Схемы зарядных устройств для литий ионных аккумуляторов: Схемы самодельных зарядок для литий-ионных аккумуляторов (18650, 14500 li-ion), как правильно заряжать литий-полимерные АКБ

Содержание

ЗАРЯДНОЕ ЛИТИЕВЫХ АККУМУЛЯТОРОВ

В нынешнее время очень популярны литий-ионные аккумуляторы, они используются в различных гаджетах, к примеру телефонах, умных часах, плеерах, фонариках, ноутбуках. Впервые аккумулятор такого типа (Li-ion) выпустила известная японская фирма Sony. Принципиальная схема простейшего зарядного устройства для литиевых аккумуляторов представлена на картинке ниже, собрав её, у вас будет возможность самостоятельно восстанавливать заряд в аккумуляторах.

Самодельная зарядка литиевых АКБ — схема электрическая

Основой для данного прибора являются две микросхемы-стабилизатора 317 и 431 (тема на форуме). Интегральный стабилизатор LM317 в данном случае служит источником тока, данную деталь берём в корпусе TO-220 и обязательно устанавливаем на теплоотвод с применением термопасты. Регулятор напряжения TL431 выпускаемый компанией texas instruments существует кроме этого, в корпусах SOT-89, TO-92, SOP-8, SOT-23, SOT-25 и других.

Рекомендуемое входное напряжение от девяти и до двадцати вольт.

Выходное же настраивается подстроечным резистором 22 кОм, оно должно быть в районе 4.2V.

Светодиоды (LED) D1 и D2 любого, приятного для вас цвета. Мной были выбраны такие: LED1 красный прямоугольный 2,5 мм (2,5 милиКандел) и LED2 зелёный диффузионный 3 мм (40-80 милиКандел). Удобно применять smd светодиоды, если вы не будете устанавливать готовую плату в корпус.

Минимальная мощность резистора R2 (22 Ohm) 2 Ватта, а R5 (11 Ohm) 1 Ватт. Все отсальные 0,125-0,25W.

Переменный резистор на 22 килоОма должен быть обязательно типа СП5-2 (импортный 3296W). Такие переменные резистора имеют очень точную регулировку сопротивления, которое можно плавно подстраивать крутя червячную пару, похожую на бронзовый болтик.

Фото измерения вольтажа li-ion аккумулятора от сотового телефона до зарядки (3.7V) и после (4.2V), ёмкость 1100 mA*h.

Печатная плата для литиевого зарядного

Печатная плата (PCB) существует в двух форматах для разных программ — архив находится тут. Размеры готовой печатной платы в моём случае 5 на 2,5 см. По бокам оставил пространство для креплений.

Как работает зарядка

Как работает готовая схема такого зарядного устройства? Сначала аккумулятор заряжается постоянных током, который определяется сопротивление резистора R5, при стандартном номинале 11 Ом он будет примерно 100 мА. Далее, когда перезаряжаемый источник энергии будет иметь напряжение 4,15-4,2 вольта начнется зарядка постоянным напряжением. Когда же ток зарядки снизится до маленьких значений светодиод D1 перестанет светиться.

Как известно, стандартным напряжение для зарядки Li-ion является 4,2V, данную цифру необходимо установить на выходе схемы без нагрузки, с помощью вольтметра, так аккумулятор будет заряжается полностью. Если же немножко снизить напряжение, где-то на 0,05-0,10 Вольт, то ваш аккумулятор будет заряжаться не до конца, но так он прослужит дольше. Автор статьи ЕГОР.

   Форум по Li-Ion

   Форум по обсуждению материала ЗАРЯДНОЕ ЛИТИЕВЫХ АККУМУЛЯТОРОВ

Схема литий-ионного зарядного устройства – простейший вариант и гибридная схема



Статья обновлена: 2020-08-24


Сегодня мы рассмотрим схему зарядного устройства для литий-ионных аккумуляторов. На первый взгляд кажется, что простейшую версию такой схемы можно построить на микросхеме lm317. Но тогда питать зарядное устройство придется от напряжения выше 5 В, т.к. разница между напряжениями на входе и выходе этой микросхемы должна составлять минимум 2 В. Напряжение Li-ion элемента с полным зарядом – порядка 4,2 В. Поэтому разница напряжений не достигает даже 1 В, и от варианта с микросхемой lm317 придется отказаться.

