсного трансформатора Т1. После чего включатся в работу трансформатор и начинается передача импульсов на вторичную обмотку. Импульсы вторичной обмотки 7 — 11 после выпрямления диодом VT6 используется для стабилизации работы микросхемы A1, которая в режиме полной генерации потребляют гораздо больший ток, чем получает по цепи от резистора R1.

В случае неисправности диодов Д6, источник переходит у режиму пульсации, поочередно запуская работу трансформатор и прекращая его, при этом слышен характерный пульсирующий «писк» посмотрим работу схемы в этом режиме.

Питание через R1 и конденсатор C4 запускают генератор микросхемы. После запуска, для нормальной работы требуется более повышенный ток. При неисправности Д6 дополнительного питания на микросхему не поступает, и генерация прекращается, затем процесс повторяется. Если диод Д6 исправен, сразу включает в работу импульсный трансформатор под полную нагрузку.

При нормальном запуске генератора на обмотке 14- 18 появляется импульсный ток 12 — 14В (на холостом ходу 15В). После выпрямления диодом V7 и сглаживания импульсов конденсатором C7 и импульсный ток поступает на зажимы батареи.

Ток 100 мА, не вредит активному компоненту, но повышает время восстановления в 3-4 раза, снижая ее время от 30 мин до1 часа. (источник — журнал интернет издание Радиоконструктор 03-2013 )

Быстрозарядное устройство G4-1H RYOBI ONE+ BCL14181H

Импульсное устройство для литиевых аккумуляторов 18 вольт производства немецкой компании Ryobi, производитель народная республика Китай. Импульсное устройство подходит для литий-ионных, никель кадмиевых 18В. Рассчитана на нормальную эксплуатацию при температуре от 0 до 50 С. Схемное решение обеспечивает два режима питания по напряжению и стабилизации по току. Импульсная подача тока обеспечивает оптимальную подпитку каждой отдельной батарейки.

Устройство выполнено в оригинальном корпусе из ударопрочной пластмассы. Применено принудительное охлаждение от встроенного вентилятора, с автоматическим включением при достижении 40° С.

Характеристики:

  • Минимальное время заряда 18В при 1,5 А /ч — 60 минут, вес 0,9 кг, габариты: 210 x 86 x 174 мм. Индикация процесса зарядки подсвечивается синим светодиодом, по окончании загорается красный. Имеется диагностика неисправности, которая загорается при неисправности сборки отдельной подсветкой на корпусе.
  • Питание однофазное 50Гц. 220В. Длина сетевого провода 1,5 метра.

Ремонт зарядной станции

Если случилось так, что изделие перестало выполнять свои функции, лучше всего обратиться в специализированные мастерские, но элементарные неисправности можно устранить своими руками. Что делать если не горит индикатор питания, разберем некоторые простые неисправности на примере станции .

Это изделие предназначено для работы с литий-ионными батареями 12В, 1,8А. Изделие выполнено с понижающим трансформатором, преобразование пониженного переменного тока выполняется четырех диодные мостовую схему. Для сглаживания пульсации установлен электролитический конденсатор. Из индикации имеется светодиоды сетевого питания, начала и окончание насыщения.

Итак, если не горит сетевой индикатор. Прежде всего необходимо через сетевую вилку убедится в целостности цепи первичной обмотки трансформатора. Для этого через штыри вилки подключения сетевого питания нужно прозвонить омметром целостность первичной обмотки трансформатора коснувшись щупами прибора за штыри сетевой вилки, если цепь показывает обрыв, тогда нужно осмотреть детали внутри корпуса.

Возможен обрыв предохранителя, обычно это тоненькая проволочка, протянутая в фарфоровом или стеклянном корпусе, сгорающая при перегрузках. Но некоторые фирмы, например, «Интерскол», для того чтобы предохранить обмотки трансформатора от перегрева устанавливают между витками первичной обмотки тепловой предохранитель, цель которого при достижении температуры 120 — 130° С, разрывать цепь питания сети и, к сожалению, ее уже после разрыва не восстанавливает.

Обычно предохранитель находится под покровной бумажной изоляцией первичной обмотки, после вскрытия которой, можно легко обнаружить эту деталь. Чтобы снова привести схему в рабочее состояние, можно, просто спаять концы обмотки в одно целое, но нужно помнить — трансформатор остается без защиты от короткого замыкания и лучше всего вместо теплового установить обычный сетевой предохранитель.

Если цепь первичной обмотки целая, прозванивается вторичная обмотка и диоды моста. Для прозвонки диодов лучше выпаять один конец из схемы и проверить диод омметром. При подсоединении концов к выводам поочередно щупов в одну сторону, диод должен показывать обрыв, в другую, короткое замыкание.

Таким образом необходимо проверить все четыре диода. И, если, уж, мы залезли в схему, тогда лучше всего сразу поменять конденсатор, потому, что диоды обычно перегружаются по причине высовшего электролита в конденсаторе.

Купить блоки питания для шуруповерта

Любой ручной инструмент и аккумуляторы можно приобрести у нас на сайте. Для этого необходимо пройти простую процедуру регистрации и далее следовать по несложный навигации. Простая навигации сайта легко выведет на необходимый для вас инструмент. На сайте можно посмотреть цены и сравнить их с конкурирующими магазинами. Любой возникший вопрос можно решить с помощью менеджера, позвонив по указанному телефону или оставить вопрос дежурному специалисту. Заходите к нам, и вы не останетесь без выбора необходимого вам инструмента.


Наверняка, каждый радиолюбитель сталкивался с проблемой, подключая литиевые аккумуляторы последовательно, замечал что один садиться быстро а другой еще вполне держит заряд, но из за другого севшего вся батарея не выдает нужного напряжения. Это происходит от того что при зарядке всего блока батарей, они заряжаются не равномерно, и часть батарей набирают полную емкость а часть нет. Это приводит не только к быстрому разряду, но и к выходу из строя отдельных элементов, из за постоянной не до зарядки.
Исправить проблему достаточно просто, на каждый аккумуляторный элемент нужен так называемый балансир, устройство которое после полной зарядки батареи блокирует ее дальнейший перезаряд, и управляющим транзистором обводит зарядный ток мимо элемента.
Схема балансира достаточно проста, собрана на прецизионном управляемом стабилитроне TL431A, и транзисторе прямой проводимости BD140.


После долгих экспериментов схема немного изменилась, в место резисторов было установлено 3 последовательно включенных диода 1N4007, работать балансир стал как по мне стабильней, диоды при зарядке ощутимо греются, это следует учитывать при разводке платы.


Принцип работы очень прост, пока напряжение на элементе меньше 4,2 вольта, идет зарядка, управляемый стабилитрон и транзистор закрыты и не влияют на процесс зарядки. Как только напряжение достигнет 4,2 вольта, стабилитрон начинает открывать транзистор, который через резисторы суммарным сопротивлением 4 Ома шунтирует аккумулятор, тем самым не давая напряжению подняться выше верхнего порога 4,2 вольта, и дает возможность зарядиться остальным аккумуляторам. Транзистор с резисторами спокойно пропускает ток около 500 мА, при этом он нагревается градусов до 40-45. Как только на балансире загорелся светодиод аккумулятор который к нему подключен полностью заряжен. То есть, если у вас соединено 3 аккумулятора, то окончанием заряда нужно считать загорание светодиодов на всех трех балансирах.
Настройка очень проста, подаем на плату (без аккумулятора) напряжение 5 вольт через резистор примерно 220 Ом, и меряем на плате напряжение, оно должно быть 4,2 вольта, если оно отличается то подбираем резистор 220 кОм в небольших пределах.
Напряжение для зарядки нужно подавать примерно на 0,1-0,2 вольта больше чем напряжение на каждом элементе в заряженном состоянии, пример: у нас 3 последовательно соединенных аккумулятора по 4,2 вольта в заряженном состоянии, суммарное напряжение 12,6 вольта. 12,6 + 0,1 + 0,1 + 0,1 = 12,9 вольта. Также следует ограничит ток заряда на уровне 0,5 А.
Как вариант стабилизатора напряжения и тока можно использовать микросхему LM317, включение стандартное с даташита, схема выглядит следующим образом.


Трансформатор нужно выбирать с расчета — напряжение заряженной батареи + 3 вольта по переменке, для корректной работы LM317. Пример у вас батарея 12,6 вольта + 3 вольт = трансформатор нужен 15-16 вольт переменного напряжения.
Так как LM317 линейный регулятор, и падение напряжения на нем превратится в тепло, обязательно устанавливаем ее на радиатор.
Теперь немного о том как рассчитать делитель R3-R4 для стабилизации напряжения , а очень просто по формуле R3+R4=(Vo/1.25-1)*R2 , величина Vo — это напряжение окончания заряда (максимальное выходное после стабилизатора).
Пример: нам нужно получить на выходе 12,9 вольта для 3-х. батарей с балансирами. R3+R4=(12.9/1.25-1)*240=2476,8 Ом. что примерно ровняется 2,4 кОм + у нас стоит подстроечный резистор, для точной подстройки (470 Ом), что позволит нам, без проблем установить расчетное выходное напряжение.
Теперь расчет выходного тока, за него отвечает резистор Ri, формула простая Ri=0.6/Iз , где Iз — максимальный ток заряда. Пример нам нужен ток 500 мА, Ri=0.6/0,5А= 1,2 Ом. Следует учитывать, что через данный резистор течет зарядный ток, потому мощность его стоит брать 2 Вт. Вот и все, платы я не выкладываю, они будут когда я соберу зарядное устройство с балансиром для своего металлоискателя.

У многих, наверное, возникает проблема с зарядкой Li-Ion аккумулятора без контроллера, у меня возникла такая ситуация. Достался убитый ноутбук, в аккумуляторе 4 банки SANYO UR18650A оказались живые.
Решил заменить в светодиодном фонарике, вместо трех батареек ААА. Встал вопрос об их зарядке.
Покопавшись в инете нашел кучу схемок, но с деталями у нас в городе туговато.
Пробовал заряжать от зарядки сотового, проблема в контроле заряда, нужно постоянно следить за нагревом, чуть начинает нагреваться нужно отключать от зарядки иначе аккумулятору каюк в лучшем случае, а то и можно устроить пожар.
Решил сделать самостоятельно. Купил в магазине постельку под аккумулятор. На барахолке купил зарядку. Для удобства отслеживания окончания заряда желательно найти с двухцветным светодиодом который сигнализирует о конце заряда. Он переключается с красного на зеленый при окончании зарядки.
Но можно и обычную. Зарядку можно заменить на шнур USB, и заряжать от компьютера или зарядки с USB выходом.
Моя зарядка только для аккумуляторов без контроллера. Контроллер я взял от старого аккумулятора сотового телефона. Она следит за тем, чтобы аккумулятор не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания.
На нем стоят микросхема DW01 и сборка двух MOSFET-транзисторов (M1,M2) SM8502A. Есть и с другими маркировками, но схемы подобны этой, и работает аналогично.

Контроллер заряда от аккумулятора сотового телефона.


Схема контроллера.


Ещё одна схема контроллера.
Главное не перепутать полярность припайки контроллера с постелькой и контроллера с зарядкой. На платке контроллера указаны контакты «+» и «-» .

В постельке возле плюсового контакта желательно сделать явно заметный указатель, красной краской или самоклеющейся пленкой, во избежание переполюсовки.
Собрал всё воедино и вот что получилось.


Заряжает замечательно. При достижении напряжения 4,2 вольта контроллер отключает аккумулятор от зарядки, и переключается светодиод с красного на зелёный. Зарядка закончена. Заряжать можно и другие Li-Ion аккумуляторы, только применить другую постельку. Всем удачи.

В современных мобильных электронных устройствах, даже тех, которые спроектированы с учетом минимизации энергопотребления, использование невосстанавливаемых батарей уходит в прошлое. И с экономической точки зрения — уже на непродолжительном интервале времени суммарная стоимость необходимого количества разовых батарей быстро превысит стоимость одного аккумулятора, и с точки зрения удобства пользователя — проще перезарядить аккумулятор, чем искать, где купить новую батарейку. Соответственно, зарядные устройства для аккумуляторов становятся товаром с гарантированным спросом. Неудивительно, что практически все производители интегральных схем для устройств электропитания уделяют внимание и «зарядному» направлению.

Еще лет пять назад обсуждение микросхем для заряда аккумуляторных батарей (Battery Chargers IC) начиналось со сравнения основных типов аккумуляторов — никелевых и литиевых. Но в настоящее время никелевые аккумуляторы практически перестали использоваться и большинство производителей микросхем заряда либо полностью прекратило выпуск микросхем для никелевых батарей, либо выпускает микросхемы, инвариантные к технологии батареи (так называемые Multi-Chemistry IC). В номенклатуре компании STMicroelectronics в настоящее время присутствуют только микросхемы, предназначенные для работы с литиевыми аккумуляторами.

Коротко напомним основные особенности литиевых аккумуляторов. Достоинства:

  • Высокая удельная электроемкость. Типичные значения 110…160Вт*час*кг, что в 1,5…2,0 раза превышает аналогичный параметр для никелевых батарей. Соответственно, при равных габаритах емкость литиевой батареи выше.
  • Низкий саморазряд: примерно 10% в месяц. В никелевых батареях этот параметр равен 20…30%.
  • Отсутствует «эффект памяти», благодаря чему эта батарея проста в обслуживании: нет необходимости разряжать аккумулятор до минимума перед очередной зарядкой.

Недостатки литиевых батарей:

  • Необходимость защиты по току и напряжению. В частности, необходимо исключить возможность короткого замыкания выводов аккумулятора, подачи напряжения обратной полярности, перезаряда.
  • Необходимость защиты от перегрева: нагрев батареи выше определенного значения негативно влияет на ее емкость и срок службы.

Существуют две промышленные технологии изготовления литиевых аккумуляторов: литий-ионная (Li-Ion) и литий-полимерная (Li-Pol). Однако, поскольку алгоритмы заряда этих батарей совпадают, то микросхемы заряда не разделяют литий-ионную и литий-полимерную технологии. По этой причине обсуждение достоинств и недостатков Li-Ion- и Li-Pol-аккумуляторов пропустим, сославшись на литературу .

Рассмотрим алгоритм заряда литиевых батарей, представленный на рисунке 1.

Рис. 1.

Первая фаза, так называемый предварительный заряд, используется только в тех случаях, когда батарея сильно разряжена. Если напряжение батареи ниже 2,8 В, то ее нельзя сразу заряжать максимально возможным током: это крайне отрицательно скажется на сроке службы аккумулятора. Необходимо сначала «подзарядить» батарею малым током примерно до 3,0 В, и только после этого заряд максимальным током становится допустим.

Вторая фаза: зарядное устройство как источник постоянного тока. На этом этапе через батарею протекает максимальный для заданных условий ток. При этом, напряжение аккумулятора постепенно растет до тех пор, пока не достигнет предельного значения, равного 4,2 В. Строго говоря, по завершению второго этапа заряд можно прекратить, но при этом следует иметь в виду, что аккумулятор на данный момент заряжен примерно на 70% своей емкости. Отметим, что во многих зарядных устройствах максимальный ток подается не сразу, а плавно нарастает до максимума в течение нескольких минут — используется механизм «плавного старта» (Soft Start).

Если желательно зарядить батарею до значений емкости, близких к 100%, то переходим к третьей фазе: зарядное устройство как источник постоянного напряжения. На этом этапе к батарее приложено постоянное напряжение 4,2 В, а ток, протекающий через батарею, в процессе заряда уменьшается от максимума до некоторого заранее заданного минимального значения. В тот момент, когда значение тока уменьшается до этого предела, заряд батареи считается законченным и процесс завершается.

Напомним, что одним из ключевых параметров аккумуляторной батареи является ее емкость (единица измерения — А*час). Так, типичная емкость литий-ионного аккумулятора типоразмера ААА равна 750…1300 мА*ч. Как производная от этого параметра используется характеристика «ток 1С», это величина тока, численно равная номинальной емкости (в приведенном примере — 750…1300 мА). Значение «тока 1С» имеет смысл только как определение величины максимального тока при заряде батареи и величины тока, при которой заряд считается законченным. Принято считать, что величина максимального тока не должна превышать величины 1*1С, а заряд батареи можно считать завершенным при снижении тока до величины 0,05…0,10*1С. Но это те параметры, которые можно считать оптимальными для конкретного типа батареи. В реальности одно и то же зарядное устройство может работать с аккумуляторами различных производителей и различной емкости, при этом емкость конкретной батареи остается для зарядного устройства неизвестной. Следовательно, заряд батареи любой емкости в общем случае будет происходить не в оптимальном для батареи режиме, а в режиме, предустановленном для зарядного устройства.

Перейдем к рассмотрению линейки микросхем заряда компании STMicroelectronics.

Микросхемы STBC08 и STC4054

Эти микросхемы представляют собой достаточно простые изделия для заряда литиевых аккумуляторов. Микросхемы выполнены в миниатюрных корпусах типа DFN6 и TSOT23-5L , соответственно. Это позволяет использовать данные компоненты в мобильных устройствах с достаточно жесткими требованиями по массогабаритным характеристикам (например, сотовые телефоны, МР3-плейеры). Схемы включения STBC08 и STC4054 представлены на рисунке 2.

Рис. 2.

Несмотря на ограничения, которые накладывает минимальное количество внешних выводов в корпусах, микросхемы обладают достаточно широкими функциональными возможностями:

  • Нет необходимости в применении внешнего MOSFET-транзистора, блокировочного диода и токового резистора. Как следует из рисунка 2, внешняя обвязка ограничивается фильтрующим конденсатором на входе, программирующим резистором и двумя (для STC4054- одним) индикаторными светодиодами.
  • Максимальное значение тока заряда программируется номиналом внешнего резистора и может достигать значения 800мА. Факт окончания заряда определяется в тот момент, когда в режиме постоянного напряжения значение зарядного тока снизится до величины 0,1*I BAT , то есть, также задается номиналом внешнего резистора. Максимальный ток заряда определяется из соотношения:

I BAT = (V PROG /R PROG)*1000;

где I BAT — ток заряда в Амперах, R PROG — сопротивление резистора в Омах, V PROG — напряжение на выходе PROG, равное 1,0 Вольта.

  • В режиме постоянного напряжения на выходе формируется стабильное напряжение 4,2В с точностью не хуже 1%.
  • Заряд сильно разряженных батарей автоматически начинается с режима предварительной зарядки. До тех пор, пока напряжение на выходе аккумулятора не достигнет величины 2,9В, заряд осуществляется слабым током величиной 0,1*I BAT . Подобный метод, как уже отмечалось, предотвращает весьма вероятный выход из строя при попытке заряда сильно разряженных аккумуляторов обычным способом. Кроме того, величина стартового значения зарядного тока принудительно ограничивается, что также увеличивает срок службы батарей.
  • Реализован режим автоматической капельной подзарядки- при снижении напряжения батареи до 4,05В цикл заряда будет перезапущен. Это позволяет обеспечить постоянный заряд батареи на уровне не ниже 80% от его номинальной емкости.
  • Защита от перенапряжения и перегрева. Если значение входного напряжения превышает определенный предел (в частности, 7,2В) или если температура корпуса превысит величину 120°С, то зарядное устройство отключается, защищая себя и аккумулятор. Разумеется, реализована также защита от низкого входного напряжения- если входное напряжение опустилось ниже определенного уровня (U VLO), то зарядное устройство также отключится.
  • Возможность подключения светодиодов индикации позволяет пользователю иметь представление о текущем состоянии процесса зарядки батареи.

Микросхемы заряда батареи L6924D и L6924U

Данные микросхемы представляют собой устройства с более широкими возможностями по сравнению с STBC08 и STC4054. На рисунке 3 представлены типовые схемы включения микросхем L6924D и L6924U .

Рис. 3.

Рассмотрим те функциональные особенности микросхем L6924 , которые касаются задания параметров процесса заряда батареи:

1. В обеих модификациях есть возможность задать максимальную продолжительность заряда батареи начиная с момента перехода в режим стабилизации постоянного тока (также используется термин «режим быстрой зарядки» — Fast charge phase). При переходе в этот режим запускается сторожевой таймер, запрограммированный на определенную длительность T PRG номиналом конденсатора, подключенного к выводу T PRG . Если до срабатывания данного таймера заряд батареи не будет прекращен по штатному алгоритму (снижение тока, протекающего через батарею, ниже значения I END), то после срабатывания таймера зарядка будет прервана принудительно. При помощи этого же конденсатора задается максимальная продолжительность режима предварительной зарядки: она равна 1/8 от продолжительности T PRG . Также, если за это время не произошел переход в режим быстрой зарядки, происходит выключение схемы.