Собрать зарядник для литий-ионных элементов можно с использованием специализированной платы TP4056 1A. Ее можно приобрести и несложно сделать самостоятельно. Простейшая схема зарядки литиевых аккумуляторов представлена на рисунке.

Ниже приведена гибридная схема, в которой напряжение стабилизируется, и ограничивается ток заряда.  

Принцип работы литий-ионного зарядного устройства

Напряжение стабилизируется при помощи микросхемы стабилитрона tl431. Она используется во многих блоках питания импульсного типа, в т. ч. в компьютерном. Усилителем будет транзистор – произвольный вариант обратной проводимости и достаточно высокой мощности: КТ805, 815, 817, 819 и их аналоги. Ток заряда, задаваемый резистором R1, зависит от особенностей подзаряжаемого элемента питания. Резистор R1 рекомендуется брать мощностью 1 Вт, а оставшиеся – 0,25 или 0,125 Вт. Напряжение «банки» типа Li-ion в заряженном состоянии – порядка 4,2 В. Это значение напряжения и нужно поставить на выходе. К этому и сводится настроечный процесс – достаточно подбирать R2, R3 и фиксировать на выходе напряжение 4,2 В. Рассчитать напряжение стабилизации микросхемы tl431 позволяют многие интернет-программы. Чтобы выполнить точную настройку Uвых в нашей схеме контроля зарядки Li-ion аккумуляторов, стоит вместо резистора R2 воспользоваться многооборотным сопротивлением 10 кОм. Функции индикатора заряда успешно выполнит светодиод.

Актуальность схемы и рекомендации по ее проверке

Предложенная схема может применяться для подзарядки одного литиевого аккумулятора (элемента питания, «банки») популярного типоразмера 18650. Подходит она и для Li-ion аккумуляторов других стандартов, но в таком случае следует установить на выходе из зарядного устройства другое значение напряжения. Если собранная вами схема не работает, убедитесь в наличии напряжения более 2,5 В на управляющем выводе микросхемы. Рабочее напряжение 2,5 В – минимум для наружного источника. Иногда минимум рабочего напряжения берется равным 3 В. Для контроля работоспособности схемы перед пайкой стоит создать простой тестовый стенд. После сборки необходимо досконально проконтролировать монтаж. На практике рекомендуется всегда использовать самостоятельно собранные зарядные устройства и схемы на Li-ion аккумуляторах с BMS платой. Плата защиты не допустит выхода напряжения за допустимые границы, убережет элемент питания от поломки и преждевременного износа. В фирменных зарядных устройствах для защиты Li-ion аккумуляторов от высокого напряжения используются специальные микросхемы с функциями контроля. Подробнее о том, как правильно заряжать Li-ion аккумулятор стандарта 18650, читайте здесь.

Перейти в раздел зарядные устройства для АКБ

Схемы для зарядного устройства для литиевых аккумуляторов

Литиевые аккумуляторы изготавливаются с использованием различных ионных компонентов, с неизменным присутствием иона лития. Другим составляющим может быть сухой ионит с кобальтом, фосфатом железа, комплекс никель-кобальт алюминий и прочие. Подбор активных составов продолжается. В зависимости от гальванической пары меняется мощность аккумуляторов, их напряжение и емкость, но способы сбора в батареи с обвязкой для всех одинаковы.

Схема подключения литиевых аккумуляторов

Установка литиевой батареи решает разные задачи. В случаях, когда нужно иметь токовую нагрузку, измеряемую десятками ампер используют высокотоковые элементы. Это касается ручного инструмента, тяговых батарей для транспортировки. Средние нагрузки лежат на ноутбуках, фотоаппаратах, фонарях.

Рассмотрим высокотоковые аккумуляторы на основе литий-ионных банок с номинальным напряжением 3,7 В. Они могут иметь разные размеры, емкость, но напряжение будет только 3,7. Изготовлены элементы:

  • катод из алюминиевой фольги, на которую нанесен мелкодисперсный графит;
  • анод из медной подложки, на которую нанесен LiCoO2:
  • сепаратор, ячеистый состав пропитан неводным раствором соли Li.