2. Режим предварительной зарядки. Если для устройства STBC08 ток в этом режиме задавался как величина, равная 10% от I BAT , а напряжение переключения в режим постоянного тока было фиксированным, то в модификации L6924U этот алгоритм сохранился без изменений, но в микросхеме L6924D оба этих параметра задаются с использованием внешних резисторов, подключаемых ко входам I PRE и V PRE .

3. Признак завершения зарядки на третьей фазе (режим стабилизации постоянного напряжения) в устройствах STBC08 и STC4054 задавался как величина, равная 10% от I BAT . В микросхемах L6924 этот параметр программируется номиналом внешнего резистора, подключаемого к выводу I END . Кроме того, для микросхемы L6924D существует возможность снизить значение напряжения на выводе V OUT с общепринятого значения 4,2 В до значения 4,1 В.

4. Значение максимального зарядного тока I PRG в данных микросхемах задается традиционным образом — посредством номинала внешнего резистора.

Как видим, в простых «зарядках» STBC08 и STC4054 при помощи внешнего резистора задавался только один параметр — зарядный ток. Все остальные параметры были либо жестко зафиксированы, либо являлись функцией от I BAT . В микросхемах L6924 есть возможность тонкой подстройки еще нескольких параметров и, кроме того, осуществляется «страховка» максимальной продолжительности процесса зарядка батареи.

Для обеих модификаций L6924 предусмотрено два режима работы, если входное напряжение формируется сетевым AC/DC-адаптером. Первый — стандартный режим линейного понижающего регулятора выходного напряжения. Второй — режим квазиимпульсного регулятора. В первом случае в нагрузку может быть отдан ток, величина которого чуть меньше, чем величина входного тока, отбираемого от адаптера. В режиме стабилизации постоянного тока (вторая фаза — Fast charge phase) разница между входным напряжением и напряжением на «плюсе» батареи рассеивается как тепловая энергия, вследствие чего рассеиваемая мощность на этой фазе заряда максимальна. При работе в режиме импульсного регулятора в нагрузку может быть отдан ток, значение которого выше, чем значение входного тока. При этом «в тепло» уходит существенно меньшая энергия. Это, во-первых, снижает температуру внутри корпуса, а во-вторых — повышает эффективность устройства. Но при этом следует иметь в виду, что точность стабилизации тока в линейном режиме равно приблизительно 1%, а в импульсном — около 7%.

Работа микросхем L6924 в линейном и квазиимпульсном режимах иллюстрируется рисунком 4.

Рис. 4.

Микросхема L6924U, кроме того, может работать не от сетевого адаптера, а от USB-порта. В этом случае микросхема L6924U реализует некоторые технические решения , которые позволяют дополнительно снизить рассеиваемую мощность за счет увеличения продолжительности зарядки.

Микросхемы L6924D и L6924U имеют дополнительный вход принудительного прерывания заряда (то есть отключения нагрузки) SHDN.

В простых микросхемах заряда температурная защита заключается в прекращении заряда при повышении температуры внутри корпуса микросхемы до 120°С. Это, конечно, лучше, чем полное отсутствие защиты, но величина 120°С на корпусе с температурой самой батареи связана более чем условно. В изделиях L6924 предусмотрена возможность подключения термистора, непосредственно связанного с температурой аккумулятора (резистор RT1 на рисунке 3). При этом появляется возможность задать температурный диапазон, в котором заряд батареи станет возможным. С одной стороны, литиевые батареи не рекомендуется заряжать при минусовой температуре, а с другой — также крайне нежелательно, если батарея при зарядке нагревается более чем до 50°С. Применение термистора дает возможность производить зарядку батареи только при благоприятных температурных условиях.

Естественно, дополнительный функционал микросхем L6924D и L6924U не только расширяет возможности проектируемого устройства, но и приводит к увеличению площади на плате, занимаемой как самим корпусом микросхемы, так и внешними элементами обвязки.

Микросхемы заряда аккумулятора STBC21 и STw4102

Это — дальнейшее усовершенствование микросхемы L6924. С одной стороны, реализован приблизительно тот же функциональный пакет:

  • Линейный и квазиимпульсный режим.
  • Термистор, связанный с батареей, как ключевой элемент температурной защиты.
  • Возможность задания количественных параметров для всех трех фаз процесса зарядки.

Некоторые дополнительные возможности, отсутствовавшие в L6924:

  • Защита от неправильной полярности.
  • Защита от короткого замыкания.
  • Существенным отличием от L6924 является наличие цифрового интерфейса I 2 C для задания значений параметров и других настроек. Как следствие, становятся возможными более точные настройки процесса заряда. Рекомендуемая схема включения STBC21 приведена на рисунке 5. Очевидно, что в данном случае вопрос об экономии площади платы и о жестких массогабаритных характеристиках не стоит. Но также очевидно, что применение данной микросхемы в малогабаритных диктофонах, плейерах и мобильных телефонах простых моделей не предполагается. Скорее, это аккумуляторы для ноутбуков и подобных устройств, где замена батареи- процедура нечастая, но и недешевая.

Рис. 5.

5. Camiolo Jean, Scuderi Giuseppe. Reducing the Total No-Load Power Consumption of Battery Chargers and Adapter Applications Polymer//Материал компании STMicroelectronics. Размещение в Интернете:

Простое универсальное автоматическое зарядное устройство

Я постарался вставить в заголовок этой статьи все плюсы данной схемы, которою мы будем рассматривать и естественно у меня это не совсем получилось. Так что давайте теперь рассмотрим все достоинства по порядку.
Главным достоинством зарядного устройство является то, что оно полностью автоматическое. Схема контролирует и стабилизирует нужный ток зарядки аккумулятора, контролирует напряжение аккумуляторной батареи и как оно достигнет нужного уровня – убавит ток до нуля.

Какие аккумуляторные батареи можно заряжать?


Практически все: литий-ионные, никель-кадмиевые, свинцовые и другие. Масштабы применения ограничиваются только током заряда и напряжением.
Для всех бытовых нужд этого будет достаточно. К примеру, если у вас сломался встроенный контроллер заряда, то можно его заменить этой схемой. Аккумуляторные шуруповерты, пылесосы, фонари и другие устройства возможно заряжать этим автоматическим зарядным устройством, даже автомобильные и мотоциклетные батареи.

Где ещё можно применить схему?


Помимо зарядного устройства можно применить данную схему как контроллер зарядки для альтернативных источников энергии, таких как солнечная батарея.
Также схему можно использовать как регулируемый источник питания для лабораторных целей с защитой короткого замыкания.

Основные достоинства:


  • — Простота: схема содержит всего 4 довольно распространённых компонента.
  • — Полная автономность: контроль тока и напряжения.
  • — Микросхемы LM317 имеют встроенную защиту от короткого замыкания и перегрева.
  • — Небольшие габариты конечного устройства.
  • — Большой диапазон рабочего напряжения 1,2-37 В.

Недостатки:


  • — Ток зарядки до 1,5 А. Это скорей всего не недостаток, а характеристика, но я определю данный параметр сюда.
  • — При токе больше 0,5 А требует установки на радиатор. Также следует учитывать разницу между входным и выходным напряжением. Чем эта разница будет больше, тем сильнее будут греться микросхемы.

Схема автоматического зарядного устройства



На схеме не показан источник питания, а только блок регулировки. Источником питания может служить трансформатор с выпрямительным мостом, блок питания от ноутбука (19 В), блок питания от телефона (5 В). Все зависит от того какие цели вы преследуете.
Схему можно поделать на две части, каждая из них функционирует отдельно. На первой LM317 собран стабилизатор тока. Резистор для стабилизации рассчитывается просто: «1,25 / 1 = 1,25 Ом», где 1,25 – константа которая всегда одна для всех и «1» — это нужный вам ток стабилизации. Рассчитываем, затем выбираем ближайший из линейки резистор. Чем выше ток, тем больше мощность резистора нужно брать. Для тока от 1 А – минимум 5 Вт.
Вторая половина — это стабилизатор напряжения. Тут все просто, переменным резистором выставляете напряжение заряженного аккумулятора. К примеру, у автомобильных батарей оно где-то равно 14,2-14,4. Для настройки подключаем на вход нагрузочный резистор 1 кОм и измеряем мультиметром напряжение. Выставляем подстрочным резистором нужное напряжение и все. Как только батарея зарядится и напряжение достигнет выставленного – микросхема уменьшит ток до нуля, и зарядка прекратиться.
Я лично использовал такое устройство для зарядки литий-ионных аккумуляторов. Ни для кого не секрет, что их нужно заряжать правильно и если допустить ошибку, то они могут даже взорваться. Это ЗУ справляется со всеми задачами.


Чтобы контролировать наличие заряда можно воспользоваться схемой, описанной в этой статье — Индикатор наличия тока.
Есть ещё схема включения этой микросхемы в одно: и стабилизация тока и напряжения. Но в таком варианте наблюдается не совсем линейная работа, но в некоторых случаях может и сгодиться.
Информативное видео, только не на русском, но формулы расчета понять можно.

Радиоконструктор RP238. Зарядное устройство для литиевых аккумуляторов

Печатная плата с компонентами и инструкцией в упаковке.
  Простейшее устройство, позволяющее производить корректную процедуру зарядки литий-ионных аккумуляторов. Микросхема LM317 выступает в качестве источника тока, а TL431 источника опорного напряжения. Светодиод D2 служит индикатором включения устройства в сеть питания, а D1 для индикации процесса заряда.
Принципиальная схема

  В начале процесса зарядки производится зарядка аккумулятора постоянным током. В случае необходимости его можно изменить, изменяя сопротивление резистора R5.
  После достижения аккумулятором напряжения 4,15…4,2 В зарядка начинает производиться постоянным напряжением. Когда ток зарядки упадёт до низкого уровня, светодиод D1 будет погашен, что просигнализирует об окончании цикла заряда.
  Перед эксплуатацией следует произвести настройку: без нагрузки установить на выходе устройства напряжение 4,1…4,2 В с помощью резистора RV1. Для Li-ion аккумуляторов номинальным является 4,2 В, однако, установив 4,15 В можно увеличить его ресурс в несколько раз. При этом аккумулятор будет заряжен до 90 %.

Схема расположения элементов

 Характеристики:
  • Входное напряжение: 9…20 В;
  • Номинальный ток заряда: ~ 0,5 А;
  • Напряжение заряда: 4,1…4,2 В.

 Комплект поставки:
  • Плата печатная;
  • Набор радиодеталей;
  • Инструкция по эксплуатации.

 Примечание:
   Микросхему LM317 необходимо установить на радиатор.

Зарядка литий-йонных аккумуляторов с выбором тока и индикацией

РадиоКот >Схемы >Питание >Зарядные устройства >

Зарядка литий-йонных аккумуляторов с выбором тока и индикацией

Зарядка литий-ионных аккумуляторов с выбором тока и индикацией

Здравствуйте, уважаемые коты!
Это моя первая схемо-статья здесь и — первая вообще.
Я — очень-очень начинающий радиолюбитель и прошу меня простить за варварские замашки, невежественность, апломб — понимание и скромность точно приходят с опытом 🙁

История.
У товарища был телефон, но он его угробил. Остался лишь аккумулятор. Даже два. И он мне их отдал.
Решив использовать их в разных проектах, я тут же подумал о зарядке.
Можно, конечно, купить «лягушку». Оптимально по затратам. Но так ведь ничему не научишься…

Еще — дисклеймор. Я делал описываемое, кучу раз перестраховываясь. Ибо литий-ионы опасны! Предупреждаю: вы, если решитесь это повторить, то будете делаеть все исключительно на свой страх и риск; предоставляемые схемы и история ничего абсолютно не гарантируют. Короче, если хоть в чем-то сомневаетесь, то лучше воздержаться…

Итак, замыслил сделать зарядку сам. Изучив варианты, выбрал классическую схему LM317+TL431.
Проще при равной надежности что-либо, наверное, придумать сложно. Принцип такой (вы знаете):

Вряд ли тут что-то двусмысленно.
Заряд идет в два этапа — постоянным током до достижения определенного напряжения, а дальше — понижая ток до нуля.
Напряжение питания пусть 12В. Ограничение тока для LM317 по условию — 1.5А
Но есть тонкость — выбор R1: хочется ведь сделать относительно гибко, чтобы можно было выбрать разные токи. Значит, нужна «батарея» вариантов токозадающего резистора.
И еще — делитель напряжения. Пихать туда подстройку ну совсем не хочется. Не кажется в этом деле она надежным выбором.
Решил взять резисторы с допуском 1%, и предусмотреть подле них места для корректирующих (при условии, что у меня достаточно точный вольтметр, конечно). Забегая вперед, проговорюсь, что тут случилась накладка…

И еще нюанс. Как узнать, когда можно прекращать процедуру?
Вот это, собственно, и есть оригинальное в данной статье.
Где ни смотрел — решения одно другого страшнее. В основном, транзисторные ключи с жутким сопротивлением, «кормящим» базу. Есть даже варианты с микроконтроллерами…

По инерции от предыдущих забав вспомнил про операционные усилители. Полезные штуковины!
Их вполне можно использовать для измерения слабых токов.
Теперь идея: если у нас ток на R1 большой, то мы можем в пару ему (для каждого варианта R1) подобрать маленький резистор, с которого будем снимать соотвественно сильно меньшее падение напряжения. Разместить его лучше поближе к «земле», это называется «измерением токов ниже нагрузки», чтобы дифференцируемые сигналы на операционник были сами по себе в абсолютном смысле невелики.

В итоге <strike>сон разума</strike> отсутствие опыта родило чудовище )
Хорошо, что тут нет четырех ОТДЕЛЬНЫХ операционников.
Все они дивно упакованы в одну превосходную микросхему — LM324M. По сути, благодаря ей все эти танцы с бубном и свершились. Так она мне нравится. Дешевая и могущественная.
Однажды, не зная еще, с чем столкнулся, выпаял ее пружинкой с какой-то битой платы и наиграться не мог. Моя прелесть!…

 

Протеусом, увы, я не владею пока 🙁 Переменный источник в палитре у него так и не нашел, пришлось набирать варианты по степени зарядки батареи. И много еще чего…(

Но модель отражает реальность вполне.
Резисторы во «входном» и «выходном» (измерительном) пакетах за одним досадным исключением отличаются в 10 раз.
Они задают токи 1.3, 0.5, 0.3, 0.1А.

Начало.
Ли-йон пусть будет с особым гнездом а ля «ключ», чтобы никаких там переполюсовок. С вилкой, правда, придется тоже поизвращаться. Но пусть…
Еще не повредит отвод для мультиметра (была отдельная идея пронаблюдать динамику зарядки — приладить ардуино, допустим, в режиме вольтметра, списать из монитора и график красивый построить:) Ну да ладно

Схема.
Будучи варваром, сваял ее в диптрейсе, где почти все компоненты по тем или иным причинам самодельные. Понимаю, что это абсолютно непрофессионально. Но, да ведь я и не профессионал…

 

Реализация.
Крайне топорная. Неаккуратная реализация.

 

Выбор пары резисторов (токозадающий-измерительный) производится коммутацией соответственных рядышком расположенных контактов гребенки. Джамперами. Можно эти джампера изолентой склеить, чтобы уж точно не ошибиться (я-таки умудрился один раз).

С делителем, как уже сказал, были траблы.
Разумеется, с первого раза не угадал. Причем, в худшую сторону.
Нужных номиналов, как на зло не было. Пришлось мудрить. В итоге вместо единственного корректирующего появились вот такие-вот несколько… какие-то ворота Рассемон 🙂
(может, зря я вообще загоняюсь и точное значение не важно. Главное — не превысить 4.2В)

Что в итоге.
Вот такой «стенд». Начало зарядки. Ток постоянный. Сперва горят все 4 индикатора (резисторы при операционниках подобраны так, чтобы выключать соответствующие транзисторы при меньше 95, 50, 25, 3%. Ну примерно). Затем, по мере зарядки, транзисторы запираются:

 

Разбег показаний вольтметра в схеме и напряжения отдельного ли-иона постепенно сближаются.
До последней стадии я не дотерпел).

 

Файлы:
Фотография

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?


Эти статьи вам тоже могут пригодиться:

Схема литий-ионного зарядного устройства – простейший вариант и гибридная схема



Статья обновлена: 2020-08-24


Сегодня мы рассмотрим схему зарядного устройства для литий-ионных аккумуляторов. На первый взгляд кажется, что простейшую версию такой схемы можно построить на микросхеме lm317. Но тогда питать зарядное устройство придется от напряжения выше 5 В, т.к. разница между напряжениями на входе и выходе этой микросхемы должна составлять минимум 2 В. Напряжение Li-ion элемента с полным зарядом – порядка 4,2 В. Поэтому разница напряжений не достигает даже 1 В, и от варианта с микросхемой lm317 придется отказаться.
Собрать зарядник для литий-ионных элементов можно с использованием специализированной платы TP4056 1A. Ее можно приобрести и несложно сделать самостоятельно. Простейшая схема зарядки литиевых аккумуляторов представлена на рисунке.

Ниже приведена гибридная схема, в которой напряжение стабилизируется, и ограничивается ток заряда.  

Принцип работы литий-ионного зарядного устройства

Напряжение стабилизируется при помощи микросхемы стабилитрона tl431. Она используется во многих блоках питания импульсного типа, в т. ч. в компьютерном. Усилителем будет транзистор – произвольный вариант обратной проводимости и достаточно высокой мощности: КТ805, 815, 817, 819 и их аналоги. Ток заряда, задаваемый резистором R1, зависит от особенностей подзаряжаемого элемента питания. Резистор R1 рекомендуется брать мощностью 1 Вт, а оставшиеся – 0,25 или 0,125 Вт. Напряжение «банки» типа Li-ion в заряженном состоянии – порядка 4,2 В. Это значение напряжения и нужно поставить на выходе. К этому и сводится настроечный процесс – достаточно подбирать R2, R3 и фиксировать на выходе напряжение 4,2 В. Рассчитать напряжение стабилизации микросхемы tl431 позволяют многие интернет-программы. Чтобы выполнить точную настройку Uвых в нашей схеме контроля зарядки Li-ion аккумуляторов, стоит вместо резистора R2 воспользоваться многооборотным сопротивлением 10 кОм. Функции индикатора заряда успешно выполнит светодиод.

Актуальность схемы и рекомендации по ее проверке

Предложенная схема может применяться для подзарядки одного литиевого аккумулятора (элемента питания, «банки») популярного типоразмера 18650. Подходит она и для Li-ion аккумуляторов других стандартов, но в таком случае следует установить на выходе из зарядного устройства другое значение напряжения. Если собранная вами схема не работает, убедитесь в наличии напряжения более 2,5 В на управляющем выводе микросхемы. Рабочее напряжение 2,5 В – минимум для наружного источника. Иногда минимум рабочего напряжения берется равным 3 В. Для контроля работоспособности схемы перед пайкой стоит создать простой тестовый стенд. После сборки необходимо досконально проконтролировать монтаж. На практике рекомендуется всегда использовать самостоятельно собранные зарядные устройства и схемы на Li-ion аккумуляторах с BMS платой. Плата защиты не допустит выхода напряжения за допустимые границы, убережет элемент питания от поломки и преждевременного износа. В фирменных зарядных устройствах для защиты Li-ion аккумуляторов от высокого напряжения используются специальные микросхемы с функциями контроля. Подробнее о том, как правильно заряжать Li-ion аккумулятор стандарта 18650, читайте здесь.

Перейти в раздел зарядные устройства для АКБ

Перед первым запуском Roomba® необходимо удалить язычок блокировки аккумулятора и оставить Roomba® на зарядку на ночь. Время зарядки при нормальных условиях составляет не менее 2 часов.

Примечание. Если у робота литий-ионный (Li-Ion) аккумулятор, для вывода из спящего режима поместите Roomba® на док-станцию Home Base. После этого его можно будет сразу использовать. Чтобы определить тип используемого в вашем роботе аккумулятора, сверьтесь с таблицей типов аккумуляторов.

Поведение

Зарядка Roomba® должна происходить следующим образом:

  • При использовании зарядного устройства на нем должен непрерывно светиться зеленый индикатор при включении в сеть.

  • При использовании док-станции Home Base индикатор питания должен мигать приблизительно каждые 4 секунды, когда он включен в зарядное устройство или сеть. На некоторых док-станциях Home Bases индикатор питания выключится через 4 секунды. Это нормальное поведение для экономии энергии.

  • На некоторых роботах индикатор CLEAN во время зарядки должен мигать янтарно-красным цветом. На других роботах индикатор выключится через 1 минуту зарядки, но процесс зарядки будет продолжаться. На некоторых док-станциях Home Bases во время зарядки постоянно светится зеленый индикатор, на других он выключается через 4 секунды. Это нормальное поведение для экономии энергии.

  • Когда Roomba® определяет, что аккумулятор разряжен, он переключается в специальный режим обновления заряда. При переходе в режим обновления заряда индикатор CLEAN будет быстро мигать янтарно-красным цветом. Не прерывайте этот режим. Режим обновления заряда запускается роботом автоматически и не может быть вызван вручную. На некоторых роботах индикатор выключится через 1 минуту процесса обновления заряда, но сам процесс будет продолжаться. Это нормальное поведение для экономии энергии.

    Примечание. Режим обновления заряда не применим для литий-ионных аккумуляторов.

  • Когда цикл зарядки завершится, индикатор CLEAN на Roomba® должен постоянно светиться зеленым цветом или должен засветиться зеленым цветом после нажатия кнопки CLEAN.

  • Емкость аккумулятора со временем снижается в зависимости от возраста, температуры в помещении, типа напольного покрытия и частоты использования.

Состояние аккумулятора

Отображается на роботе во время уборки. Чтобы увидеть состояние аккумулятора во время уборки, нажмите на роботе кнопку CLEAN.

  • Зеленый: полностью заряжен
  • Янтарный: частично заряжен.
  • Мигающий янтарный: зарядка.
  • Красный: практически разряжен.
  • Мигающий красный: разряжен.

Советы

  • Всегда храните Roomba® в режиме зарядки на док-станции Home Base или с подключенным зарядным устройством. Для длительного хранения робота Roomba® поместите его в сухое прохладное место.

    Примечание. Для длительного хранения робота с металлгидридным аккумулятором (NiMH) извлеките из робота аккумулятор и поместите его в сухое прохладное место. Аккумуляторы типа NiMH следует хранить в полностью заряженном состоянии. Когда потребуется вновь использовать робот Roomba®, установите аккумулятор и полностью зарядите его. Емкость аккумуляторов типа NiMH может снижаться сама по себе даже при хранении отдельно от робота Roomba®.

  • Если время работы робота слишком короткое, воспользуйтесь советами по обслуживанию аккумуляторов.

  • Чтобы приобрести новый аккумулятор, посетите Интернет-магазин iRobot — Детали и принадлежности, обратитесь в Сервисную службу iRobot или воспользуйтесь услугами авторизованного дилера.

Зарядка литий ионных. Аккумуляторы для мобильных устройств — методы заряда. Как правильно эксплуатировать и хранить литий-ионный аккумулятор

В этой статье под правильной эксплуатацией литий-ионных аккумуляторов мы будем понимать соблюдение таких условий, в которых литий-ионный аккумулятор портативного устройства сможет работать безопасно, прослужит долго, причем функционирование устройства останется полноценным.

Но даже если стрессовый режим был допущен, и аккумулятор сильно нагрелся, не спешите ставить его на зарядку. Подождите пока он остынет, и только после этого подключайте к зарядному устройству, тогда он сможет нормально и безопасно принимать заряд.

В процессе зарядки аккумулятор тоже не должен перегреваться, если такое происходит, значит через электролит текут слишком большие токи, а это вредно.

Некачественные зарядные устройства грешат так называемой «быстрой зарядкой», как и некоторые индукционные беспроводные зарядники. Такими «быстрыми» зарядными устройствами лучше не пользоваться. Дело в том, что безопасное зарядное устройство обязано реагировать на ток, потребляемый аккумулятором в процессе зарядки, и оперативно менять подаваемое напряжение, если нужно — снижать, когда нужно — повышать.

Если зарядное устройство — это просто трансформатор с выпрямителем, то ваш аккумулятор скорее всего перегреется из-за перенапряжения и постепенно разрушится. Не все «быстрые» зарядники совместимы с литиевыми аккумуляторами.

Самый лучший вариант — оригинальное зарядное устройство от того же производителя, что и у заряжаемого устройства, идеально — зарядник из комплекта. Но если возможности применить оригинальный зарядник нет, то пользуйтесь тем, который дает меньший ток — это спасет аккумулятор от перегрева из-за подачи чрезмерной мощности.

Хорошая альтернатива оригинальному зарядному устройству — USB-порт компьютера. USB 2.0 даст 500mА, USB 3.0 — максимум 900mА. Этого достаточно для безопасной зарядки.

Некоторые из «быстрых» устройств способны вкачивать в батарею по 3-4 ампера, но это разрушительно для батарей небольшой емкости, коими являются аккумуляторы карманных мобильных гаджетов (см. документацию). Небольшой ток от USB — гарантия сохранности литий-ионного аккумулятора.

Многие устройства допускают извлечение батареи, поэтому иметь запасной аккумулятор — совсем не проблема. Время работы устройства возрастет вдвое, исключается глубокий разряд (заранее установить резервный аккумулятор, не дожидаясь полного разряда основного), отпадает соблазн использовать вредный «быстрый» зарядник. 20% разряда основного аккумулятора — сигнал к тому чтобы установить резервный.

Если первая батарея сильно нагрелась от интенсивной нагрузки или по причине внешнего нагрева (случайно оставили на солнце) — вставьте запасную, и пока первая будет остывать, вы продолжите пользоваться вашим устройством, сохранив оба аккумулятора невредимыми. Когда тот что нагрелся остынет, его можно будет поставить на дозарядку в оригинальное зарядное устройство (сетевое или автомобильное).

Итак, чтобы литиевый аккумулятор прослужил долго и верно, необходимо:

1. Не допускать разогрева аккумулятора выше 30°C, лучшая температура 20°C.

2. Исключить чрезмерный заряд аккумулятора и перенапряжение на клеммах, оптимально 3,6 В.

3. Избегать глубокого разряда аккумулятора — пусть 20% будет пределом.

4. Не допускать высокие токовые нагрузки во время заряда и разряда (см. документацию), использовать USB.

5. Иметь резервный аккумулятор.

Литий-ионные аккумуляторы не столь «привередливы», как их никель-металл-гидридные собратья, но все равно требуют определенного ухода. Придерживаясь пяти простых правил , можно не только продлить жизненный цикл литий-ионных аккумуляторных батарей, но и повысить время работы мобильных устройств без подзарядки.

Не допускайте полного разряда. У литий-ионных аккумуляторов отсутствует так называемый эффект памяти, поэтому их можно и, более того, нужно заряжать, не дожидаясь разрядки до нуля. Многие производители рассчитывают срок жизни литий-ионного аккумулятора количеством циклов полного разряда (до 0%). Для качественных аккумуляторов это 400-600 циклов . Чтобы увеличить срок службы вашего литий-ионного аккумулятора, чаще заряжаете свой телефон. Оптимально, как только показатель заряда батареи опустится ниже отметки 10-20 процентов, можете ставить телефон на зарядку. Это увеличит количество циклов разряда до 1000-1100 .
Данный процесс специалисты описывают таким показателем как Глубина Разряда (Depth Of Discharge). Если ваш телефон разряжен до 20%, то Глубина Разряда составляет 80%. В нижеприведенной таблице показана зависимость количества циклов разряда литий-ионного аккумулятора от Глубины Разряда:

Разряжайте раз в 3 месяца. Полный заряд на протяжении длительного времени также же вреден для литий-ионных аккумуляторов, как и постоянная разрядка до нуля.
Из-за крайне нестабильного процесса заряда (мы часто заряжаем телефон как придется, и где получится, от USB, от розетки, от внешнего аккумулятора и тд.) специалисты рекомендуют раз в 3 месяца полностью разряжать аккумулятор и после этот заряжать до 100% и подержать на зарядке 8-12 часов. Это помогает сбросить так называемый верхний и нижний флаги заряда аккумулятора. Более подробно об этом можно прочитать .

Храните частично заряженными . Оптимальным состоянием для длительного хранения литий-ионного аккумулятора является уровень заряда от 30 до 50 процентов при температуре 15°C. Если же оставить батарею полностью заряженной, со временем ее емкость существенно снизится. А вот аккумулятор, который долгое время пылился на полке разряженным до нуля, скорее всего, уже не жилец – пора отправлять его на утилизацию.
В нижеприведенной таблице показано сколько остается емкости в литий-ионном аккумуляторе в зависимости от температуры хранения и уровня заряда при хранении в течение 1 года.

Используйте оригинальное зарядное устройство. Мало кто знает, что зарядное устройство в большинстве случаев встроено непосредственно внутрь мобильных устройств, а внешний сетевой адаптер лишь понижает напряжение и выпрямляет ток бытовой электросети, то есть напрямую на батарею не воздействует. Некоторые гаджеты, например цифровые фотокамеры, лишены встроенного зарядного устройства, и поэтому их литий-ионные аккумуляторы вставляют во внешний «зарядник». Вот тут-то использование внешнего зарядного устройства сомнительного качества вместо оригинального может негативно сказаться на работоспособности батареи.

Не допускайте перегрева. Ну а злейшим врагом литий-ионных аккумуляторов является высокая температура – перегрева они напрочь не переносят. Поэтому не допускайте попадания на мобильные устройства прямых солнечных лучей, а также не оставляйте их в непосредственной близости от источников тепла, например электрообогревателей. Максимально допустимые температуры, при которых возможно использование литий-ионных аккумуляторов: от –40°C до +50°C

Также, вы можете посмотреть

Читая «советы по эксплуатации» аккумуляторов на форумах невольно задумываешься — то ли люди физику с химией в школе прогуливали, то ли думают что правила эксплуатации свинцовых и ионных аккумуляторов одинаковые.
Начнем пожалуй с принципов работы Li-Ion аккумулятора. На пальцах все предельно просто — есть отрицательный электрод (сделаный обычно из меди), есть положительный (из алюминий), между ними находится пористое вещество (сепаратор), пропитанный электролитом (он предотвращает «самовольный» переход ионов лития между электродами):

Принцип работы основан на возможности ионов лития встраиваться в кристаллическую решетку различных материалов — обычно графита или оксида кремния — с образованием химических связей: соответственно при зарядке ионы встраиваются в кристаллическую решетку, тем самым накапливая заряд на одном электроде, при разрядке соответственно переходят обратно к другому элетроду, отдавая нужный нам электрон (кому интересно более точное объяснение происходящих процессов — гуглим интеркаляцию). В качестве электролита используются водосодержащие растворы, не содержащие свободного протона и устойчивые в широком диапазоне напряжений. Как видно в современных аккумуляторах все сделано достаточно безопасно — металлического лития нет, взрываться нечему, по сепаратору бегают только ионы.
Теперь, когда с принципом работы все стало более-менее понятно, перейдем к самым распростаренным мифам о Li-Ion аккумуляторах:

  1. Миф первый. Li-Ion аккумулятор в устройстве нельзя разряжать до нуля процентов.
    На деле все звучит правильно и согласуется с физикой — при разрядке до ~2.5 В Li-Ion аккумулятор начинает очень быстро деградировать, и даже одна такая разрядка может существенно (до 10%!) уменьшить его емкость. К тому же при разряде до такого напряжение штатным зарядником зарядить его уже не получится — при падении напряжения ячейки аккумулятора ниже ~3 В «умный» контроллер отключит ее как поврежденную, а если такие ячейки все — аккумулятор можно нести на помойку.
    Но тут есть одно очень важное но, о котором все забывают: в телефонах, планшетах и других мобильных устройствах рабочий диапазон напряжений на аккумуляторе это 3.5-4.2 В. При опускании напряжения ниже 3.5 В индикатор показывает ноль процентов заряда и аппарат выключается, но до «критических» 2.5 В еще очень далеко. Это подтверждается тем что если подсоединить к такому «разряженному» аккумулятору светодиод то он может гореть еще долгое время (может кто-то помнит что раньше продавались телефоны с фонариками, которые включались кнопкой независимо от системы. Так вот там лампочка продолжала гореть и после разрядки и выключения телефона). То есть как видно при штатном использовании разрядки до 2.5 В не происходит, а значит разряжать акум до нуля процентов вполне можно.
  2. Миф второй. При повреждении Li-Ion аккумуляторы взрываются.
    Все мы помним «взрывной» Samsung Galaxy Note 7. Однако это скорее исключение из правил — да, литий очень активный металл, и взорвать его в воздухе нетрудно (а в воде он и сам очень ярко горит). Однако в современных аккумуляторах используется не литий, а его ионы, которые куда менее активны. Так что чтобы произошел взрыв нужно сильно постараться — или повредить заряжающийся аккумулятор физически (устроить короткое замыкание), или заряжать очень высоким напряжением (тогда он сам повредится, однако скорее всего контроллер банально сгорит сам и не даст заряжать аккумулятор). Поэтому если у вас вдруг в руках оказался поврежденный или дымящийся аккумулятор — не стоит бросать его на стол и убегать из комнаты с криками «мы все умрем» — просто положите его в металлическую тару и вынесите на балкон (чтобы не дышать химией) — аккумулятор будет тлеть какое-то время и потом потухнет. Главное — не заливать водой, ионы конечно менее активные чем литий, но все же какое-то количество водорода при реакции с водой так же выделится (а он любит взрываться).
  3. Миф третий. При достижении на Li-Ion аккумуляторе 300(500/700/1000/100500) циклов он становится небезопасен и его нужно срочно менять.
    Миф, к счастью все меньше и меньше гуляющий по форумам и не имеющий под собой вообще никакого физического или химического объяснения. Да, во время эксплуатации электроды окисляются и коррозируют, что уменьшает емкость аккумулятора, но ничем кроме меньшего времени автономной работы и нестабильного поведения на 10-20% заряда это вам не грозит.
  4. Миф четвертый. С Li-Ion аккумуляторами нельзя работать на морозе.
    Это скорее рекомендация, чем запрет. Многие производители запрещают использовать телефоны при отрицательное температуре, да и многие сталкивались с быстрым разрядом и вообще отключением телефонов на холоде. Объяснение этому очень простое: электролит — это водосодержащий гель, а что происходит с водой при отрицательных температурах все знают (да, она замерзает если что), тем самым выводя некоторую область аккумулятора из работы. Это приводит к падениею напряжения, а контроллер начинает считать это разрядкой. Аккумулятору это не полезно, но и не смертельно (после нагрева емкость вернется), так что если вам позарез нужно пользоваться телефоном в мороз (именно пользоваться — достать из теплого кармана, посмотреть время и спрятать назад не считается) то лучше зарядите его на 100% и включите любой процесс, нагружающий процессор — так охлаждение будет происходить медленнее.
  5. Миф пятый. Вздувшийся Li-Ion аккумулятор опасен, его нужно срочно выкинуть.
    Это не совсем миф, скорее предосторожность — вздувшийся аккумулятор может банально лопнуть. С химической точки зрения все просто: при процессе интеркаляции происходит разложение электродов и электролита, в результате чего выделяется газ(так же он может выделяться и при перезарядке, но об этом чуть ниже). Но его выделяется крайне мало, и чтобы аккумулятор казался вздутым должно пройти несколько тсотен (если не тысяч) циклов перезарядки (если конечно он не бракованный). Проблем избавиться от газа нет — достаточно проткнуть клапан (в некоторых аккумуляторах он сам открывается при избыточном давлении) и стравить его (дышать им не рекомендую), после чего можно замазать дырку эпоксидной смолой. Конечно былую емкость это аккумулятору не вернет, но хотя бы теперь он точно не лопнет.
  6. Миф шестой. Li-Ion аккумуляторам вреден перезаряд.
    А вот это уже не миф, а суровая реальность — при перезарядке велик шанс что аккумулятор вздуется, лопнет и загорится — поверьте, мало удовольствия быть забрызганным кипящим электролитом. Поэтому во всех аккумуляторах стоят контроллеры, банально не дающие зарядить аккумулятор выше определенного напряжения. Но тут надо быть крайне осторожным в выборе аккумулятора — контроллеры китайских поделок зачастую могут сбоить, а фейерверк из телефона в 3 часа ночи думаю вас не обрадует. Разумеется, такая же проблема есть и в брендовых аккумуляторах, но во-первых там такое случается гораздо реже, а во-вторых вам по гарантии поменяют весь телефон. Обычно этот миф порождает следующий:
  7. Миф седьмой. При достижении 100% нужно снимать телефон с зарядки.
    Из шестого мифа это кажется разумным, но на деле нет смысла вставать посреди ночи и снимать устройство с зарядки: во-первых сбои контроллера крайне редки, а во-вторых даже при достижении 100% на индикаторе аккумулятор еще некоторое время дозаряжается до самого-самого максимума низкими токами, что добавляет еще 1-3% емкости. Так что на деле не стоит так сильно перестраховываться.
  8. Миф восемь. Заряжать устройство можно только оригинальным зарядником.
    Миф имеет место быть по причине некачественности китайских зарядников — при нормальном напряжении в 5 +- 5% вольт они могут выдавать и 6, и 7 — контроллер, конечно, какое-то время будет сглаживать такое напряжение, однако в будущем оно в лучшем случае приведет к сгоранию контроллера, в худшем — к взрыву и (или) выходу из строя материнской платы. Бывает и обратное — под нагрузкой китайский зарядник выдает 3-4 вольта: это приведет к тому что аккумулятор не сможет зарядиться полностью.
Как видно из целой кучи заблуждений далеко не все имеют под собой научное объяснение, и еще меньше реально ухудшают характеристики аккумуляторов. Но это не значит что после прочтения моей статьи нужно бежать сломя голову и покупать дешевые китайские аккумуляторы за пару баксов — все-же для долговечности лучше взять или оригинальные, или качественные копии оригинальных.

Литиевые аккумуляторы представляют гальваническую пару, в которой катодом служат соли лития. Независимо, литий-ионный, литий-полимерный сухой или гибридный аккумулятор, зарядное устройство подходит всем. Изделия могут иметь форму цилиндра, или герметичную мягкую упаковку, способ зарядки для них общий, отвечающий особенностям электрохимической реакции. Как зарядить Li-ion АКБ?

Существует несколько схем зарядки литиевых аккумуляторов. Чаще используется двухэтапная зарядка, разработанная компанией SONY. Не применяются устройства с применением импульсного заряда и ступенчатой зарядки, как для кислотных АКБ.

Зарядка любых разновидностей ионно-литиевых или литий-полимерных аккумуляторов требует строгое соблюдение напряжения. На одном элементе заряженного литиевого аккумулятора должно быть не больше 4,2 В. Номинальным напряжением для них считается 3,7 В.

Литиевые аккумуляторы можно ли заряжать быстро, не полностью? Да. Их всегда можно дозарядить. Работа батареи на 40-80 % емкости удлинняет АКБ срок годности.

Двухступенчатая схема зарядки батареи литиевых аккумуляторов

Принцип схемы CC/CV – постоянная сила зарядного тока/ постоянное напряжение. Как зарядить по этой схеме литиевый аккумулятор?

На схеме до 1 этапа зарядки изображен предэтап, для восстановления глубоко севшего литиевого аккумулятора, с напряжением на клеммах не менее 2,0 В. Первый этап должен восстановить 70-80 % емкости. Ток зарядки выбирают 0,2-0,5 С. Ускоренно заряжать можно, током 0,5-1,0 С. (С – емкость литиевых аккумуляторов, цифровое значение). Каким должно быть напряжение зарядки на первом этапе? Стабильным, 5 В. Когда достигнуто напряжение на клеммах аккумулятора 4,2 – это сигнал перехода на второй этап.

Теперь ЗУ поддерживает стабильное напряжение на клеммах, а зарядный ток по мере поднятия емкости снижается. При уменьшении его значения до 0,05-0,01 С зарядка закончится, устройство отключится, не допуская перезарядки. Общее время восстановления емкости для литиевого аккумулятора не превышает 3 часов.

Если литий-ионная батарея разряжена глубже 3,0 В, потребуется провести «толчок». Это заключается в зарядке малым током до тех пор, пока на клеммах не будет 3,1 В. Потом используется обычная схема.

Как контролируют параметры зарядки

Так как литиевые аккумуляторы работают в узком диапазоне изменения напряжения на клеммах, их нельзя перезаряжать выше 4,2 В и допускать разрядку ниже 3 В. Контроллер заряда установлен в ЗУ. Но каждый аккумулятор или батарея имеют собственные прерыватели, РСВ плату или РСМ модули защиты. В аккумуляторах установлена именно защита от того или иного фактора. В случае нарушения параметра, она должна отключить банку, разорвать цепь.

Контроллер – устройство, которое должно реализовать функции управления – переводить режимы CC/CV, контролировать количество энергии в банках, отключать зарядку. При этом сборка работает, нагревается.