Именно такие комплектующие используют в цилиндрических элементах, аккумулятор называют литий-ионным. Чаще всего схема питания шуруповертов, ноутбуков, фонарей, биноклей изготовлены с применением литиевых аккумуляторов форм-фактора 18650. Элемент имеет в длину 65 мм, диаметр 18 мм. Напряжение рабочее 3,0-4,2 В. Относится в высокотоковым, то есть может отдавать ток силой до 10 С.

Для питания инструмента большей мощности необходимо соединять последовательно несколько банок, по расчету. При этом емкость измеряется по самому слабому элементу.

Для повышения емкости нужно использовать параллельное соединение. Банки, соединенные одинаковыми полюсами суммируют емкость. Если нужно поднять емкость и напряжение, используют комбинирование. Соединяют группы банок параллельно. Потом каждый комплект соединяют последовательно.

Для шуруповертов с рабочим напряжением 12,14,18 В используется последовательная схема литиевого аккумулятора. Зная, что отдельные элементы не должны перезаряжаться выше 4,20 В, разряжаться ниже 2,5 В, требуется обеспечить равномерное напряжение во всех банках и защиту от опасного для них напряжения. Батарея может быть собрана из защищенных аккумуляторов. Тогда на них есть маркировка

«protected» («защищенные»). В корпусе имеется плата, отключающая элемент при достижении критичных параметров.

Защищенный цилиндр на 2 мм длиннее стандартного, незащищенного и немного толще, за счет дополнительной обертки. Если используются незащищенные литиевые аккумуляторы, в схему заряда литиевых  аккумуляторов устанавливается плата защиты MBS, рассчитанная на максимальную токовую нагрузку, количество банок. Часто там же встроен балансир.

Схемы балансиров для литиевых аккумуляторов

В чем заключается балансировка при сборке батареи последовательно? Когда соединение банок идет противоположными полюсами, напряжение суммируется. Ток протекает одинаковый. По разным причинам разница в емкости может немного отличаться. Но если не поставить преграду, самая малая банка переполнится, то есть перезарядится. Это плохо. При работе ток отбирается в равных количествах. Банка, у которой емкость немного ниже, разрядится настолько, что может выйти из строя, пока другие элементы сборки отдают энергию до нормы.

Балансир представляет схему, которая создает препятствия для прохождения тока в заряженную батарею, направляя ее через дополнительные сопротивления, резисторы. Балансир включает стабилитрон TL431A и транзистор односторонней прямой проводимости BDI 40

Отличные балансиры включены в схему зарядных устройств для литиевых аккумуляторов, которыми широко пользуются. Их маркировка Turnigy Accucel-6 50W 6A и iMAX B6.

Перед вами простая и понятная схема балансировки литиевых аккумуляторов, которую можно сделать самостоятельно.

 

Схема светодиодов для контроля разряда литиевых аккумуляторов

Актуально узнать, когда аккумулятор сядет. Разряжать литиевые батареи до 2,5 В не стоит, будут трудности с предзарядом. Резкое мигание светодиода послужит заметным аварийным сигналом.

Несложная схема с применением монитора напряжения еще и компактная. Неоспоримое достоинство – низкое потребление энергии. При севшей батарее это важно. Хорошо с задачей справится мигающий светодиод L-314.

Можно купить готовый прибор –MAX9030. Схема компоновки представлена. При понижении напряжения до 3,0 В начинает вспыхивать ярко светодиод с длинным интервалом. В спящем режиме расходуется 50 наноампер (10-9), при вспышках 35 мкА.

Вывод

Для каждого устройства можно составить литиевую батарею, отвечающую запросам. Но необходимо подобрать параметры комплектующих в соответствии с видом литиево-ионных аккумуляторов. Марганцевые имеют напряжение 4 В, кобальтовые 3,7 В, а железо-фосфатные 3,3 В. Собирая батарею, нужно брать элементы одного вида, лучше из одной партии.

Видео

Посмотрите ход подключения защиты и сбора батареи.