Самодельные схемы зарядки, применяемые для литиевых аккумуляторов

  • LM317 – схема простого зарядного устройства с индикатором заряда. От USB порта не запитывается.
  • MAX1555, MAX1551- специально для Li Аккумуляторов, устанавливаются в адаптер питания от телефона в USB. Есть функция предварительного заряда.
  • LP2951- стабилизатор ограничивает ток, формирует стабильное напряжение 4,08-4,26В.
  • MCP73831- одна из простейших схем, подходит для зарядки ионных и полимерных устройств.

Если батарея состоит из нескольких банок, разряжаются они не всегда равномерно. При зарядке необходим балансир, распределяющий заряд и обеспечивающий равномерный заряд всех банок в батарее. Балансир может быть отдельным или встроенным в схему подключения АКБ. Устройство защиты батареи называется BMS. Зная как заряжать приборы, разбираясь в схемах, можно своими руками собрать схему защитного устройства для литиевого аккумулятора.

Как зарядить литиевый аккумулятор 12 вольт

Каждый литиевый аккумулятор представляет герметичное изделие цилиндрической, призматической формы, для Li-pol в мягкой упаковке. Все они имеют напряжение 3,6- 4,2 В и разную емкость, измеряемую в мА/ч. Если собрать последовательно 3 банки получится батарея с напряжением на клеммах 10,8 — 12,6 В. Емкость при последовательной зарядке, измеряется по самому слабому литиевому аккумулятору в связке.

Как правильно заряжать литиевый аккумулятор 18650 или Pol на 12 вольт, нужно знать. Для возвращения прибору емкости необходимо использовать ЗУ с контроллером. Важно иметь в сборке РСМ для каждой банки, защиту от недо- и перезаряда. Другая схема незащищенных литиево-ионных аккумуляторов – установка РСВ – управляющей платы, лучше с балансирами, для равномерной зарядки банок.

На зарядном устройстве необходимо задать напряжение, под которым работает батарея, 12,6 В. На приборной доске устанавливается количество банок и ток зарядки, равный 0,2- 0,5 С.

Как заряжать, предлагаем посмотреть видео, способ зарядки для 2, 3 литиевых аккумуляторов 18650, соединенных последовательно. Используется бюджетное зарядное устройство.

Варианты зарядки литий-ионных литиево-полимерных аккумуляторов:

  • Зарядное устройство приобретаемое в комплекте с прибором.
  • Использовать разъем USB от электронной техники – компьютера. Здесь можно получить ток 0,5 А, зарядка будет долгой.
  • От прикуривателя, купив переходник с набором портов. Выбрать тот, что соответствует параметрам батареи на 12 В.
  • Универсальное зарядное устройство «лягушка» с доком для установки гаджета. Как заряжать? Есть панель индикации заряда.

Специалисты советуют использовать для зарядки литиевых аккумуляторов штатное зарядное, остальные – только в форс-мажорных обстоятельствах. Однако, как зарядить литиевый аккумулятор без штатного зарядного устройства, нужно знать.

Как заряжать литиевые аккумуляторы шуруповерта

Шуруповерт на литиевых аккумуляторах почти всегда апгрейд. Если с Ni-Cd элементами были одни требования к зарядке, теперь они стали противоположными. В первую очередь нужно приобрести или собрать зарядник, именно для энергоемких литиевых аккумуляторов шуруповерта с форм фактором 18650. Схема зарядки применяется из двух этапов CC/CV.

Зарядка литиевого аккумулятора шуруповерта оптимальна, когда остается 20-50 % емкости – одна палочка на индикаторе. Чем чаще заряжать, тем стабильнее напряжение на клеммах и длиннее жизнь источника энергии. Чем ровнее напряжение на клеммах, тем больше циклов выдержит литиевый аккумулятор шуруповерта.

Если в шуруповерте 2 аккумулятора, один снимите, зарядите на 50-60 % и держите в резерве. Но второй заряжайте всегда по окончании работы, даже на 10 %. Лучшая температура для заряда +15-25 0 С. При минусе батарея шуруповерта не зарядится, но работать до -10 0 может.

Как заряжать литиевый аккумулятор шуруповерта зарядным устройством, зависит от схемы сбора батареи из банок. В любом случае, напряжение на ЗУ должно быть равно заявленному для прибора, а сила тока 0,5 С на первом этапе. На втором, напряжение клеммное стабильно, а сила тока падает, вплоть до окончания процесса.

Сколько заряжать литиевый аккумулятор

Время зарядки аккумуляторов определяется процессом восстановления емкости. Различают полный и частичный заряд.

Емкость измеряется в ампер-часах. Это значит, если подать заряд, численно равный емкости, то за час на клеммах создастся нужное напряжение, а запас энергии будет 70-80 %. Если емкость измеряется в единицах С, при быстрой зарядке следует подавать ток 1С-2С. Время быстрой зарядки около часа.

Для полного цикла зарядки батарей из нескольких элементов, соединенных последовательно, используют 2 этапа – CC/CV. Этап СС длится, пока на клеммах не появится напряжение, равное рабочему, в вольтах. Второй этап: при стабильном напряжении подается в банку ток, но с увеличением емкости, он стремится к нулю. Время заряда занимает около 3 часов, независимо от емкости.

Можно ли заряжать литиевый аккумулятор обычной зарядкой

Две разных системы аккумуляторов – литиевые и свинцовые требуют разного подхода к восстановлению емкости. Свинцовый АКБ не настолько требовательны к параметрам зарядки, как литиевые. Да и критерии заряда другие.

Для зарядки на первом этапе Li-ion, Li-pol требуется постоянный ток, на втором этапе постоянное напряжение. Если не контролировать параметры на первом этапе, возможен перезаряд. Но если в батарее есть встроенная защита – BMS – она справится. Поэтому несколько добавить энергии можно даже зарядником от телефона.

В зарядном устройстве для свинцовых АКБ главный показатель – стабильное напряжение. Для литиевых зарядников на первом этапе важен стабильный ток.

Правда, появились универсальные ЗУ, которые можно перенастроить на тот или иной режим зарядки. Перед вами российская разработка «Кулон».

Сегодня для мобильной, бытовой техники, инструментов применяют специальные аккумуляторы. Они отличаются эксплуатационными характеристиками. Чтобы батарея работала долго, без сбоев, нужно учитывать требования производителей представленных изделий.

Одним из самых популярных видов сегодня являются аккумуляторы Li-Ion. Как правильно заряжать этот вид батарей, а также особенности его эксплуатации следует подробно рассмотреть перед эксплуатацией прибора.

Общая характеристика

Одним из самых распространенных видов аккумуляторов сегодня является тип Li-Ion. Такие устройства отличаются относительно невысокой стоимостью. При этом они нетребовательны к условиям эксплуатации. В этом случае у пользователя редко возникает вопрос, как правильно заряжать аккумулятор Li-Ion 18650 цилиндрической формы или иной разновидности.

Чаще всего представленные батареи устанавливают в смартфоны, ноутбуки, планшеты и прочие подобные устройства. Представленные аккумуляторы характеризуются долговечностью и надежностью. Они не боятся полной разрядки.

Одной из главных особенностей представленных изделий является отсутствие «эффекта памяти». Такие батарейки можно заряжать практически в любой удобный момент. «Эффект памяти» возникает при неполном разряде аккумулятора. Если в нем оставалось небольшое количество заряда, со временем емкость аккумулятора станет падать. Это приведет к недостаточно продолжительному питанию техники. В литий-ионных батареях «эффект памяти» сведен к минимуму.

Конструкция

Конструкция аккумулятора литий-ионного типа зависит от типа прибора, для которого она предназначена. Для мобильного телефона применяется батарея, которая называется «банкой». Она имеет прямоугольную форму и включает в себя один конструкционный элемент. Его номинальное напряжение составляет 3,7 В.

Совсем иную конструкцию имеет батарея представленного типа для ноутбука. Отдельных аккумуляторных элементов в ней может быть несколько (2-12 штук). Каждый из них имеет цилиндрическую форму. Это аккумуляторы Li-Ion 18650. Как правильно зарядить их, подробно указывает производитель техники. Такая конструкция имеет в своем составе специальный контроллер. Он выглядит в виде микросхемы. Контроллер управляет процедурой зарядки, не допускает превышения номинального значения емкости батареи.

В современных аккумуляторах для планшетов, смартфонов также предусмотрена функция контроля заряда. Это значительно продлевает срок эксплуатации батареи. Она защищена от различных неблагоприятных факторов.

Особенности зарядки

Рассматривая, как правильно заряжать Li-Ion аккумуляторы телефона, ноутбука и прочей техники, необходимо обратить внимание на особенности работы представленного устройства. Следует сказать, что литий-ионные батареи не терпят глубокого разряда и перезаряда. Этим управляет специальное устройство, которое добавляется в конструкцию (контроллер).

Идеально поддерживать заряд представленного типа батареи на уровне от 20 до 80% от полной емкости. За этим следит контроллер. Однако специалисты не рекомендуют оставлять устройство подключенным к зарядке постоянно. Это значительно сокращает срок эксплуатации батареи. На контроллер действует в этом случае постоянная нагрузка. Со временем его функциональность из-за этого может снижаться.

При этом контроллер также не допустит глубокого разряда. Он просто в определенный момент отключит батарею. Эта защитная функция крайне необходима. В противном случае пользователь мог бы случайно перезарядить или слишком сильно разрядить батарею. Также в аккумуляторах современного образца предусмотрена качественная защита от перегрева.

Принцип работы батареи

Чтобы понимать, как правильно заряжать Li-Ion аккумулятор (новый или бывший в употреблении), необходимо рассмотреть принцип его работы. Это позволит оценить необходимость контролировать уровень разряда и заряда устройства.

Ионы лития в аккумуляторе представленного типа перемещаются от одного электрода к другому. В этом случае появляется электрический ток. Электроды могут быть изготовлены из разных материалов. Этот показатель в меньшей степени влияет на эксплуатационные характеристики прибора.

Ионы лития нарастают на кристаллической решетке электродов. Последние, в свою очередь, меняют свой объем и состав. Когда батарея заряжена или разряжена, на одном из электродов ионов становится больше. Чем выше нагрузка на металлические элементы конструкции, которую оказывает литий, тем короче будет срок эксплуатации прибора. Поэтому лучше не допускать высокого процента оседания ионов на одном или другом электроде.

Варианты зарядки

Перед эксплуатацией батареи нужно рассмотреть, как правильно заряжать Li-Ion аккумулятор смартфона, планшета и прочей техники. Для этого существует несколько способов.

Одним из самых правильных решений будет применение зарядного устройства. Его поставляет в комплекте с электронной техникой каждый производитель.

Вторым вариантом является зарядка батареи от стационарного компьютера, подключенного к бытовой сети. Для этого применяется USB-кабель. В этом случае процедура зарядки будет более длительной, чем при использовании первого способа.

Можно выполнить эту процедуру при помощи прикуривателя в автомобиле. Еще одним менее популярным способом является зарядка литий-ионного аккумулятора при помощи универсального устройства. Его еще называют «лягушкой». Чаще всего такие приборы применяют для подзарядки батарей смартфонов. Контакты этого прибора можно отрегулировать по ширине.

Зарядка новой батареи

Новый аккумулятор нужно правильно ввести в эксплуатацию. Для этого телефон, планшет или иное оборудование нужно полностью разрядить. Только когда устройство выключится, его можно будет подключить к сети. Контроллер не даст батарее слишком сильно разрядиться. Именно он отключает устройство, когда аккумулятор теряет емкость до заданного уровня.

Далее нужно подключить электротехнику к сети при помощи штатного зарядного устройства. Процедуру выполняют до того времени, пока индикатор не загорится зеленым светом. Можно оставить прибор в сети еще на несколько часов. Такую процедуру проводят несколько раз. При этом специально разряжать телефон, планшет или ноутбук не нужно.

Обычная зарядка

Зная, как правильно заряжать аккумуляторы Li-Ion, можно значительно продлить срок работы батареи. Специалисты рекомендуют провести правильную процедуру этого процесса для нового элемента питания. После этого не желательно разряжать аккумулятор полностью. Когда индикатор покажет, что емкость батареи имеет заряд всего на 14-15%, его нужно подключить к сети.

При этом также не рекомендуется применять иные устройства для наполнения емкости аккумулятора, кроме штатного. Оно имеет максимально приемлемые показатели тока, допустимые для конкретной модели батареи. Прочие варианты можно использовать только в случае крайней необходимости.

Калибровка

Существует еще один нюанс, который нужно узнать, изучая вопрос, как правильно заряжать Li-Ion аккумуляторы. Эксперты рекомендуют периодически проводить калибровку этого устройства. Она проводится раз в три месяца.

Сначала в обычном режиме нужно разрядить электротехнику до ее выключения. Далее его подключают к сети. Зарядка продолжается до тех пор, пока индикатор не станет гореть зеленым светом (батарея заряжена на 100%). Эту процедуру нужно выполнять для правильной работы контроллера.

При проведении подобной процедуры печатная плата аккумулятора определяет предельные рамки зарядки и разрядки. Это необходимо для обеспечения нормальной работы контроллера, позволяет избежать сбоев. При этом применяется штатное зарядное устройство, которое поставляется производителем в комплекте с телефоном, планшетом или ноутбуком.

Хранение

Чтобы батарея проработала максимально долго и эффективно, нужно рассмотреть также вопрос, как правильно зарядить Li-Ion аккумулятор для хранения. В некоторых случаях может возникнуть ситуация, когда прибор для питания техники временно не эксплуатируется. В этом случае его нужно правильно подготовить для хранения.

Аккумулятор заряжают до 50%. В таком состоянии его можно хранить достаточно долго. Однако температура окружающей среды должна быть около 15 ºС. Если она повысится, скорость потери батареей своей емкости будет увеличиваться.

Если аккумулятор нужно хранить достаточно длительное время, его нужно раз в месяц полностью разряжать и заряжать. Батарея набирает 100% своей заданной емкости. Затем прибор снова разряжают и заряжают уже до 50%. При регулярном проведении такой процедуры можно хранить аккумулятор очень долго. После этого он будет полностью пригоден для эксплуатации.

Рассмотрев, как правильно заряжать Li-Ion аккумуляторы, можно значительно продлить срок эксплуатации батареи этого типа.

LM317 Зарядное устройство для литий-ионных аккумуляторов · Один транзистор

Создайте это простое, но универсальное зарядное устройство для литий-ионных элементов с LM317 или LM338 и TL431

Несмотря на то, что у меня есть несколько модулей TP4056 для зарядки литий-ионных элементов, эти маленькие печатные платы выделяют много тепла, и зарядный ток уменьшается с повышением температуры. Поскольку у меня есть параллельные пары ячеек от аккумуляторов для ноутбуков, я бы хотел зарядить их более сильным током. Еще одно ограничение этих модулей заключается в том, что максимальный ток заряда не может быть изменен, если я не заменю небольшой резистор SMD.Поэтому я сделаю свое собственное зарядное устройство для литий-ионных аккумуляторов с LM317 (LM338). Использование линейного регулятора не решает проблему тепловыделения, но, по крайней мере, я могу поставить его на радиатор.

Литий-ионные элементы

необходимо заряжать в два этапа. Во-первых, пока они не достигнут порогового напряжения, зарядное устройство работает как источник постоянного тока. Этот ток зависит от ячейки, но обычно подаваемая энергия (в Ач) должна быть менее 80 процентов емкости батареи (Ач). Когда напряжение достаточно увеличится, зарядное устройство должно переключиться в режим постоянного напряжения, поддерживая стабильное значение 4.2 В (или 4,1 В для некоторых ячеек) до падения тока.

Моя схема не пытается заменить модуль TP4056. Они хорошо подходят для зарядки литий-ионных аккумуляторов от USB-портов 5 В. Их небольшой размер также является важной причиной их использования. Следующая схема имеет большие размеры и не подходит для портативных устройств. Это больше похоже на верстаковое зарядное устройство. Есть две предустановки зарядного тока (фактические токи будут зависеть от номинала некоторых резисторов). Его также можно использовать для зарядки двух последовательных ячеек (в зависимости от номинала двух других резисторов).LM317 можно заменить на LM338, если вам нужен ток зарядки до 5 А. Будьте осторожны при замене других частей, которые должны будут пропускать более высокий ток (мы увидим позже).

Схема зарядного устройства Li-Ion LM317 / LM338

R2 и D4 составляют простой индикатор тока. Диод 1N5404 имеет прямое падение напряжения, которое увеличивается с увеличением тока. Это падение используется для включения транзистора Q1, который управляет светодиодом и охлаждающим вентилятором регулятора. При низких токах R2 создает путь для тока, который определяет еще меньшее падение напряжения, гарантируя, что транзистор больше не смещен.Точная точка, в которой это происходит, зависит как от диода, так и от параллельного резистора. Это всего лишь элементарный индикатор тока, который может потребовать некоторых экспериментов с различными частями, чтобы заставить его работать правильно. Замену диода разрешается производить только на диоды выпрямительного типа другого типа. Не используйте диоды Шоттки. Сопротивление резистора R2 можно уменьшить до 3,9 Ом. При таком слабом смещении транзистор не может управлять мощными нагрузками. Я тестировал небольшой вентилятор диаметром 40 мм с потребляемым током всего 80 мА.

Остальная часть схемы представляет собой ограниченный по току источник питания LM317, установленный на 4.Выход 1-4,2 В. U2 (TL431) используется в качестве опорного напряжения для заданного выхода. С помощью R5, R6, R8 и SW1 зарядный ток можно установить следующим образом. Максимально доступный выходной ток составляет 1,5 А для LM317 и 5 А для LM338. Используя эквивалентное сопротивление между выходом регулятора и нагрузкой, вы можете ограничить этот ток: I = 1,25 / R . Схема использует SW1 для переключения между двумя токами зарядки. Важно знать, что R6 и R8 никогда не должны одновременно присутствовать в этой цепи. С помощью R5 и R8 переключатель может выбирать между R5 + R8 и R5.В этом случае I 1 = 1,25 / (R5 + R8) (режим малого тока), а I 2 = 1,25 / R5 (режим большого тока). SW1 в этой ситуации может быть однополюсным 2-контактным переключателем, предназначенным для замыкания R8.

У вас могут быть резисторы R5 и R6. В этом случае I 1 = 1,25 / R5 , а I 2 = 1,25 / R6 . Значения резистора на схеме были выбраны для высокого тока 1,25 А и низкого тока 0,57 А. Используйте любые значения, которые вам нужны, помня, что рассеиваемая мощность составляет P = I 2 R .Выбирайте резисторы с подходящей мощностью (обычно в два раза больше, чем нужно).

R9, R10 и RV1 устанавливают напряжение. Это максимальное напряжение, которого может достичь аккумулятор при полной зарядке. Для литий-ионных элементов это 4,1 В или 4,2 В (см. Технические характеристики элемента). Значения из схемы подходят для одной ячейки или пакета параллельных ячеек. На холостом ходу отрегулируйте RV1 до тех пор, пока выходное напряжение не станет 4,1 или 4,2 В. Если вы заряжаете две последовательные ячейки, R9 должен быть 22 кОм, а выходное напряжение без нагрузки — 8.2 или 8,4 вольт. Не забудьте использовать балансировочную схему для ячеек. Даже три последовательных элемента могут быть заряжены с помощью R9 = 39 кОм и правильно рассчитанных конденсаторов / последовательных резисторов светодиодов / вентилятора.

Схема печатной платы зарядного устройства Li-Ion

Для LM338 можно установить более высокие токи зарядки с теми же резисторами. Важно заменить D4 и F1 деталями, которые могут выдерживать ток. Дорожки на печатной плате не совсем подходят для больших токов. Красные дорожки на приведенном выше рисунке следует залудить, чтобы увеличить их поперечное сечение и ток.Используйте свой паяльник, чтобы добавить припой на эти дорожки.

Печатная плата размером 7,2 на 7 см, односторонняя. На верхней стороне должна быть добавлена ​​проволочная перемычка (см. Шелкографию). Минимальное входное напряжение для этой схемы следующее. Держите его как можно ближе к этим значениям, чтобы уменьшить тепловыделение, но не меньше. Убедитесь, что SMPS / трансформатор может подавать достаточный ток.

AC / DC 1 ячейка / параллельная упаковка 2 ячейки серии 3 ячейки
Переменный ток при J1 7.4 В переменного тока 10,3 В переменного тока 13,3 В переменного тока
Постоянный ток при J2 8,4 В постоянного тока 12,6 В постоянного тока 16,8 В постоянного тока

Нижняя сторона печатной платы с отверстиями для потока воздуха

Во время использования D4, U1, R5, R6 и R8 нагреваются. Это нормально. При зарядке большими токами и LM338 вы можете отключить индикатор зарядки, заменив D4 проволочной перемычкой. Таким образом вы удалите нагревающуюся деталь.Если вы оставите аккумулятор подключенным к зарядному устройству, когда он не включен, светодиод PWR останется включенным, чтобы напомнить вам о необходимости отключить аккумулятор.