Зарядка литиевой батареи схема. Зарядное литиевых аккумуляторов. Оригинальные зарядные устройства

Изобретения и использование инструмента с источниками автономного питания стало одним из визитных карточек нашего времени. Разрабатывается и внедряются всё новые активные компоненты, улучшающие работу батарейных сборок. К сожалению аккумуляторы не могут работать без подзарядки. И если на устройствах, имеющих постоянный доступ электросети вопрос решается встроенными источниками, то для мощных источников питания, например, шуруповерта, необходимо отдельные зарядные устройства для литиевых аккумуляторов с учетом особенности различных типов аккумуляторов.

Последние годы всё активнее используются изделия на литий-ионном активном компоненте. И это вполне понятно, так — как эти источники питания зарекомендовали себя с очень хорошей стороны:

  • у них отсутствует эффект памяти;
  • практически полностью ликвидирован саморазряд;
  • могут работать при минусовых температурах;
  • хорошо удерживают разряд.
  • количество доведен до 700 циклов.

Но, каждый тип батарей имеет свои особенности. Так, литий — ионный компонент требует конструкцию элементарных батареек с напряжением 3, 6В, что требует некоторые индивидуальные особенности для подобных изделий.

Особенности восстановления

При всех достоинствах литий-ионных аккумуляторах у них есть свои недостатки — это возможность внутреннего замыкания элементов при перенапряжении зарядки из — за активные кристаллизации лития в активном компоненте. Также имеется ограничение по минимальному значению напряжения, которое приводит к невозможности приема электронов активным компонентом. Чтобы исключить последствия, батарея оснащается внутренними контроллером, которое разрывает цепь элементов с нагрузкой при достижении критических значений. Хранятся такие элементы лучше всего при зарядке 50 % при +5 — 15° С. Еще одно из особенностей литий-ионных аккумуляторов является то, что время эксплуатации батарейки зависит от времени ее изготовления, вне зависимости от того была ли она в эксплуатации или нет, или другими словами подвержена «эффекту старения», который ограничивает сроком эксплуатации — пять лет.

Зарядка литий — ионных аккумуляторов

Простейшее устройство зарядки одного элемента

Для того чтобы понять более сложные схемы зарядки литий — ионных аккумуляторов, рассмотрим простое зарядное устройство для литиевых аккумуляторов, точнее для одной батарейки.

Основа схемы оставляет управление: микросхема TL 431 (выполняет роль регулируемого стабилитрона) и одном транзисторе обратной проводимости.
Как видно из схемы управляющий электрод TL431 включен в базу транзистора. Настройка аппарата сводится к следующему: нужно на выходе устройства установить напряжение 4,2В — это устанавливается регулировкой стабилитрона подключением на первую ножку сопротивления R4 — R3 номиналом 2,2 кОм и 3 кОм. Эта цепочка отвечает за регулировку выходного напряжения, регулировка напряжения устанавливается только один раз и является стабильной.

Далее регулируется ток заряда, регулировка производится сопротивлением R1 (на схеме номиналом 3Ом) в случае, если эмиттер транзистора будет включён без сопротивления, тогда входное напряжение будет и на клеммах зарядки, то есть — это 5В, что может не соответствовать требованиям.

Так же, в этом случае не будет светиться светодиод, а он сигнализирует об протекании процесса насыщения током. Резистор может быт номиналом от 3 до 8 Ом.
Для быстрой подстройки напряжение на нагрузке, сопротивление R3 можно установить регулируемое (потенциометр). Напряжение настраивается без нагрузки, то есть, без сопротивления элемента, номиналом 4, 2 — 4,5В. После достижения необходимого значения достаточно замерить величину сопротивление переменного резистора и поставить основную деталь нужного номинала вместо него. Если нет необходимого номинала его можно собрать из нескольких штук параллельным или последовательным соединением.

Сопротивление R4 предназначено для открывания базы транзистора, его номинал должен быть 220Ом.При увеличении заряда аккумулятора напряжение будет повышаться, управляющий электрод базы транзистора будет увеличивать переходное сопротивление эмиттер — коллектор, уменьшая ток зарядки.

Транзистор можно использовать КТ819, КТ817 или КТ815, но тогда придется ставить радиатор для охлаждения. Также радиатор будет необходим если токи будут превышать 1000мА. В общем, эта классическая схема простейшая зарядки.

Усовершенствование зарядного устройства для литиевых li — ion аккумуляторов

Когда появляется необходимость зарядить литий ионных батарей, соединенных из нескольких спаянных элементарных ячеек, то лучше всего заряжать ячейки отдельно с применением контрольной схемы, которая будет следить за зарядкой индивидуально каждой отдельной батарейкой. Без этой схемы значительное отклонение характеристик одного элемента в последовательно спаянной батареи приведет к неисправности все аккумуляторы, а сам блок будет даже опасным по причине его возможного перегрева или даже воспламенения.

Зарядное устройство для литиевых аккумуляторов 12 вольт. Устройство балансира

Термин балансировка в электротехнике означает режим зарядки, который производит контроль за каждым отдельным элементом, участвующим в процессе, не допуская увеличения или снижения напряжения менее необходимого уровня. Необходимость подобных решений вытекает из особенностей сборок с li — ion. Если из за внутренней конструкции один из элементов зарядиться быстрее остальных, что очень опасно для состояния остальных элементов, и как следствие всей батареи. Схемное решение балансира выполнена таким образом, что элементы схемы берут на себя избыток энергии, тем самым регулируя процесс зарядки отдельной ячейки.

Если сравнивать принципы зарядки никель-кадмиевых аккумуляторов, то они имеют отличия от литий-ионного, прежде всего у Ca — Ni окончание процесса свидетельствует повышение напряжения полярных электродов и уменьшение тока до 0, 01мА. Также перед зарядкой этот источник должен быть разряжен не менее 30% от первоначальной емкости, если не выдержать это условия в батарее возникает «эффект памяти», который снижает емкость батареи.

С Li-Ion активным компонентом все наоборот. Полная разрядка этих элементов может привести к необратимым последствиям и резко понизить способность заряжаться. Нередко некачественные контроллеры могут не обеспечить контроль за уровнем разрядки батареи, что может привести неисправности всей сборки из-за одной ячейки.

Выходом из ситуации может стать применение выше рассмотренной схемы на регулируемом стабилитроне TL431. Нагрузку 1000 мА или больше может обеспечить установка более мощным транзистором. Такие ячейки подключается к непосредственно к каждой ячейке предохранит от неправильной зарядки.

Выбирать транзистор следует от мощности. Мощность подсчитывается по формуле P = U*I, где U — напряжение, I – зарядный ток.

Например, при токовой зарядки 0,45 А транзистор должен иметь рассеиваемую мощность не менее 3,65 В*0,45А = 1,8 Вт. а это для внутренних переходов большая токовая нагрузка, поэтому выходные транзисторы лучше установить в радиаторы.

Ниже приведен примерный расчет величины резисторов R1 и R2 на различное напряжение заряда:

22,1к + 33к => 4,16 В

15,1к + 22к => 4,20 В

47,1к + 68к => 4,22 В

27,1к + 39к => 4,23 В

39,1к + 56к => 4,24 В

33к + 47к => 4,25 В

Сопротивление R3 – нагрузка на базе транзистора. Его сопротивление может быть 471Ом — 1, 1 кОм.

Но, при реализации этих схемных решений, возникла проблема, как заряжать отдельную ячейку в аккумуляторном блоке? И такое решение нашлось. Если посмотреть на контакты на зарядной ножке, то на выпускаемых в последнее время корпусах с литий-ионными батареями находится такое количество контактов, сколько отдельных ячеек в батарее, естественно, на зарядном устройстве каждый такой элемент подключается отдельный схеме контроллера.

По стоимости подобное зарядное изделие несколько дороже чем линейное устройство с двумя контактами, но это стоит того, особенно если учесть, что сборки с высококачественными литий-ионными компонентами с доходят да половины стоимости самого изделия.

Импульсное зарядное устройство для литиевых li — ion аккумуляторов

Последнее время многие ведущие — фирмы производители ручного инструмента с автономным питанием, широко рекламирует быстро зарядные устройства. Для этих целей были разработаны импульсные преобразователи на основе широтно-импульсно модулированных сигналов (ШИМ) для восстановления блоков питания шуруповертов на основе ШИМ генератора на микросхеме UC3842 собран обратноходовой AS — DS преобразователь c нагрузкой на импульсный трансформатор.