Предупреждение! Не размещайте литий-ионные элементы слишком близко к этой цепи, потому что она нагревается во время использования. Избегайте нагрева литий-ионных аккумуляторов. Рекомендуется положить зарядное устройство и аккумуляторы в безопасное место и следить за ними во время зарядки. Неправильно построенное зарядное устройство и / или поврежденные элементы могут привести к возгоранию элементов.

Загрузки

Ссылки

  1. z-матрица .Схема простейшего самодельного литий-полимерного зарядного устройства (2006 г.) на форуме RC Groups.
  2. Простое зарядное устройство для литий-ионных / липоаккумуляторов для самостоятельной сборки электроники (схема из [1]).
  3. Цепь зарядки литий-ионной батареи 3,6 В LM317 на 320 В.

Самое простое зарядное устройство для литий-полимерных аккумуляторов своими руками — немного больше

Пора добавить некоторые функции!

Первое, что вам может понравиться, — это немного более быстрая зарядка за счет обеспечения постоянного тока в начале цикла зарядки.

После этого индикатор окончания заряда тоже неплохое дополнение. (и автоматический контроллер вентилятора)

Эти функции немного усложнят, но количество деталей остается очень низким.

Для большей стабильности я добавил два электролитических конденсатора на входе и выходе.

Они не являются строго необходимыми, так как это далеко не сложная ситуация для регулятора, но их добавление не может повредить.

Значение не критично, если вы не используете другой регулятор, и в этом случае вам следует свериться с таблицей данных.

(Для регуляторов с низким падением напряжения часто требуются конденсаторы большего размера)

Просто убедитесь, что конденсаторы рассчитаны на напряжение выше, чем в цепи.

Вместо того, чтобы использовать отдельный LM317 для постоянного тока, лучше реализовать ограничение тока на существующем регуляторе.

Таким образом мы избегаем еще одного падения напряжения на 3 В.

Этот метод довольно прост, и его можно найти в некоторых таблицах данных LM317, хотя он не имеет подробного объяснения.

Это практически та же схема, что и раньше, но R4 переместился на линию заземления батареи.

В предыдущей версии R4 использовался для ограничения тока самостоятельно.

В этом резисторе R4 используется как резистор «считывания тока».

Он не ограничивает только ток, но напряжение, развиваемое на его выводах, используется для снижения напряжения регулятора, эффективно ограничивая выходной ток.

Важно отметить, что он не может ограничивать ток в случае короткого замыкания или низкого выходного напряжения.
Это связано с тем, что LM317 будет регулировать выходное напряжение до 1,25 В, когда вывод ADJ подключен непосредственно к земле.
Итак, ниже 1,25 В мы не можем сказать ему, чтобы он уменьшал напряжение дальше, чтобы уменьшить ток.
(если у нас нет отрицательного напряжения, но это уже другая история)

Регулировка такая же, как и в первой версии, R1, R2, R3 имеют ту же функцию — устанавливают выходное напряжение.

R4, однако, теперь немного другой.

Когда ток проходит через R4, между его контактами появляется напряжение.

Когда это напряжение достигает порога + -0,7 В на базе транзистора, он начинает проводить, и вывод ADJ постепенно заземляется.

Это как если бы мы уменьшили значение R2 и R3.

По мере увеличения тока транзисторы открываются больше, понижая напряжение регулятора до точки, где достигается равновесие.

Хорошо, что теперь значение R4 не зависит от соотношения входного / выходного напряжения.

Примеры значений для установки тока с любым количеством ячеек:

0,68 Ом 1 Вт = 1 А

0,47 Ом 1 Вт = 1,5 А

1,2 Ом 500 мВт = 550 мА

Обратите внимание на более низкую номинальную мощность резистора. Теперь регулятор напряжения выполняет работу по регулированию и отводит тепло.

Это снова означает, что радиатор и, вероятно, вентилятор не являются дополнительными.

Если вы хотите проверить значение постоянного тока, вы не можете просто замкнуть провода батареи вместе.

Вы должны использовать резистор последовательно, чтобы напряжение на выводе + не упало ниже 1,25 В.

Резистор 2,2 Ом 5 ​​Вт подходит для измерения токов от 0,5 до 1,5 А.

Автоматическая схема портативного зарядного устройства 12 В с использованием LM317

Вы когда-нибудь пытались разработать зарядное устройство, которое заряжает аккумулятор автоматически, когда напряжение аккумулятора ниже указанного? В этой статье объясняется, как разработать автоматическое зарядное устройство.

Зарядное устройство, расположенное ниже, автоматически прекращает процесс зарядки, когда аккумулятор полностью заряжен.Это предотвращает глубокую зарядку аккумулятора. Если напряжение аккумулятора ниже 12 В, то схема автоматически заряжает аккумулятор.

Схема автоматического зарядного устройства 12 В

Принципиальная схема автоматического зарядного устройства

Схема автоматического зарядного устройства в основном состоит из двух частей — блока питания и блока сравнения нагрузок.

Основное напряжение питания 230 В, 50 Гц подключается к первичной обмотке центрального ответвительного трансформатора для понижения напряжения до 15–0–15 В.

Выход трансформатора подключен к диодам D1, D2. Здесь диоды D1, D2 используются для преобразования низкого переменного напряжения в пульсирующее постоянное напряжение. Этот процесс также называется исправлением. Пульсирующее напряжение постоянного тока подается на конденсатор емкостью 470 мкФ для устранения пульсаций переменного тока.

Таким образом, на выходе конденсатора нерегулируется постоянное напряжение. Это нерегулируемое постоянное напряжение теперь подается на регулятор переменного напряжения LM317 для обеспечения регулируемого постоянного напряжения.

Выходное напряжение этого регулятора напряжения изменяется от 1.От 2 В до 37 В, а максимальный выходной ток этой ИС составляет 1,5 А. Выходное напряжение этого регулятора напряжения изменяется путем изменения потенциометра 10 кОм, который подключен к регулировочному выводу LM317.

[Также прочтите: Как сделать регулируемый таймер]

Выход регулятора напряжения Lm317 поступает на аккумуляторную батарею через диод D5 и резистор R5. Здесь диод D5 используется для предотвращения разрядки аккумулятора при отключении основного питания.

При полной зарядке аккумулятора стабилитрон D6, подключенный в обратном направлении, проводит ток.Теперь база транзистора BD139 NPN получает ток через стабилитрон, так что полный ток заземлен.

В этой схеме зеленый светодиод используется для индикации заряда аккумулятора. Резистор R3 используется для защиты зеленого светодиода от высокого напряжения.

Выходное видео:
Принцип электрической цепи

Если напряжение батареи ниже 12 В, то ток от микросхемы LM317 протекает через резистор R5 и диод D5 к батарее. В это время стабилитрон D6 не будет проводить, потому что аккумулятор забирает весь ток для зарядки.

Когда напряжение батареи повышается до 13,5 В, ток в батарею прекращается, и стабилитрон получает достаточное напряжение пробоя и пропускает ток через него.

Теперь база транзистора получает ток, достаточный для включения, так что выходной ток регулятора напряжения LM317 заземляется через транзистор Q1. В результате красный светодиод показывает полный заряд.

Настройки зарядного устройства

Выходное напряжение зарядного устройства должно быть меньше 1.5 раз аккумулятор и ток зарядного устройства должен составлять 10% от тока аккумулятора. Зарядное устройство должно иметь защиту от перенапряжения, короткого замыкания и обратной полярности.

ПРИМЕЧАНИЕ : Также получите представление о том, как построить схему индикатора уровня заряда аккумулятора?

2. автоматическое зарядное устройство

Принципиальная схема

В этом проекте упоминается схема автоматического зарядного устройства для герметичных свинцово-кислотных аккумуляторов.Это схема импульсного типа зарядного устройства, которая помогает продлить срок службы батарей. Работа этой схемы поясняется ниже.

LM317 действует как регулятор напряжения и устройство контроля тока. Стабилитрон 15 В используется для установки LM317 на подачу напряжения 16,2 В на выходе при отсутствии нагрузки. Когда 2N4401 включается выходом 555, вывод ADJ LM317 заземлен, и его выходное напряжение составляет 1,3 В.

LM358 действует как компаратор и повторитель напряжения. LM336 используется для подачи опорного напряжения 2.5 В на неинвертирующую клемму (контакт 3) LM358. Сеть делителя напряжения используется для подачи части напряжения батареи на инвертирующий вывод (вывод 2) LM358.

Когда заряд аккумулятора достигает 14,5 В, входной сигнал инвертирующего терминала LM358 немного больше 2,5 В на контакте 3, установленном LM336. Это повысит выход 555.

В результате горит красный светодиод и транзистор включается. Это заземлит контакт ADJ LM317, и его выход упадет до 1,3 В.

Когда заряд аккумулятора падает ниже 13.8 В, выход LM358 высокий, а выход 555 низкий. В результате напряжение течет от LM317 к батарее, и зеленый светодиод светится, указывая на зарядку.

[Связанное сообщение Зарядное устройство для свинцово-кислотных аккумуляторов с использованием LM317]

3. зарядное устройство с использованием SCR

В этом проекте реализована схема автоматического зарядного устройства с использованием SCR. Может использоваться для зарядки аккумуляторов 12 В. Батареи с разным потенциалом, например, 6 В и 9 В, также можно заряжать, выбрав соответствующие компоненты.Схема работы следующая.

Источник переменного тока преобразуется в 15 В постоянного тока с помощью трансформатора и мостового выпрямителя, и загорается зеленый светодиод. Выход постоянного тока представляет собой пульсирующий постоянный ток, поскольку после выпрямителя нет фильтра.

Это важно, поскольку тиристор перестает проводить ток, только когда напряжение питания равно 0 или когда он отключен от источника питания, и это возможно только при пульсирующем постоянном токе.

Первоначально SCR1 начинает проводить, поскольку он получает напряжение затвора через R2 и D5.Когда SCR1 является проводящим, через аккумулятор проходит 15 В постоянного тока, и аккумулятор начинает заряжаться. Когда аккумулятор почти полностью заряжен, он препятствует прохождению тока, и ток начинает течь через R5.

Он фильтруется с помощью C1, и когда потенциал достигает 6,8 В, стабилитрон ZD1 начинает проводить и подает напряжение затвора на SCR2, достаточное для его включения.

В результате ток протекает через SCR2 через R2, и SCR1 отключается, так как напряжение затвора и напряжение питания отключаются.Красный светодиод загорается, указывая на полную зарядку аккумулятора.

Знаю, как спроектировать схему автоматического отключения и автоматической зарядки аккумулятора с помощью SCR.

Зарядка литиевых элементов

Зарядка литиевых элементов
Elliott Sound Products Зарядка литиевых элементов

Авторские права © 2016 — Род Эллиотт (ESP)
Страница создана в ноябре 2016 г., опубликована в феврале 2017 г.
Последнее обновление в октябре 2018 г.

Вершина
Указатель статей
Основной указатель

Содержание
Введение
1 — Система управления батареями (BMS)
2 — Профиль зарядки
3 — Источники питания постоянного напряжения и постоянного тока (зарядные устройства)
4 — Цепь зарядки одной ячейки IC
5 — Зарядка нескольких элементов
6 — Защита батареи
7 — Мониторинг состояния заряда (SOC)
8 — Проекты с батарейным питанием
Выводы
Ссылки

Введение

Зарядка литиевых батарей или элементов (теоретически) проста, но может быть сопряжена с трудностями, о чем свидетельствуют многочисленные серьезные отказы в коммерческих продуктах.Они варьируются от портативных компьютеров, мобильных («сотовых») телефонов до так называемых «ховербордов» (также называемых балансировочными щитами) и даже самолетов. Противовесы стали причиной ряда пожаров в домах и разрушили или повредили многие объекты недвижимости по всему миру. Если элементы не заряжены должным образом, существует высокий риск вентиляции (выброса газов под высоким давлением), что часто сопровождается возгоранием.

Литий — самый легкий из всех металлических элементов, он плавает на воде. Он очень мягкий, но быстро окисляется на воздухе.Воздействия водяного пара и кислорода часто бывает достаточно, чтобы вызвать возгорание, особенно если присутствует тепло (например, из-за перезарядки литиевого элемента). Воздействие влажного / влажного воздуха вызывает образование газообразного водорода (из водяного пара), который, конечно же, легко воспламеняется. Литий плавится при 180 ° C. Большинство авиакомпаний настаивают на том, чтобы литиевые элементы и батареи заряжались не более чем на 30% при транспортировке из-за вполне реального риска катастрофического пожара. Несмотря на ограничения, литиевые батареи теперь используются почти во всем новом оборудовании из-за очень высокой плотности энергии и небольшого веса.

Батареи имеют скорость заряда и разряда, обозначенную буквой «C» — емкость батареи или элемента в Ач или мАч (ампер или миллиампер-час). Таким образом, аккумулятор емкостью 1,8 Ач (1800 мАч) имеет рейтинг «C» 1,8 А. Это означает, что (по крайней мере теоретически) аккумулятор может обеспечивать ток 180 мА в течение 10 часов (0,1 ° C), 1,8 A в течение 1 часа или 18 A в течение 6 минут (0,1 час или 10 ° C). В зависимости от конструкции литиевые батареи могут обеспечивать ток до 30 ° C или более, поэтому наша гипотетическая батарея емкостью 1800 мАч теоретически может обеспечивать 54 А в течение 2 минут.Емкость также может быть указана в Втч (ватт-часах), хотя эта цифра обычно не используется, кроме как в рекламных брошюрах.

В США и некоторых других странах оценка Wh требуется транспортным компаниям, чтобы они могли определить необходимый стандарт упаковки. Один аккумулятор 1,8 Ач имеет накопленную энергию 6,7 Втч [4] . В качестве альтернативы может потребоваться указать содержание лития. В справочнике также показано, как это можно рассчитать, хотя любой сделанный расчет будет только приблизительным, если производитель батарей специально не укажет содержание лития.Причина этого — риск возгорания — перевозчики не любят, когда грузы загораются, а содержание лития может определять способ доставки товаров. Если батареи поставляются отдельно (не встроены в оборудование), они должны быть заряжены не более чем на 30% емкости.

В отличие от некоторых более старых аккумуляторных технологий, литиевые батареи нельзя (и не следует) оставлять на плавающем заряде, хотя может быть , если напряжение поддерживается ниже максимального напряжения заряда. Для большинства используемых ячеек максимальное напряжение ячейки равно 4.2 В, называемое напряжением «заряда насыщения». Напряжение заряда должно поддерживаться на этом уровне только достаточно долго, чтобы ток заряда упал до 10% от начального значения или 1С. Однако это может быть интерпретировано, поскольку начальный ток заряда может иметь широкий диапазон в зависимости от батареи и зарядного устройства.

К сожалению, несмотря на то, что существует бесчисленное количество статей о зарядке литиевых батарей, существует почти столько же различных предложений, рекомендаций и мнений, сколько и статей.Одна из основных вещей, которая важна при зарядке литиевой батареи, — это гарантировать, что напряжение на каждой ячейке никогда не превышает максимально допустимое, а это означает, что необходимо контролировать каждую ячейку в батарее. Существует множество доступных ИС, которые были специально разработаны для балансной зарядки литиевых батарей, при этом некоторые системы довольно сложны, но чрезвычайно универсальны с точки зрения обеспечения оптимальной производительности.

В то время как традиционные литий-ионные (Li-Ion) или литий-полимерные (Li-Po) имеют номинальное напряжение ячейки 3.70 В, Li-железо-фосфат (LiFePO 4 , также известный как LFP — феррофосфат лития) составляет исключение с номинальным напряжением элемента 3,20 В и зарядкой до 3,65 В. Многие коммерческие батареи LiFePO 4 имеют встроенные схемы балансировки и защиты, и их нужно только подключить к соответствующему зарядному устройству. Относительно новым дополнением является литий-титанат (LTO) с номинальным напряжением ячейки 2,40 В и зарядкой до 2,85 В.

Зарядные устройства для этих альтернативных литиево-химических элементов несовместимы с обычными 3.70-вольтовый Li-Ion. Необходимо обеспечить идентификацию систем и обеспечение правильного зарядного напряжения. Литиевая батарея на 3,70 В в зарядном устройстве, разработанном для LiFePO 4 , не получит достаточного заряда; LiFePO 4 в обычном зарядном устройстве вызовет перезарядку. В отличие от многих других химических элементов, литий-ионные элементы не могут поглощать перезаряд, поэтому необходимо знать конкретный химический состав аккумулятора и подбирать условия зарядки.

Литий-ионные элементы

безопасно работают в пределах указанных рабочих напряжений, но аккумулятор (или элемент в аккумуляторе) становится нестабильным, если случайно зарядить его до напряжения выше указанного.При длительной зарядке выше 4,30 В литий-ионного элемента, рассчитанного на 4,20 В, на аноде будет металлический литий. Катодный материал становится окислителем, теряет стабильность и выделяет диоксид углерода (CO2). Давление в ячейке повышается, и если заряду позволяют продолжить, устройство прерывания тока, отвечающее за безопасность ячейки, отключается при 1000–1380 кПа (145–200 фунтов на квадратный дюйм). При дальнейшем повышении давления защитная мембрана на некоторых литий-ионных элементах разрывается при давлении около 3450 кПа (500 фунтов на квадратный дюйм), и в конечном итоге ячейка может вентилироваться — с пламенем!

Не все ячейки рассчитаны на то, чтобы выдерживать высокое внутреннее давление, и будут иметь видимые выпуклости задолго до того, как давление достигнет значений, близких к указанным.Это верный признак того, что элемент (или аккумулятор) поврежден, и его нельзя использовать снова. К сожалению, во многих статьях, которые вы найдете в Интернете, обсуждая платы баланса (в частности), говорится о качестве элементов (или их отсутствии) и / или качестве зарядного устройства (то же самое), но не упоминается обсуждаемая система управления батареями (BMS). следующий.

Это один из наиболее важных элементов зарядного устройства для литиевых батарей, но он редко упоминается в большинстве статей, посвященных возгоранию батарей.В общем, предполагается (или неизвестно автору), что аккумуляторная батарея включает — или , если включает — схему защиты, чтобы гарантировать, что каждая ячейка контролируется и защищена от перезаряда. Вероятно, что дешевые (или поддельные) аккумуляторные блоки вообще не содержат схемы защиты, и любой аккумулятор без этой важной схемы, как правило, следует избегать, если у вас нет надлежащего внешнего зарядного устройства с многополюсным разъемом. Проблема в том, что продавцы редко раскрывают (или даже знают), есть ли у аккумулятора защита или нет.


1 — Система управления батареями (BMS)

Это не особенно полезно, но многие продавцы аккумуляторов и зарядных устройств не проводят различия между контролем аккумулятора и защитой аккумулятора . Это две отдельные функции, и, как правило, они представляют собой отдельные элементы схемы. К сожалению, термин «BMS» может означать либо мониторинг, либо защиту, в значительной степени в зависимости от определения, используемого продавцом, и / или понимания того, что на самом деле продается.

Я буду использовать термин «балансировка» применительно к управлению процессом зарядки, а для аккумуляторов (в отличие от отдельных ячеек) это процесс балансировки, который гарантирует, что каждая ячейка тщательно контролируется во время зарядки для поддержания правильного максимального значения ячейки. Напряжение. Защита Цепи обычно подключены к батарее постоянно и часто интегрируются в батарею. Они описаны ниже. В некоторых случаях защита и балансировка могут быть предоставлены как комплексное решение, и в этом случае оно действительно заслуживает названия «BMS» или «система управления батареями».

Для правильного управления процессом зарядки более чем одной ячейки необходима система балансировки батареи . Цепи баланса отвечают за обеспечение того, чтобы напряжение на любой ячейке никогда не превышало максимально допустимое, и часто интегрируются с зарядным устройством. В некоторых есть дополнительные возможности, например, мониторинг температуры ячейки. В больших установках отдельные контроллеры ячеек обмениваются данными с центральным «главным» контроллером, который обеспечивает сигнализацию устройству, на которое подается питание, с указанием состояния заряда (поскольку этот параметр может быть определен — это меньше, чем точная наука), наряду с любыми другими данные, которые можно считать важными.

Для сравнительно простых батарей с количеством ячеек от 2 до 5, дающих номинальное напряжение от 7,4 В до 18,5 В соответственно, баланс ячеек не представляет особой сложности. Это действительно становится проблемой, когда, возможно, 110 ячеек соединены последовательно, что дает выход около 400 В (как, например, в электромобиле). Ячейки также могут быть соединены параллельно, чаще всего как последовательно-параллельная сеть. В общей терминологии (особенно для «любительских» батарей для моделей самолетов и т.п.) батарея будет обозначаться как 5S (5 ячеек серии) или 4S2P (4 ячейки серии, каждая из которых состоит из 2 элементов параллельно).