Далее будет рассмотрена работа схема наиболее распространённых источника (см прилагаемую схему) : сетевое напряжение 220В поступает на диодную сборку D1- D4, для этих целей используются любые диоды мощностью до 2A. Сглаживание пульсаций происходит на конденсаторе C1, где концентрируется напряжение порядка 300В. Это напряжение является питанием для импульсного генератора с трансформатором T1 на выходе.

Первоначальное питание для запуска интегральная микросхемы A1 поступает через резистор R1, после чего включается генератор импульсов микросхемы, которая выдает их на вывод 6. Далее импульсы подаются на затвор мощного полевого транзистора VT1 открывая его. Стоковая цепь транзистора подает питание к первичной обмотке импульсного трансформатора Т1. После чего включатся в работу трансформатор и начинается передача импульсов на вторичную обмотку. Импульсы вторичной обмотки 7 — 11 после выпрямления диодом VT6 используется для стабилизации работы микросхемы A1, которая в режиме полной генерации потребляют гораздо больший ток, чем получает по цепи от резистора R1.

В случае неисправности диодов Д6, источник переходит у режиму пульсации, поочередно запуская работу трансформатор и прекращая его, при этом слышен характерный пульсирующий «писк» посмотрим работу схемы в этом режиме.

Питание через R1 и конденсатор C4 запускают генератор микросхемы. После запуска, для нормальной работы требуется более повышенный ток. При неисправности Д6 дополнительного питания на микросхему не поступает, и генерация прекращается, затем процесс повторяется. Если диод Д6 исправен, сразу включает в работу импульсный трансформатор под полную нагрузку. При нормальном запуске генератора на обмотке 14- 18 появляется импульсный ток 12 — 14В (на холостом ходу 15В). После выпрямления диодом V7 и сглаживания импульсов конденсатором C7 и импульсный ток поступает на зажимы батареи.

Ток 100 мА, не вредит активному компоненту, но повышает время восстановления в 3-4 раза, снижая ее время от 30 мин до1 часа. (источник — журнал интернет издание Радиоконструктор 03-2013 )

Быстрозарядное устройство G4-1H RYOBI ONE+ BCL14181H

Импульсное устройство для литиевых аккумуляторов 18 вольт производства немецкой компании Ryobi, производитель народная республика Китай. Импульсное устройство подходит для литий-ионных, никель кадмиевых 18В. Рассчитана на нормальную эксплуатацию при температуре от 0 до 50 С. Схемное решение обеспечивает два режима питания по напряжению и стабилизации по току. Импульсная подача тока обеспечивает оптимальную подпитку каждой отдельной батарейки.

Устройство выполнено в оригинальном корпусе из ударопрочной пластмассы. Применено принудительное охлаждение от встроенного вентилятора, с автоматическим включением при достижении 40° С.

Характеристики:

  • Минимальное время заряда 18В при 1,5 А /ч — 60 минут, вес 0,9 кг, габариты: 210 x 86 x 174 мм. Индикация процесса зарядки подсвечивается синим светодиодом, по окончании загорается красный. Имеется диагностика неисправности, которая загорается при неисправности сборки отдельной подсветкой на корпусе.
  • Питание однофазное 50Гц. 220В. Длина сетевого провода 1,5 метра.

Ремонт зарядной станции

Если случилось так, что изделие перестало выполнять свои функции, лучше всего обратиться в специализированные мастерские, но элементарные неисправности можно устранить своими руками. Что делать если не горит индикатор питания, разберем некоторые простые неисправности на примере станции .

Это изделие предназначено для работы с литий-ионными батареями 12В, 1,8А. Изделие выполнено с понижающим трансформатором, преобразование пониженного переменного тока выполняется четырех диодные мостовую схему. Для сглаживания пульсации установлен электролитический конденсатор. Из индикации имеется светодиоды сетевого питания, начала и окончание насыщения.

Итак, если не горит сетевой индикатор. Прежде всего необходимо через сетевую вилку убедится в целостности цепи первичной обмотки трансформатора. Для этого через штыри вилки подключения сетевого питания нужно прозвонить омметром целостность первичной обмотки трансформатора коснувшись щупами прибора за штыри сетевой вилки, если цепь показывает обрыв, тогда нужно осмотреть детали внутри корпуса.

Возможен обрыв предохранителя, обычно это тоненькая проволочка, протянутая в фарфоровом или стеклянном корпусе, сгорающая при перегрузках. Но некоторые фирмы, например, «Интерскол», для того чтобы предохранить обмотки трансформатора от перегрева устанавливают между витками первичной обмотки тепловой предохранитель, цель которого при достижении температуры 120 — 130° С, разрывать цепь питания сети и, к сожалению, ее уже после разрыва не восстанавливает.

Обычно предохранитель находится под покровной бумажной изоляцией первичной обмотки, после вскрытия которой, можно легко обнаружить эту деталь. Чтобы снова привести схему в рабочее состояние, можно, просто спаять концы обмотки в одно целое, но нужно помнить — трансформатор остается без защиты от короткого замыкания и лучше всего вместо теплового установить обычный сетевой предохранитель.

Если цепь первичной обмотки целая, прозванивается вторичная обмотка и диоды моста. Для прозвонки диодов лучше выпаять один конец из схемы и проверить диод омметром. При подсоединении концов к выводам поочередно щупов в одну сторону, диод должен показывать обрыв, в другую, короткое замыкание.

Таким образом необходимо проверить все четыре диода. И, если, уж, мы залезли в схему, тогда лучше всего сразу поменять конденсатор, потому, что диоды обычно перегружаются по причине высовшего электролита в конденсаторе.

Купить блоки питания для шуруповерта

Любой ручной инструмент и аккумуляторы можно приобрести у нас на сайте. Для этого необходимо пройти простую процедуру регистрации и далее следовать по несложный навигации. Простая навигации сайта легко выведет на необходимый для вас инструмент. На сайте можно посмотреть цены и сравнить их с конкурирующими магазинами. Любой возникший вопрос можно решить с помощью менеджера, позвонив по указанному телефону или оставить вопрос дежурному специалисту. Заходите к нам, и вы не останетесь без выбора необходимого вам инструмента.

Сегодня у многих пользователей скопилось по несколько рабочих и неиспользуемых литиевых аккумуляторов, появляющихся при замене мобильных телефонов на смартфоны.

При эксплуатации аккумуляторов в телефонах со своим зарядным устройством, благодаря использованию специализированных микросхем для контроля заряда, проблем с зарядом практически не возникает. Но при использовании литиевых аккумуляторов в различных самоделках возникает вопрос, как и чем заряжать такие аккумуляторы. Некоторые считают, что литиевые аккумуляторы уже содержат встроенные контроллеры заряда, но на самом деле в них встроены схемы защиты, такие аккумуляторы называют защищёнными. Схемы защиты в них предназначены в основном для защиты от глубокого разряда и превышения напряжения при зарядке выше 4,25В, т.е. это аварийная защита, а не контроллер заряда.

Некоторые «самодельщики» на сайте тут — же напишут, что за небольшие деньги можно заказать специальную плату из Китая, с помощью которой можно зарядить литиевые аккумуляторы. Но это только для любителей «шопинга». Нет смысла покупать то, что легко собирается за несколько минут из дешевых и распространенных деталей. Не нужно забывать и о том, что заказанную плату придется ждать около месяца. Да и покупное устройство не приносит такого удовлетворения, как сделанное своими руками .

Предлагаемое зарядное устройство способен повторить практически каждый. Данная схема весьма примитивна, но полностью справляется со своей задачей. Все что требуется для качественной зарядки Li-Ion аккумуляторов, это стабилизировать выходное напряжение зарядного устройства и ограничить ток заряда.

Зарядное устройство отличается надежностью, компактностью и высокой стабильностью выходного напряжения, а, как известно, для литий-ионных аккумуляторов это является очень важной характеристикой при зарядке.

Схема зарядного устройства для li-ion аккумулятора

Схема зарядного устройства выполнена на регулируемом стабилизаторе напряжения TL431 и биполярном NPN транзисторе средней мощности. Схема позволяет ограничить зарядный ток аккумулятора и стабилизирует выходное напряжение.

В роли регулирующего элемента выступает транзистор Т1. Резистор R2 ограничивает ток заряда, значение которого зависит лишь от параметров аккумулятора. Рекомендуется использовать резистор мощностью 1 вт. Другие резисторы могут иметь мощность 125 или 250 мВт.

Выбор транзистора определяется необходимым зарядным током установленным для зарядки аккумулятора. Для рассматриваемого случая, зарядки аккумуляторов от мобильных телефонов, можно применить отечественные или импортные NPN транзисторы средней мощности (например, КТ815, КТ817, КТ819). При высоком входном напряжении или использовании транзистора малой мощности, необходимо транзистор установить на радиатор.

Светодиод LED1 (выделен красным цветом в схеме), служит для визуальной сигнализации заряда аккумулятора. При включении разряженного аккумулятора, индикатор светится ярко и по мере заряда тускнеет. Свечение индикатора пропорционально току заряда аккумулятора. Но следует учесть, что при полном затухании светодиода, батарея все еще будет заряжаться током менее 50ма, что требует периодического контроля над устройством для исключения перезаряда.

Для повышения точности контроля окончания заряда, в схему зарядного устройства добавлен дополнительный вариант индикации заряда аккумулятора (выделен зеленым цветом) на светодиоде LED2, маломощном PNP транзисторе КТ361 и датчике тока R5. В устройстве возможно использование любого варианта индикатора в зависимости от требуемой точности контроля заряда аккумулятора.

Представленная схема предназначается для заряда только одного Li-ion аккумулятора. Но это зарядное устройство можно использовать и для заряда других видов аккумуляторов. Требуется лишь выставить необходимое для этого значение выходного напряжения и ток зарядки.

Изготовление зарядного устройства

1. Приобретаем или подбираем из имеющихся в наличии, комплектующие для сборки в соответствии со схемой.

2. Сборка схемы.
Для проверки работоспособности схемы и ее настройки, собираем зарядное устройство на монтажной плате.

Диод в цепи питания аккумулятора (минусовая шина – синий провод) предназначен для предотвращения разряда литий-ионного аккумулятора при отсутствии напряжения на входе зарядного устройства.

3. Настройка выходного напряжения схемы.
Подключаем схему к источнику питания напряжением 5…9 вольт. Подстроечным сопротивлением R3 устанавливаем выходное напряжение зарядного устройства в пределах 4,18 – 4,20 вольта (при необходимости, в конце настройки измеряем его сопротивление и ставим резистор с нужным сопротивлением).

4. Настройка зарядного тока схемы.
Подключив к схеме разряженный аккумулятор (о чем сообщит включившийся светодиод), резистором R2 устанавливаем по тестеру величину зарядного тока (100…300 ма). При сопротивлении R2 менее 3 ом светодиод может не светится.

5. Готовим плату для монтажа и пайки деталей.
Вырезаем необходимый размер из универсальной платы, аккуратно обрабатываем края платы напильником, очищаем и лудим контактные дорожки.

6. Монтаж отлаженной схемы на рабочую плату
Переносим детали с монтажной платы на рабочую, паяем детали, выполняем недостающую разводку соединений тонким монтажным проводом. По окончании сборки основательно проверяем монтаж.

В нынешнее время очень популярны литий-ионные аккумуляторы, они используются в различных гаджетах, к примеру телефонах, умных часах, плеерах, фонариках, ноутбуках. Впервые аккумулятор такого типа (Li-ion) выпустила известная японская фирма Sony. Принципиальная схема простейшего аккумуляторов представлена на картинке ниже, собрав её, у вас будет возможность самостоятельно восстанавливать заряд в аккумуляторах.

Самодельная зарядка литиевых АКБ — схема электрическая

Основой для данного прибора являются две микросхемы-стабилизатора 317 и 431 (). Интегральный стабилизатор LM317 в данном случае служит источником тока, данную деталь берём в корпусе TO-220 и обязательно устанавливаем на теплоотвод с применением термопасты. Регулятор напряжения TL431 выпускаемый компанией texas instruments существует кроме этого, в корпусах SOT-89, TO-92, SOP-8, SOT-23, SOT-25 и других.

Светодиоды (LED) D1 и D2 любого, приятного для вас цвета. Мной были выбраны такие