Параллельная работа ячеек не является проблемой, и возможно (хотя обычно не рекомендуется), что они могут иметь разную емкость. Конечно, они должны использовать ту же химию. При последовательном запуске ячейки должны быть как можно ближе к идентичности. Конечно, по мере того, как звонки стареют, они будут делать это с разной скоростью — некоторые клетки всегда будут портиться быстрее, чем другие. Именно здесь система балансировки становится важной, потому что элемент (-ы) с самой низкой емкостью будет заряжаться (и разряжаться) быстрее, чем другие в упаковке.Большинство балансных зарядных устройств используют регулятор на каждой ячейке, что гарантирует, что напряжение заряда каждой отдельной ячейки никогда не превышает максимально допустимого.

В простейшей форме это можно сделать с помощью цепочки прецизионных стабилитронов, что на самом деле довольно близко к обычно используемым системам. Напряжение должно быть очень точным и в идеале должно находиться в пределах 50 мВ от желаемого максимального напряжения заряда. Хотя напряжение заряда насыщения обычно составляет 4,2 В на элемент, срок службы батареи можно продлить, ограничив напряжение заряда до 4.1 вольт. Естественно, это приводит к немного меньшему накоплению энергии.

Два основных компонента BMS будут рассмотрены отдельно ниже. Их можно дополнить мониторингом производительности (состояние заряда, оставшаяся емкость и т. Д.), Но в этой статье основное внимание уделяется важным моментам — тем, которые максимизируют безопасность и срок службы батареи. Так называемые «топливомеры» — это отдельная тема, и здесь они рассматриваются лишь вскользь.


2 — Профиль зарядки

На графике показаны основные элементы процесса зарядки.Первоначально зарядное устройство работает в режиме постоянного тока (ограничение тока) с максимальным током в идеале не более 1С (1,8 А для элемента или аккумулятора 1,8 Ач). Часто это будет меньше, а иногда и намного меньше. При зарядке при 0,1C (180 мА) время зарядки составит 30 часов, если применяется заряд полного насыщения. Однако, когда используется сравнительно медленный заряд (обычно менее 0,2 ° C), можно прекратить зарядку, как только элемент (-ы) достигнет 4,2 В, и заряд насыщения не потребуется.Например, на основе «нового» алгоритма зарядки элементу, показанному на рисунке 1, может потребоваться от 12 до 15 часов для зарядки при 0,1 ° C, и цикл зарядки завершается, как только напряжение достигает 4,2 вольт. Это несколько мягче по сравнению с литий-ионным элементом, и напряжение напряжения минимизировано.


Рисунок 1 — Профиль зарядки литий-ионных аккумуляторов (1 элемент)

Как ясно видно на графике, быстрая зарядка означает, что емкость отстает от напряжения заряда, а 1С достаточно быстрая — особенно для аккумуляторов, предназначенных для устройств с низким потреблением энергии.Примерно через 35 минут напряжение (почти) достигло максимума 4,2 В, и ток заряда начинает падать, но элемент заряжен только примерно до 65%. Более низкая скорость заряда означает, что уровень заряда более точно соответствует напряжению. Как и все батареи, вы никогда не получаете столько, сколько вставляете, и обычно вам нужно вложить примерно на 10-20% больше ампер-часов (или миллиампер-часов), чем вы получите обратно во время разряда.

Некоторые зарядные устройства обеспечивают предварительный заряд, если напряжение элемента меньше 2.5 вольт. Обычно это постоянный ток, равный 1/10 от номинального полного заряда постоянного тока. Например, если ток заряда установлен на 180 мА, элемент будет заряжаться до 18 мА до тех пор, пока напряжение элемента не повысится примерно до 3 В (это зависит от конструкции зарядного устройства). Однако большинству систем никогда не потребуется предварительное кондиционирование, потому что электроника отключится (или должна!) Прежде, чем элемент достигнет потенциально опасного уровня разряда.

При использовании литий-ионные батареи следует хранить в прохладном месте.Нормальная комнатная температура (от 20 ° до 25 ° C) является идеальной. Не рекомендуется оставлять заряженные литиевые батареи в автомобилях на солнце, как и в любом другом месте, где температура может быть выше 30 ° C. Это вдвойне важно во время зарядки аккумулятора. При разряде требуются некоторые средства отключения, чтобы гарантировать, что напряжение элемента (любого элемента в батарее) не упадет ниже 2,5 вольт.

Обычно лучше не заряжать литиевые батареи полностью и не допускать их глубокого разряда.Срок службы батареи может быть увеличен за счет зарядки примерно до 80-90%, а не до 100%, так как это почти устраняет «напряжение напряжения», возникающее, когда напряжение элемента достигает полных 4,2 вольт. Если аккумулятор будет храниться, рекомендуется зарядка 30-40%, а не полная. Есть много рекомендаций, и большинство из них игнорируются. Однако это не вина пользователей — производители телефонов, планшетов и фотоаппаратов могут предложить вариант со сниженной оплатой — для этого достаточно вычислительной мощности.Это особенно важно для предметов, которые не имеют заменяемой пользователем батареи, потому что это часто означает, что в остальном совершенно хорошее оборудование выбраковано только потому, что батарея устала. Учитывая распространение вредоносных программ практически для каждой операционной системы, важно убедиться, что настройки заряда аккумулятора никогда не могут быть установлены таким образом, чтобы это могло вызвать повреждение.


3 — Источники питания постоянного напряжения и постоянного тока (зарядные устройства)

Во время начальной части цикла зарядки источник питания зарядного устройства должен быть постоянным.Текущее регулирование не обязательно должно быть идеальным, но оно должно быть в разумных пределах. Нас не очень волнует, действительно ли источник питания 1 А дает 1,1 А или 0,9 А, или он немного меняется в зависимости от напряжения на регуляторе. Мы, очевидно, должны быть очень обеспокоены, если выяснится, что максимальный ток составляет 10 А, но этого просто не произойдет даже с довольно грубым регулятором.

Для чисто аналоговой конструкции LM317 хорошо подходит для задачи регулирования тока, а также идеально подходит для регулирования основного напряжения.Это уменьшает общую BOM (спецификацию материалов), поскольку не требуется несколько различных деталей. Конечно, это оба линейных устройства, поэтому эффективность низкая, и они требуют напряжения питания, которое превышает общее напряжение батареи как минимум на 5 вольт, а желательно несколько больше.

В качестве альтернативы использованию двух микросхем LM317 вы можете добавить пару транзисторов и резисторов для создания ограничителя тока. Однако это работает не так хорошо, площадь печатной платы будет больше, чем у версии, показанной здесь, и экономия средств минимальна.В приведенной ниже схеме не предусмотрена возможность «предварительного кондиционирования» или «пробуждения» перед подачей полного тока. Это не важно, если аккумулятор никогда не разряжается ниже 3 В, и может даже не понадобиться при минимальном напряжении 2,5 В. Если напряжение разряженного элемента меньше 2,5 В, потребуется предварительная зарядка C / 10. Если вы когда-либо заряжаете только по тарифу C / 10, более низкий тариф не требуется.


Рисунок 2 — Цепь заряда постоянным током / постоянным напряжением

Показанная схема ограничивает ток до значения, определяемого R1.При сопротивлении 12 Ом ток составляет 100 мА (достаточно близко — на самом деле 104 мА), который задается сопротивлением и внутренним опорным напряжением 1,25 В. LM317. Для 1 А используйте 1,2 Ом (рекомендуется 5 Вт), и значение можно определить для любого необходимого тока вплоть до максимального 1,5 А, который может обеспечить LM317. При более высоком токе стабилизатору потребуется радиатор, особенно на начальном этапе заряда, когда на U1 будет значительное напряжение. Диоды предотвращают обратную полярность батареи к регулятору (U2), если батарея подключена до включения источника постоянного тока.D1 должен быть рассчитан как минимум на удвоенный максимальный ток и в идеале должен быть устройством Шоттки, чтобы минимизировать рассеяние и потери напряжения.

Это просто базовое зарядное устройство, которое может быть разработано в соответствии с требованиями, описанными выше. Однако это далеко не полная система, поскольку на данном этапе отсутствуют система управления и балансирующие схемы. Каждая система будет отличаться, но базовая схема достаточно гибкая, чтобы вместить большинство 2-4-элементных аккумуляторных батарей. Зарядку можно остановить, подключив контакт «Adj» U1 к земле с помощью транзистора, как показано на рисунке.Когда зарядка завершена, на конец R3 подается напряжение (5 В в порядке), и ограничитель тока отключается. Имейте в виду, что батарея будет разряжена комбинацией цепей баланса и тока, проходящего через R4, R5 и VR1 (последний составляет около 5,7 мА).


4 — Цепь зарядки одноэлементной ИС

Зарядное устройство на одну ячейку (или батареи с параллельными элементами) концептуально довольно просто. Однако при рассмотрении всех требований становится очевидным, что простого регулятора с ограничением тока, показанного выше, может быть недостаточно.Многие производители ИС имеют готовые зарядные устройства для литиевых элементов на микросхеме, при этом большинству не требуется ничего, кроме программирующего резистора, пары байпасных конденсаторов и дополнительного светодиодного индикатора. Один (из многих), который включает в себя все необходимое, — это Microchip MCP73831, показанный ниже. Большинство крупных производителей микросхем производят специализированные микросхемы, и их ассортимент огромен. TI (Texas Instruments) производит ряд устройств, предназначенных для полных приложений BMS, от одноэлементных до батарей на 400 В, используемых для электромобилей.Еще одна простая ИС — LM3622, которая доступна в нескольких версиях, в зависимости от напряжения конечной точки. Также доступна версия для двухэлементной батареи, но в ней отсутствует схема балансировки, что делает ее довольно бессмысленной (IMO).


Рисунок 3 — Зарядное устройство для одной ячейки с использованием микросхемы MCP73831 IC

Доступны четыре напряжения оконечной нагрузки — 4,20 В, 4,35 В, 4,40 В и 4,50 В, поэтому важно выбрать правильную версию для того типа аккумулятора, который вы будете заряжать. Режим постоянного тока управляется R2, ​​который используется для «программирования» IC.Оставление разомкнутой цепи контакта 5 («PROG») запрещает зарядку. ИС автоматически прекращает зарядку, когда напряжение достигает максимума, установленного ИС, и подает «дополнительный» заряд, когда напряжение элемента падает примерно до 3,95 вольт. Дополнительный светодиодный индикатор может использоваться для индикации заряда или окончания заряда, либо того и другого с помощью трехцветного светодиода или отдельных светодиодов. Выход состояния разомкнут, если ИС отключена (например, из-за перегрева) или если батарея отсутствует. После начала зарядки выходной сигнал состояния становится низким, а после завершения цикла зарядки — высоким.Обратите внимание, что эта ИС доступна только в упаковке SMD, а версии со сквозным отверстием недоступны. То же самое касается большинства устройств других производителей.

Показанное зарядное устройство представляет собой линейный регулятор, поэтому при зарядке элемента рассеивается мощность. Если напряжение разряженной ячейки составляет 3 В, ИС будет рассеивать только 300 мВт при токе заряда 100 мА. Если увеличить до максимума, который может обеспечить ИС (500 мА), ИС будет рассеивать 1,5 Вт, а это означает, что она сильно нагреется (в конце концов, это небольшое SMD-устройство).Если напряжение элемента будет меньше 3 В (глубокий разряд из-за аварии или длительного хранения), рассеяние будет таким, что ИС почти наверняка отключится, так как у нее есть внутреннее измерение перегрева. Он будет циклически включаться и выключаться до тех пор, пока напряжение на элементе не поднимется достаточно сильно, чтобы уменьшить рассеивание и обеспечить непрерывную работу. Зарядные устройства Switchmode намного эффективнее, но они больше, сложнее и дороже в сборке.

Некоторые контроллеры оснащены датчиком температуры или термистором для контроля температуры ячейки.Такие микросхемы, как LTC4050, будут заряжаться только при температуре от 0 ° C до 50 ° C при использовании с указанным термистором NTC (отрицательный температурный коэффициент). Другие могут быть сконструированы так, чтобы их можно было установить так, чтобы ИС сама контролировала температуру. Они предназначены для установки, когда ИС находится в прямом тепловом контакте с ячейкой. Последовательный транзистор должен быть внешним по отношению к ИС, чтобы его рассеяние не влияло на температуру кристалла ИС.

Резистор программирования тока установлен на 10 кОм на приведенном выше рисунке, и это устанавливает ток заряда примерно на 100 мА.В таблице данных для IC есть график, который показывает зависимость тока заряда от программируемого резистора, и, похоже, нет формулы, которую можно было бы применить. Резистор 2 кОм обеспечивает максимальный номинальный ток зарядки 500 мА. Как обсуждалось ранее, медленная зарядка, вероятно, является лучшим вариантом для максимального срока службы элемента, если только элемент не предназначен для быстрой зарядки. К сожалению, на ИС задано максимальное напряжение, и его нельзя уменьшить, чтобы ограничить напряжение чуть более низким значением, которое продлит срок службы элемента.R1 допускает около 2,5 мА для светодиода, поэтому может потребоваться тип с высокой яркостью. При желании сопротивление R1 можно уменьшить до 470 Ом.

Для слаботочной зарядки, вероятно, нет причин не использовать источник питания precision 4,2 В и последовательный резистор. Процесс зарядки будет довольно медленным, но при ограничении до 0,1C или 100 мА (в зависимости от того, что меньше) цикл зарядки займет около 15 часов. Резистор должен быть выбран так, чтобы обеспечить требуемый ток 1,2 В (12 Ом для 100 мА).Существует небольшая вероятность того, что слабый ток вызовет какое-либо повреждение элемента, и хотя это довольно грубый способ зарядки, нет причин, по которым он не должен работать идеально. Я пробовала, и никаких «противопоказаний» нет.


5 — Цепи балансировки аккумулятора

Хотя зарядка одной ячейки (или батареи с параллельными ячейками) довольно проста с использованием правильной (-ых) ИС (-ий), становится труднее, когда есть две или более ячейки, соединенные последовательно, для создания батареи с более высоким напряжением.Поскольку напряжение на каждой ячейке необходимо контролировать и ограничивать, вы получаете довольно сложную схему. Опять же, есть множество вариантов от большинства основных производителей ИС, и во многих случаях требуется специальный микроконтроллер для управления цепями мониторинга отдельных ячеек.

Несомненно, существуют продукты, которые не обеспечивают какой-либо формы балансировки заряда, и именно они с наибольшей вероятностью могут вызвать проблемы при использовании, включая возгорание. Использование литиевых батарей без правильно сбалансированного зарядного устройства вызывает проблемы, и этого не следует делать даже с самыми дешевыми продуктами.Вы можете себе представить, что в пакете из 2-х ячеек необходимо контролировать только одну ячейку, а другая будет заботиться о себе. Но это не так. Если ячейка, которая не отслеживается, имеет меньшую емкость, она будет заряжаться быстрее, чем другая ячейка. Оно может достичь опасного напряжения до того, как контролируемая ячейка достигнет своего максимума.

Принцип многоканального мониторинга достаточно прост. Только когда вы понимаете, что к каждой ячейке нужно применять довольно сложные и точные схемы, это становится пугающим.Поскольку все ячейки находятся под разным напряжением, главному контроллеру необходимы схемы сдвига уровня для каждого монитора ячейки. При этом могут использоваться оптоизоляторы или более «обычные» схемы переключения уровня, но последние обычно не подходят для высоковольтных аккумуляторных блоков.


Рисунок 4 — Упрощенные многоячеечные схемы балансировки

Примечание: Показанные схемы являются концептуальными и предназначены для демонстрации основных принципов. Они не предназначены для конструирования, и микросхемы, показанные на букве «А», не являются каким-либо конкретным устройством, поскольку «настоящие» используемые ИС часто управляются специальным микроконтроллером.Нет смысла отправлять мне электронное письмо с просьбой указать типы устройств, потому что они не существуют как отдельная ИС. Идея состоит только в том, чтобы показать основы — это не проектная статья, она предназначена в первую очередь для того, чтобы осветить проблемы, с которыми вы столкнетесь при работе с ячейками серии LiPo.

Существует два класса схем балансировки ячеек — активные и пассивные (оба показаны пассивными). Пассивные системы сравнительно просты и могут работать очень хорошо, но у них низкая энергоэффективность.Вряд ли это будет проблемой для небольших батарей (2-5 ячеек), заряжаемых по относительно низким ценам (1С или меньше). Тем не менее, это важно для больших пакетов, используемых в электрических велосипедах или автомобилях, потому что они требуют значительных денег для зарядки, поэтому неэффективность BMS приводит к более высокой стоимости одной зарядки и значительным потерям энергии.

Я не собираюсь даже пытаться показать полную схему для многоячеечной балансировки, потому что большинство из них полагаются на очень специализированные ИС, а конечный результат одинаков независимо от того, кто производит микросхемы.Система, показанная на «A», использует управляющий сигнал для зарядного устройства, чтобы уменьшить его ток, когда первая ячейка в батарее достигает максимального напряжения. Резистор, как показано на рисунке, может пропускать максимальный ток 75 мА при 4,2 В, и зарядное устройство не должно обеспечивать больше этого, иначе цепь разряда не сможет предотвратить перезаряд. Каждый резистор рассеивает всего 315 мВт, но это быстро складывается для очень большого аккумуляторного блока, и именно здесь активная балансировка становится важной.

Реализация устройств от разных производителей сильно отличается и зависит от принятого подхода.Некоторые из них управляются микропроцессорами и предоставляют микропроцессору информацию о состоянии для регулировки скорости заряда, в то время как другие являются автономными и часто в основном аналоговыми. Схема, показанная выше (‘B’), упрощена, но также вполне пригодна для использования, как показано. Три потенциометра по 20 кОм отрегулированы таким образом, чтобы на каждый регулятор подавалось точно 4,2 В. Когда действует балансировка (в конце заряда), доступный ток от зарядного устройства должен быть меньше 50 мА, иначе шунтирующие регуляторы не смогут ограничить напряжение.У этого типа балансировщика есть важное ограничение — если одна ячейка выйдет из строя (низкое напряжение или закорочено), остальные элементы будут серьезно заряжены!

Однако (и это важно), как и во многих других решениях, он не может оставаться подключенным, когда аккумулятор не заряжается. На каждой ячейке имеется постоянный сток около 100 мкА, и, если предположить, что ячейки 1,8 Ач, как и раньше, они будут полностью разряжены примерно через 2 года. Хотя это может показаться не проблемой, если оборудование не используется в течение некоторого времени, вполне возможно, что элементы разрядятся ниже точки невозврата.

Довольно много зарядных устройств, которые я тестировал, находятся в таком же положении. Их нельзя оставлять подключенными к аккумулятору, поэтому необходимы дополнительные схемы, чтобы гарантировать отключение балансных цепей при отсутствии питания от зарядного устройства. Один продукт, который я разработал для клиента, нуждался во внутреннем балансировочном зарядном устройстве, поэтому была добавлена ​​релейная цепь для отключения балансных цепей, если зарядное устройство не было запитано. См. Раздел 8 для более подробной информации об этом подходе.

Для любой системы «активных стабилитронов», как показано выше, жизненно важно, чтобы выходное напряжение зарядного устройства было жестко регулируемым и имело тепловое отслеживание, которое соответствует напряжению эмиттер-база транзисторов (Q1 — Q3).Зарядное устройство могло бы легко продолжать обеспечивать свой максимальный выходной ток, но при этом весь его рассеивался бы в цепях байпаса элемента. Это также делает невозможным определение фактического тока батареи, поэтому он, вероятно, не выключится, когда должен.


6 — Схемы защиты аккумулятора

Защита аккумулятора и / или элемента важна для обеспечения того, чтобы ни один элемент не заряжался сверх безопасных пределов, а также для контроля аккумулятора при разряде, чтобы выключить аккумулятор в случае неисправности (например, чрезмерный ток или температура) и включить выключить аккумулятор, если его напряжение упадет ниже допустимого минимума.В идеале каждая ячейка в батарее должна контролироваться, чтобы каждая ячейка была защищена от глубокого разряда. Для литий-ионных элементов они не должны разряжаться ниже 2,5 В, и даже лучше, если минимальное напряжение элемента будет ограничено до 3 вольт. Потеря емкости в результате более высокого напряжения отсечки невелика, поскольку напряжение литиевого элемента падает очень быстро, когда достигает предела разряда.

Поскольку эти цепи обычно встроены в аккумуляторную батарею и постоянно подключены, важно, чтобы они потребляли минимально возможный ток.Все, что потребляет больше нескольких микроампер, разряжает батарею, особенно если ее емкость относительно мала. Элемент (или аккумулятор) 500 мА / ч будет полностью разряжен за 500 часов (20 дней), если цепь потребляет 1 мА, но это продлится почти до 3 лет, если потребление тока можно уменьшить до 20 мкА.

Цепи защиты

часто включают в себя обнаружение перегрузки по току, а некоторые могут отключать навсегда (например, с помощью внутреннего предохранителя), если батарея сильно разряжена.Многие используют термопредохранители с самовозвратом (например, устройства Polyswitch), или перегрузка обнаруживается электронным способом, и батарея отключается только на время существования неисправности. Существует много подходов, но важно знать, что некоторые внешние события (например, статический разряд) могут вывести цепь (и) из строя. С литиевыми батареями следует обращаться осторожно — всегда.


Рисунок 5 — Схема приложения SII S-8253D

На приведенном выше рисунке показана схема защиты трехэлементной литиевой батареи.Он не уравновешивает ячейки, но обнаруживает, превышает ли какая-либо ячейка в пакете порог «перезарядки», и прекращает зарядку. Он также остановит разряд, если напряжение на любой ячейке упадет ниже минимального. Переключение контролируется внешними полевыми МОП-транзисторами, и зарядное устройство должно быть настроено на правильное напряжение (12,6 В для показанной трехэлементной схемы с учетом литий-ионных элементов).

Эти микросхемы (и другие от различных производителей) довольно распространены в азиатских платах BMS. Таблицы данных обычно не очень дружелюбны, и в некоторых случаях предоставляется огромное количество информации, но мало в виде схем приложений.Это кажется обычным для многих из этих микросхем других производителей — предполагается, что пользователь хорошо знаком со схемами балансировки батарей, что не всегда так. Показанный S-8253 имеет типичный ток потребления 14 мкА во время работы, и его можно уменьшить почти до нуля, если использовать CTL (управляющий) вход для отключения ИС, когда батарея не используется или не заряжается. Полевые МОП-транзисторы отключат вход / выход, если элемент заряжен или разряжен сверх пределов, определенных IC.


7 — Мониторинг состояния заряда (SOC)

Аккумуляторные датчики уровня топлива часто являются не более чем уловкой, но новые методы сделали науку несколько менее произвольной, чем это было раньше. Самый простой (и наименее полезный) — контролировать напряжение батареи, потому что литиевые батареи имеют довольно пологую кривую разряда. Это означает, что необходимо обнаруживать очень небольшие изменения напряжения, а напряжение является очень ненадежным индикатором состояния заряда. Контроль напряжения может быть приемлемым для легких нагрузок в ограниченном диапазоне температур.Он отслеживает саморазряд, но общая точность оставляет желать лучшего.

Так называемый «кулоновский счет» измеряет и регистрирует заряд, идущий в батарею, и энергию, потребляемую из батареи, и вычисляет вероятное состояние заряда в любой момент времени. Он не дает точных данных об аккумуляторе, который из-за возраста изнашивается, и не может учитывать саморазряд, кроме как путем моделирования. Системы счета кулонов должны быть инициализированы циклом «обучения», состоящим из полной зарядки и разрядки.Изменения, вызванные температурой, невозможно надежно определить.

Анализ импеданса — еще один метод, который потенциально является наиболее точным (по крайней мере, согласно Texas Instruments, производящей ИС, выполняющие анализ). Контролируя импеданс элемента (или аккумулятора), можно определить степень заряда независимо от возраста, саморазряда или текущей температуры. Компания TI называет свой метод анализа импеданса «Impedance Track ™» (сокращенно IT) и делает несколько довольно смелых заявлений о его точности.Я не могу комментировать так или иначе, потому что у меня нет батареи, использующей его, и у меня нет средств для запуска тестов, но это кажется многообещающим из информации, которую я видел до сих пор.

Эта статья посвящена правильному контролю заряда и разряда, а не контролю состояния заряда. Последнее удобно для конечного пользователя, но не является важной частью процесса зарядки или разрядки. Я не планирую предоставлять дополнительную информацию о «датчиках уровня топлива» в целом, независимо от технологии.


8 — Проекты с батарейным питанием

Ячейка 18650 (диаметр 18 мм и длина 65 мм) стала очень популярной для многих портативных устройств, и теперь они легко доступны по довольно разумным ценам.Конечно, не все они равны, и многие онлайн-продавцы выдвигают довольно диковинные заявления о емкости. Подлинные элементы 18650 имеют типичную емкость от 1500 мА / ч (миллиампер-час) до 3500 мА / ч, но подделки часто сильно завышают оценки. Я видел, как они рекламировались как имеющие мощность до 6000 мА / ч, что просто невозможно. Максимальное значение, которое я видел, составляет 9 900 мА / ч, и это даже на больше невозможно, но, похоже, никого не волнует, что покупателей вводят в заблуждение.

Ячейка 18650 является опорой для многих аккумуляторных блоков ноутбуков, при этом 6-элементная батарея является довольно распространенной.Они могут быть подключены последовательно / параллельно для обеспечения удвоенной емкости (в мА / ч) при 11,1 вольт. Батарейный отсек содержит схемы балансировки и защиты, и элементы не подлежат замене. Это (ИМО) позор, потому что всегда будет дешевле заменить элементы, а не весь герметичный аккумулятор. Тем не менее, элементы в этих пакетах, как правило, относятся к типу «с выступами», при этом к элементам приварены металлические выступы, поэтому для их электрического соединения не требуется физический контакт.Это означает, что сделать их «заменяемыми пользователем» невозможно.

Одним из преимуществ использования отдельных ячеек является то, что многих проблем, поднятых в этой статье, можно избежать, по крайней мере, до некоторой степени. Будучи отдельными элементами, они обычно используются в пластиковом «батарейном блоке», обычно соединенном последовательно. Набор из четырех может обеспечить номинальное напряжение ± 7,4 В (каждая ячейка — 3,7 В), и этого достаточно для работы многих схем операционных усилителей, включая микрофонные предусилители, испытательное оборудование и многие другие.Зарядка проста — извлеките элементы из аккумуляторной батареи и заряжайте их параллельно с помощью специального зарядного устройства Li-Ion. При условии, что зарядное устройство использует правильное напряжение на клеммах (не более 4,2 В, желательно немного меньше) и ограничивает пиковый ток зарядки в соответствии с используемыми элементами, зарядка безопасна и балансировка не требуется.

Как и во всем, есть оговорки. Цепи, на которые подается питание, нуждаются в дополнительных схемах для отключения аккумуляторной батареи при достижении минимального напряжения.Обычно это 2,5 В на элемент, поэтому автомат должен достаточно точно определять это и отключать аккумулятор, когда напряжение достигает минимума. Однако, если вы используете «защищенные» элементы, у них есть небольшая печатная плата внутри корпуса элемента, которая отключит питание, если элемент закорочен, он (обычно) предотвращает перезарядку и (обычно) имеет выключатель пониженного напряжения.

Но есть загвоздка! Хотя они по-прежнему используют то же обозначение размера (18650), многие защищенные ячейки немного длиннее. Некоторые из них могут быть длиной до 70 мм, и они не помещаются в аккумуляторные отсеки, предназначенные для «настоящих» ячеек 18650.Другие имеют правильную длину, но имеют меньшую емкость, потому что сама ячейка немного меньше, поэтому схема защиты подойдет. Эти ячейки также различаются положительным концом окончания — некоторые используют «кнопку» (почти такую ​​же, как у большинства щелочных ячеек), в то время как другие имеют плоскую вершину. Часто они не взаимозаменяемы.

Чтобы сбить с толку вопрос, есть также литиевые элементы размера AA (диаметр 14500 — 14 мм × длина 50 мм). Поскольку это элементы 3,7 В, это элементы , а не «AA», даже если они одинакового размера.Вы также можете купить «фиктивные» элементы AA, которые представляют собой не что иное, как оболочку размера AA (с оберткой, как у «настоящих» элементов), которая обеспечивает короткое замыкание. Они используются вместе с литий-ионными элементами в устройствах, предназначенных для использования двух или четырех элементов. Используются один или два Li-Ion и один или два фиктивных элемента, и большинство устройств вполне довольны результатом. Моя «рабочая лошадка» оснащена парой литий-ионных аккумуляторов размера AA и парой манекенов, и обычно ее нужно заряжать только каждые несколько недель (или даже до пары месяцев, если она мало используется).Нет абсолютно никакого сравнения между Li-Ion и NiMh-элементами, которые я использовал ранее.


Существует несколько способов безопасного использования более «традиционных» литий-ионных аккумуляторов. В проекте, над которым я работал некоторое время назад, использовался литий-ионный аккумулятор 3S (три последовательных элемента) с номинальным напряжением 11,1 В. Он был установлен в корпусе вместе с электроникой, поэтому снимать его для зарядки было нецелесообразно. Вместе с аккумулятором было установлено небольшое балансировочное зарядное устройство, уравновешивающие клеммы которого подключены через реле.Это было необходимо, потому что в противном случае балансировочные цепи разрядили бы аккумулятор. Стоимость зарядного устройства была такой, что было бы неразумно пытаться построить его за те же деньги. Даже получить необходимые детали может быть непросто!

При добавлении реле и балансировочного зарядного устройства в систему необходимо было только подключить внешний источник питания (12 В) к стандартной розетке постоянного тока на задней панели, и это активирует реле и заряжает аккумулятор. Реле отключились, как только отключился внешний источник напряжения.Это сделало потенциально утомительную задачу (подключение зарядного устройства и балансировочного разъема) к тому, с чем «средний» пользователь мог бы легко справиться. Те, кто использует устройство, обычно (определенно) не являются техническими специалистами, и ожидать, что они возятся с неудобными разъемами, было не вариант. Фотография используемого мною аранжировки показана ниже. Обычно используемый аккумулятор был рассчитан на 1500 мА / ч и мог поддерживать непрерывную работу системы регистрации данных в течение 24 часов. Зарядное устройство можно было подключить или вынуть во время работы системы.


Рисунок 6 — Система зарядки литий-ионных аккумуляторов 3S

Балансировочное зарядное устройство разработано специально для аккумуляторов 2S и 3S и стоит менее 10 долларов США у онлайн-поставщика различных аккумуляторов для хобби, зарядных устройств и т.д. питание отключено. Без используемой схемы отключения реле балансные цепи разрядили бы аккумулятор за пару дней. Схема, питаемая от показанной системы, имела встроенный датчик напряжения, который был разработан, чтобы выключить все, когда общее напряжение питания упало примерно до 8 вольт.Плавкий предохранитель (½A) был включен в линию с выходом постоянного тока в качестве окончательной системы защиты, чтобы избежать катастрофического отказа силовой схемы.

На фото вы видите плату зарядного устройства баланса, установленную над платой реле и разъема. Светодиоды были выдвинуты так, чтобы они выглядывали через заднюю панель, а входной разъем постоянного тока находится в крайнем левом углу. Сильноточные выводы от батареи в этом приложении не используются, потому что потребляемый ток намного ниже максимальной скорости разряда.Два реле видны справа, и только три балансных клеммы отключены, когда внешний источник постоянного тока отсутствует. Балансировочное зарядное устройство выглядит очень скудным, но на нижней стороне платы у него есть несколько SMD-микросхем и других деталей.


Рисунок 7 — Схема системы зарядки литий-ионных аккумуляторов 3S

На принципиальной схеме показано, как подключена система. Это легко сделать любому, кто думает об использовании подобного устройства, и небольшой кусок Veroboard легко соединяется с реле и диодами.Диод показан параллельно катушкам реле, и это необходимо для того, чтобы обратная ЭДС не повредила цепь зарядного устройства при отключении входа 12 В. D1 должен выдерживать полный входной ток зарядного устройства, который в данном примере составляет менее 1 А. Вся сложность в балансировочном зарядном устройстве — все остальное максимально просто. D1 предотвращает обратную передачу напряжения батареи от зарядного устройства, поэтому реле будут активированы только при наличии внешнего источника питания.Предохранитель следует выбирать в соответствии с нагрузкой. Эта схема подходит только для слаботочных нагрузок, поскольку в ней не используются сильноточные выводы батареи.

Это только одно из многих возможных приложений, и, как описано выше, иногда проще использовать стандартное зарядное устройство, чем собрать его с нуля. С другими приложениями у вас может не быть выбора, потому что «лучшие» зарядные устройства могут стать довольно дорогими и могут оказаться непригодными для повторного использования указанным способом. Для единичных или небольших производственных циклов использование того, что вы можете получить, обычно более рентабельно, но это меняется, если должно быть изготовлено большое количество единиц.


Выводы

Литиевые элементы и батареи — это современный «современный уровень техники» в технологиях хранения. За прошедшие годы усовершенствования сделали их намного безопаснее, чем ранние версии, и справедливо сказать, что разработка ИС является одним из основных достижений, поскольку существует ИС (или семейство ИС), предназначенное для мониторинга и контроля процесса зарядки и ограничения напряжения, приложенные к каждой ячейке в батарее. Этот процесс снизил риск повреждения (и / или возгорания), вызванного перезарядкой, и продлил срок службы литиевых батарей.

На самом деле ни один состав батареи не может считаться на 100% безопасным. Ni-Mh и Ni-Cd (никель-металл-гидридные и никель-кадмиевые) элементы не будут гореть, но они могут вызвать сильный ток в случае короткого замыкания, что вполне способно вызвать воспламенение изоляции на проводах, воспламенение печатных плат и т. Д. токсичен, поэтому утилизация регулируется. Свинцово-кислотные батареи могут (и взрываются) взорваться, заливая все вокруг серной кислотой. Они также способны создавать огромный выходной ток и выделять взрывоопасную смесь водорода и кислорода при перезарядке.Когда вам нужна высокая плотность энергии, альтернативы литию нет, и при правильном обращении риск на самом деле очень низок. Хорошо сделанные элементы и батареи будут иметь все необходимые гарантии от катастрофического отказа.

Это не означает, что литиевые батареи всегда будут безопасными, что было доказано множеством отказов и отзывов по всему миру. Однако следует учитывать огромное количество используемых литиевых элементов и батарей. Каждый современный мобильный телефон, ноутбук и планшет использует их, и они распространены во многих моделях товаров для хобби и большинстве новых фотоаппаратов — и это лишь небольшой образец.В модельных самолетах используются литиевые батареи, потому что они имеют такую ​​хорошую плотность энергии и малый вес, а многие из последних модных моделей (например, дронов / квадрокоптеров) были бы непригодны для использования без литиевых батарей. Попробуйте оторваться от земли со свинцово-кислотным аккумулятором на борту!

Обычно людям рекомендуется избегать дешевых азиатских безымянных литиевых элементов и батарей. Хотя какой-то может быть совершенно нормальным, у вас нет реального возмещения, если вы сожжете ваш дом дотла.Есть небольшая надежда, что жалоба на веб-сайт онлайн-аукциона приведет к финансовому урегулированию, хотя это в равной степени может относиться к товарам известных брендов, купленным в обычных магазинах. Поскольку в большинстве инструкций (часто непрочитанных и регулярно игнорируемых) говорится, что литиевые батареи нельзя заряжать без присмотра, это трудный аргумент. Однако, если учесть количество используемых литиевых батарей, отказы на самом деле случаются очень редко. К сожалению, когда происходит сбой и происходит , результаты могут быть катастрофическими.Вероятно, не помогает то, что СМИ поднимают большой шум каждый раз, когда выясняется, что литиевый аккумулятор имеет потенциальную неисправность — очевидно, это достойно новостей.

Одно можно сказать наверняка — эти батареи должны быть заряжены должным образом, с постоянным соблюдением всех необходимых мер предосторожности против перенапряжения (полная балансировка элементов). Никогда не заряжайте батареи при температуре ниже 0 ° C и выше 35-40 ° C. Литий становится нестабильным при 150 ° C, поэтому необходим тщательный контроль температуры элементов, если вы должны заряжать при высоких температурах, и в идеале он должен быть частью зарядного устройства.Избегайте использования литиевых элементов и батарей там, где их корпус может быть поврежден или они могут подвергаться воздействию высоких температур (например, прямых солнечных лучей), так как это повышает внутреннюю температуру и резко снижает надежность, безопасность и срок службы батареи.

Как должно быть очевидно, один литиевый элемент довольно легко зарядить. Вы можете использовать специальную ИС, но даже гораздо более простая комбинация регулятора 4,2 В и последовательного резистора подойдет для базового (медленного) зарядного устройства. Зарядные устройства с одной ячейкой (или несколькими параллельными ячейками) можно приобрести довольно дешево, а те, которые я использовал, работают хорошо и представляют очень небольшой риск.Даже в этом случае я никогда не выйду из дома, пока литиевая батарея или элемент находятся на зарядке. У меня никогда не было проблем с и с литий-ионными батареями или элементами, и я использую довольно много из них для различных целей. Это не считая самых распространенных — телефонов, планшетов и ноутбуков. Литий-ионная химия оказалась гораздо более надежным вариантом по сравнению с Ni-Mh (металлогидридом никеля), где мне недавно пришлось утилизировать (как в переработчике, а не в цикле самих элементов) более половины из тех, что у меня были!

Когда вам нужно много энергии в небольшом, легком корпусе с возможностью перезарядки до 500-1000 раз, нет лучшего материала, чем литий.Если к ним относятся с уважением и не злоупотребляют, обычно можно рассчитывать на долгие и счастливые отношения со своими элементами и батареями. Они не идеальны, но они определенно превосходят большинство других химикатов с большим отрывом. О LiFePO 4 (обычно называемых просто LFP, LiFePO или LiFe) можно много сказать, потому что они используют более стабильный химический состав и с меньшей вероятностью сделают что-нибудь «неприятное». Однако до тех пор, пока ими не злоупотребляют, литий-ионные элементы и батареи способны прожить безопасную, долгую и счастливую жизнь.

Схема отключения батареи, которая полностью отключает батарею при падении напряжения до заданного предела, см. В проекте 184. Это было разработано специально для предотвращения чрезмерной чрезмерной разрядки, если оборудование с батарейным питанием случайно оставлено включенным после использования.


Список литературы
  1. Литий — Википедия
  2. Почему загораются литиевые батареи
  3. Зарядка литий-ионных батарей
  4. Расчет литиевых батарей (FedEx)
  5. UPS расширяет зону обслуживания опасных грузов — вам необходимо выполнить поиск по сайту
  6. SII S8253 Лист данных (Seiko)
  7. Вопросы безопасности литий-ионных аккумуляторов


Основной индекс
Указатель статей
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2016. Воспроизведение или повторная публикация любыми способами, электронными, механическими или электромеханическими, строго запрещены. в соответствии с международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только в личных целях, а также разрешает сделать одну (1) копию для справки. Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Страница создана и авторские права © ноябрь 2016, опубликовано в феврале 2017 г. / Обновлено в сентябре 2018 г. — только небольшие изменения. / Октябрь 2018 г. — добавлен раздел 8.


Интеллектуальное зарядное устройство на базе

на базе микроконтроллера: 9 шагов (с изображениями)

Сейчас Давайте посмотрим на работу схемы. Схема прилагается в формате pdf в файле BIN.pdf.

Входное напряжение схемы может составлять 19/20 В. Я использовал старое зарядное устройство для ноутбука, чтобы получить 19 В.

J1 — клеммный соединитель для подключения цепи к источнику входного напряжения.Q1, D2, L1, C9 образуют понижающий преобразователь. Что это за чертовщина ??? Это в основном понижающий преобразователь постоянного тока в постоянный. В этом типе преобразователя можно достичь желаемого выходного напряжения, варьируя нагрузку Если вы хотите узнать больше о понижающих преобразователях, посетите эту страницу, но, честно говоря, они полностью отличаются от теории. Чтобы оценить правильные значения L1 и C9 для моих требований, потребовалось 3 дня проб и ошибок. Если вы собираетесь заряжать разные батареи, возможно, эти значения изменятся.

Q2 — это управляющий транзистор для силового полевого МОП. Q1.R1 — резистор смещения для Q1. Мы будем подавать ШИМ-сигнал в базу Q2 для управления выходным напряжением. C13 — это развязывающий колпачок.

Теперь выходной сигнал подается на Q3. Можно задать вопрос: «Какая здесь польза от Q3 ??». Ответ довольно прост: он действует как простой переключатель. Каждый раз, когда мы будем измерять напряжение аккумулятор, мы отключим Q3, чтобы отключить выход напряжения зарядки от понижающего преобразователя. Q4 является драйвером для Q3 с резистором смещения R3.

Обратите внимание, что на пути есть диод D1. Что диод делает здесь, на пути? Этот ответ также очень прост: всякий раз, когда цепь будет отключена от входного питания, когда батарея подключена на выходе, ток от батарея будет течь в обратном направлении через основные диоды полевых МОП-транзисторов Q3 и Q1, и, таким образом, U1 и U2 получат напряжение батареи на своих входах и будут питать цепь от напряжения батареи. Чтобы избежать этого, используется D1.

Затем выход D1 подается на вход датчика тока (IP +).Это датчик базового тока на эффекте Холла, т. Е. Токовая часть и выходная часть изолированы. Выход датчика тока (IP-) затем подается на батарею. Здесь R5, RV1, R6 образуют схему делителя напряжения для измерения напряжение аккумулятора / выходное напряжение.

АЦП atmega8 используется здесь для измерения напряжения и тока батареи. АЦП может измерять максимум 5 В, но мы будем измерять максимум 20 В (с некоторым запасом). Чтобы снизить напряжение до диапазона АЦП, Используется делитель напряжения 4: 1.Поток (RV1) используется для точной настройки / калибровки, я расскажу об этом позже. C6 — это развязывающая крышка.

Выход датчика тока ACS714 также подключен к выводу ADC0 atmega8. Через этот датчик ACS714 мы будем измерять ток. У меня есть коммутационная плата от pololu версии 5A, она отлично работает, о чем я расскажу позже. этап о том, как измерить ток.

ЖК-дисплей представляет собой обычный ЖК-дисплей 16×2. Используемый здесь ЖК-дисплей настроен в 4-битном режиме, так как количество выводов atmega8 ограничено. RV2 — потенциометр для регулировки яркости ЖК-дисплея.

Atmega8 работает на частоте 16 МГц с помощью внешнего кристалла X1 с двумя развязывающими конденсаторами C10 / 11. Блок АЦП atmega8 получает питание через вывод Avcc через катушку индуктивности 10uH. C7, C8 — это развязывающие конденсаторы, подключенные к Agnd.Place. как можно ближе к Avcc и Aref соответственно при изготовлении печатной платы. Обратите внимание, что вывод Agnd не показан в схеме. Вывод Agnd будет подключен к земле.

Я настроен АЦП в ATmega8, чтобы использовать внешний Vref, то есть мы будем поставлять опорное напряжение через вывод Арефа.Основная причина этого достичь максимально возможного чтение accuracy.The внутренний источник опорного напряжения 2.56v не так велико в avrs.That Почему я настроен, externally.Now здесь вещь, чтобы notice.The 7805 (U2) поставляет только Датчик ACS714 и вывод Aref на atmega8. Это необходимо для поддержания оптимальной точности. ACS714 выдает стабильное выходное напряжение 2,5 В., когда через него не протекает ток, но, например, если напряжение питания ACS714 будет понижено (скажем, 4,7 В), то выходное напряжение без тока (2.5в) также получает снижается, и она будет создавать неприемлемый / ошибочный ток reading.Also, как мы измеряем напряжение относительно Vref, то опорное напряжение на Арефе должно быть безошибочным и stable.That поэтому нам нужен стабильный 5v.

Если мы запитаем ACS714 и Aref от U1, который питает atmega8 и ЖК-дисплей, то на выходе U1 будет существенное падение напряжения, и показания силы тока и напряжения будут ошибочными. Вот почему U2 используется здесь для устранения ошибка при подаче стабильного 5v только на Aref и ACS714.

S1 нажимается для калибровки показаний напряжения. S2 зарезервирован для использования в будущем. Вы можете добавить / не добавлять эту кнопку по вашему выбору.

Телефонное реле, регуляторы LM317, зарядное устройство для лития

LM317T Регулятор переменного напряжения


LM317T — регулируемый трехконтактный стабилизатор положительного напряжения. способен обеспечить мощность более 1,5 А в диапазоне выходных От 1,25 до 37 вольт. Устройство также имеет встроенное ограничение тока и тепловое отключение, что делает его устойчивым к взрыву.

Выходное напряжение устанавливается двумя резисторами R1 и R2, подключенными, как показано ниже. Напряжение на R1 составляет постоянное 1,25 В, а клемма регулировки ток меньше 100uA. Выходное напряжение может быть близко приблизительно от Vout = 1,25 * (1+ (R2 / R1)), который игнорирует клемму настройки ток », но будет близок, если ток через R1 и R2 во много раз больше. Требуется минимальная нагрузка около 10 мА, поэтому значение R1 может выбрать, чтобы сбросить 1.25 вольт при 10 мА или 120 Ом. Что-то меньше, чем 120 Ом можно использовать для обеспечения минимального тока более 10 мА. В приведенном ниже примере показан LM317, используемый в качестве регулятора на 13,6 В. 988 Резистор для R2 можно получить стандартным 910 и 75 Ом последовательно.

При отключении питания регулятора выходное напряжение должно упасть. быстрее, чем ввод. В противном случае диод можно подключить через клеммы входа / выхода для защиты регулятора от возможного обратного напряжения.Танталовый конденсатор емкостью 1 мкФ или электролитический конденсатор емкостью 25 мкФ на выходе улучшает переходную характеристику, а небольшой танталовый конденсатор емкостью 0,1 мкФ рекомендуется на входе, если регулятор расположен на значительном расстояние от фильтра блока питания. Силовой трансформатор должен быть Достаточно большой, чтобы входное напряжение регулятора оставалось 3 вольта выше выходного сигнала при полной нагрузке, или 16,6 В для выхода 13,6 В.

LM317 Лист данных

Меню

LM317T Регулятор напряжения с проходным транзистором


Выходной ток LM317T можно увеличить, используя дополнительную мощность. транзистор, чтобы разделить часть общего тока.Количество текущих разделение устанавливается резистором, включенным последовательно с входом 317. и резистор, включенный последовательно с эмиттером проходного транзистора. На рисунке ниже проходной транзистор начнет проводить, когда Ток LM317 достигает примерно 1 А из-за падения напряжения на 0,7 резистор ом. Ограничение тока происходит примерно на 2 ампера для LM317, который упадет примерно на 1,4 В на резисторе 0,7 Ом и произведет 700 падение милливольт через 0.Эмиттерный резистор 3 Ом. Таким образом, полный ток ограничено примерно 2+ (0,7 / 0,3) = 4,3 ампера. Входное напряжение должно быть быть примерно на 5,5 вольт больше, чем выходное напряжение при полной нагрузке и тепловыделении при полной нагрузке будет около 23 Вт, поэтому достаточно большой радиатор может быть нужен как для регулятора, так и для проходного транзистора. Размер конденсатора фильтра можно аппроксимировать из C = IT / E, где I — ток, T — полупериод. время (8,33 мс при 60 Гц), а E — падение напряжения, которое произойдет в течение одного полупериода.Чтобы напряжение пульсации не превышало 1 В при 4,3 ампер, необходим конденсатор фильтра 36000 мкФ или больше. Сила трансформатор должен быть достаточно большим, чтобы максимальное входное напряжение регулятор остается на 5,5 вольт выше выходного при полной нагрузке, или на 17,5 вольт для выхода 12 В. Это допускает падение напряжения на регуляторе на 3 В, плюс падение 1,5 В на последовательном резисторе (0,7 Ом) и 1 В пульсации, создаваемой конденсатором фильтра. Конденсатор фильтра большего размера будет снизить требования к вводу, но ненамного.
Меню

Сильноточные регулируемые источники питания

В приведенном ниже регуляторе высокого тока используется дополнительная обмотка или отдельный трансформатор для питания регулятора LM317, чтобы проходные транзисторы могут работать ближе к насыщению и повышать эффективность. Для хорошего КПД напряжение на коллекторах два параллельно 2N3055 проход транзисторов должен быть близок к выходному напряжению. LM317 требует пара дополнительных вольт на входе плюс падение эмиттера / базы 3055, плюс все, что потеряно в (0.1 Ом) уравнительные резисторы (1 вольт при 10 ампер), поэтому отдельная цепь трансформатора и выпрямителя / фильтра напряжение на несколько вольт выше, чем выходное напряжение. LM317 будет обеспечить ток более 1 А для управления базами проходных транзисторов и предполагая усиление 10, комбинация должна выдавать 15 ампер или более. В LM317 всегда работает при разнице напряжений 1,2 между выходными клеммы и клеммы настройки и требует минимальной нагрузки 10 мА, поэтому был выбран резистор 75 Ом, который будет тянуть (1.2/75 = 16 мА). Это то же самое ток протекает через резистор эмиттера 2N3904, который производит падение напряжения около 1 В на резисторе 62 Ом и 1,7 В на базе. Выходное напряжение устанавливается делителем напряжения (1K / 560) так, чтобы 1,7 вольт подается на базу 3904, когда выход составляет 5 вольт. На 13 вольт При работе резистор 1 кОм можно отрегулировать до 3,6 кОм. Регулятор не имеет защиты от короткого замыкания на выходе, поэтому выход, вероятно, следует использовать предохранителем.
Меню

Простой регулируемый источник напряжения


Простой, но менее эффективный метод управления напряжением постоянного тока заключается в использовании конфигурации делителя напряжения и транзисторного эмиттерного повторителя.На рисунке ниже показано использование потенциометра 1K для установки базового напряжения NPN-транзистор средней мощности. Коллектор NPN питает базу более крупный силовой транзистор PNP, который подает большую часть тока на нагрузку. Выходное напряжение будет примерно на 0,7 В ниже напряжения дворника. потенциометра 1K, поэтому выход можно регулировать от 0 до полного напряжение минус 0,7 вольт. Использование двух транзисторов обеспечивает коэффициент усиления по току около 1000 или более, так что потребляется только пара миллиампер тока от делителя напряжения для подачи на выход пары ампер тока.Обратите внимание, что эта схема намного менее эффективна, чем диммер с таймером 555. схема, использующая подход переключения с переменным рабочим циклом. На рисунке ниже лампа на 25 Вт / 12 В потребляет около 2 А при 12 В и 1 А при 3 вольт, чтобы мощность, потерянная при тусклом свете лампы, была примерно (12-3 вольт * 1 ампер) = 9 ватт. Для предотвратить перегрев силового транзистора PNP. Мощность, потребляемая лампа будет только (3 вольта * 1 ампер) = 3 ватта что дает нам КПД составляет всего 25% при затемненной лампе.Преимущество схемы — это простота, а также то, что она не генерирует RF помехи, как это делает импульсный регулятор. Схема может быть использована как регулятор напряжения, если входное напряжение остается постоянным, но не компенсирует изменения на входе, как это делает LM317.
Меню

Зарядное устройство для литий-ионных аккумуляторов на 2 элемента

Эта схема была создана для зарядки пары литиевых ячеек (3,6 В каждый, 1 Ампер-час), установленный в переносной транзисторный радиоприемник.

Зарядное устройство работает путем подачи короткого импульса тока через серию резистор, а затем отслеживая напряжение батареи, чтобы определить, есть ли еще требуется пульс. Ток можно отрегулировать путем изменения последовательного резистора. или регулировка входного напряжения. Когда батарея разряжена, ток импульсы расположены близко друг к другу, так что постоянный ток настоящее время. Когда аккумуляторы полностью заряжены, импульсы разнесены. дальше друг от друга, и состояние полного заряда отображается светодиодом мигает медленнее.

TL431, опорный ширина запрещенной зоны напряжения (2,5 вольт) используется на выводе 6 компаратора поэтому выход компаратора переключится на низкий уровень, срабатывая таймер 555, когда напряжение на выводе 7 меньше 2,5 вольт. Выход 555 включается 2 транзистора и батареи заряжаются примерно 30 миллисекунд. Когда импульс заряда заканчивается, напряжение батареи измеряется и делится. вниз комбинацией резисторов 20 кОм, 8,2 кОм и 620 Ом, поэтому, когда Напряжение аккумулятора достигает 8.2 вольта, вход на выводе 7 компаратора поднимется немного выше 2,5 вольт, и цепь перестанет заряжаться.

Схема может использоваться для зарядки других типов батарей, таких как как Ni-Cad, NiMh или свинцово-кислотный, но напряжение отключения необходимо можно отрегулировать, заменив резисторы 8,2 кОм и 620 Ом так, чтобы на входе компаратора остается 2,5 вольта, когда клемма аккумулятора напряжение достигнуто.

Например, чтобы зарядить свинцово-кислотную батарею на 6 В до предела 7 В, ток через резистор 20K будет (7-2.5) / 20К = 225 мкА. Это означает комбинацию двух других резисторов (8,2 кОм и 620). должно быть R = E / I = 2,5 / 225 мкА = 11111 Ом. Но это не стандартное значение, так что вы можете использовать 10K последовательно с 1,1K или другими значениями, которые всего 11.11K

Будьте осторожны, чтобы не перезарядить батареи. Я бы рекомендовал использовать большой конденсатор вместо батареи для проверки схемы и убедитесь, что он отключается при правильном напряжении.

Меню

Зарядное устройство для одно- или двухэлементных литий-ионных аккумуляторов

Еще одна идея зарядного устройства — использование регулируемого блока питания. для полного заряда аккумуляторной батареи и резистор для ограничения тока.Он не обеспечивает постоянного тока и требует примерно на 30% больше заряда время, или около 4 часов. Зарядное устройство постоянного тока может уменьшить это до 3 часов, но потребуются дополнительные детали.

Можно добавить светодиодный индикатор зарядного тока, как показано в нижнем левом углу. чертежа. Светодиод гаснет, когда ток заряда меньше около 35 мА, а падение напряжения на резисторе 18 Ом составляет около 600 мВ или менее. Тестовый запуск потребовал 260 минут, чтобы светодиод погас, что должен указывать примерно 85% полной мощности, но не уверен.Более информацию можно найти по адресу:

Литий-ионная статья на Battery University.com

Напряжение Емкость Время зарядки Емкость с
                                        полная насыщенность
-------------------------------------------------- -------
3,8 60% 120 мин. 65%
3,9 70% 135 мин. 76%
4,0 75% 150 мин. 82%
4,1 80% 165 Мин. 87%
4.2 85% 180 мин. 100%
-------------------------------------------------- -------
 

Детали схемы:

При низком уровне заряда аккумулятора, напряжение на опорной цапфы TL431 будет меньше 2,5 вольт, что приведет к отключению TL431, увеличивая напряжение базы транзистора и ток заряда. Текущий ограничен до 300 мА резистором 18 Ом (двухэлементная установка). Когда батарея приближается к полной зарядке, контрольный вывод TL431 подходы 2.5 вольт, увеличивая ток TL431 и уменьшая напряжение базы транзистора и ток заряда. Используя 2 ячейки (8,2 вольт, 1000 мАч), ток падает с 300 мА до примерно 100 мА при заряд достигает 75% емкости за 200 минут. Еще час необходимо довести заряд до 85% Обратите внимание, значение 4,1, а не 4.2 был выбран за чуть больший запас и меньшую нагрузку на аккумулятор при полной зарядке. Судя по приведенным выше данным, это всего лишь 5% емкости. потерян.Диод предотвращает обратное напряжение на переход э / б транзистора в случае подключения блока питания закорочены при подключенной батарее. Резистор 220 Ом был выбран для базового тока около 20 мА. Минимальное усиление транзистора — 30, поэтому 20 мА должны давать не менее 600 мА. Выходное напряжение холостого хода составляет установить с делителем напряжения на 4,1 или 8,2 В. Две перемычки используются для выбора желаемого напряжения и ограничения тока.

Например, чтобы зарядить одну литий-ионную батарею до 4,1 вольт, ток через резистор 10К будет
(4,1-2,5) / 10К = 160 мкА. Сериал Комбинация двух других резисторов должна составлять 2,5 / 160 мкА = 15625 Ом. Можно использовать 15K последовательно с 620, а 620 отрегулировать для компенсации для 15K немного больше или меньше. Я закончил 15K и 750, так как 15К было немного мало.

В случае с 2 ячейками (8,2 В) два дополнительных резистора добавляются параллельно. с 15625 (с помощью перемычки), чтобы увеличить выходное напряжение с 4.1 к 8.2. В итоге я получил 5,6 кОм последовательно с 430 Ом. 430 можно отрегулировать чтобы понять это правильно.

Используется вторая перемычка (через резистор 12 Ом) для поддержания примерно одинаковый зарядный ток с одной или двумя ячейками операция. Обе перемычки устанавливаются на работу от 8,2 В и снимаются. для работы на 4,1 В. Примечание: на изображении печатной платы показаны два 5-ваттных Резисторы на 12 Ом. Один из резисторов вне допустимого диапазона и не работает. собственно 17 ом.

Осторожно: будьте осторожны, чтобы не установить перемычки на работу при напряжении 8,2 В. подключен к одноэлементной (4,1 В) батарее. Используйте цифровой мультиметр для проверки Напряжение холостого хода — это то, что вы хотите, прежде чем подключать аккумулятор.


Индикатор использования телефона

Меню

Используемый релейный контроллер телефона

Меню

Мультивибратор нестабильный

Меню

Питание Raspberry Pi от литиевых батарей | Raspberry Pi

Литиевые батареи можно встретить в широком спектре портативных бытовых электронных устройств и игрушек.В литиевых батареях металлический литий используется в качестве анода, и эти батареи имеют преимущества перед другими типами батарей. Одним из преимуществ является их высокая плотность заряда, что, говоря нетехническими терминами, означает длительный срок службы батареи.

Обратите внимание, что здесь в этой статье мы говорим о вторичных литий-ионных и литий-полимерных батареях, которые следует отличать от первичных литиевых батарей, таких как популярная литиевая батарея типа «таблетка» CR2032, которая не является перезаряжаемой.

Преимущества литиевых батарей в проектах

Литиевые батареи можно использовать вместо обычных щелочных батарей для увеличения срока службы, что сводит к минимуму необходимость замены батарей.Помимо этого, у этого типа батареи есть ряд других преимуществ, включая:

  • Они легкие и компактные, что делает их удобным вариантом для портативных устройств, и это одна из причин, по которой мы используем их в наших проектах Raspberry pi.
  • Литиевые батареи не имеют эффекта памяти, который наблюдается в других батареях. Таким образом, если мы повторно разряжаем батареи частично перед полной зарядкой, батарея будет отдавать только ту энергию, которая была использована во время последних разрядов.
  • Качественные литий-ионные аккумуляторы имеют больше циклов зарядки, обычно 1000 полных циклов зарядки.
  • У них более низкая скорость саморазряда и, следовательно, более длительный срок хранения.
  • Литий-ионные аккумуляторы менее токсичны, чем другие свинцово-кислотные аккумуляторы, что в некоторой степени делает их экологически чистыми.

Благодаря всем этим преимуществам литиевые батареи используются в широком спектре приложений, от портативных бытовых электронных устройств до электромобилей.

Быстрая разрядка в литиевых батареях

До сих пор мы обсуждали, как литиевые батареи — это кусок пирога, который можно добавить во многие приложения, но у них есть одна очень серьезная проблема: быстрая разрядка.Когда литиевые батареи замкнуты накоротко, и поскольку они обеспечивают высокие токи, они разряжаются очень быстро.

Мы используем эти батареи для сильноточных устройств, и быстрая разрядка может привести к перегреву и даже взрыву батареи. Вот почему всегда необходима схема защиты, чтобы избежать этой ситуации, и это именно то, что мы собираемся сделать для питания нашего Raspberry pi.

Схема защиты литиевой батареи

Для портативных проектов Raspberry Pi и Arduino поиск электрической розетки является серьезной проблемой, а в приложениях в удаленных местах, таких как метеостанции, мы должны полагаться на батареи и / или солнечные элементы .Итак, для максимальной портативности следует отдавать предпочтение литий-ионным / литий-полимерным батареям, а это значит, что нам нужна схема защиты для нашей нагрузки.

Мы разработаем схему защиты от чрезмерного разряда, которая отключает нагрузку в случае быстрой разрядки.

Для защиты от глубокого разряда нам необходимо определить напряжение отключения аккумулятора. После этого нам нужно разработать схему, в которой, когда батарея достигает уровня напряжения отключения, выключатель отключает нагрузку от батареи.

Для идентификации напряжения отсечки нам понадобится стабилитрон. Стабилитрон в состоянии обратного смещения действует как разрыв цепи, когда на его катод подается напряжение ниже напряжения пробоя. Когда напряжение на катоде выше напряжения пробоя, он начинает проводить.

Мы будем использовать стабилитрон с напряжением стабилитрона, равным напряжению отсечки батареи. Когда напряжение батареи падает ниже напряжения отключения, стабилитрон прерывает проводимость и препятствует прохождению тока базы NPN-транзистора, тем самым отсоединяя батарею от нагрузки.

Мы используем это уравнение для выбора номинала последовательного резистора стабилитрона:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *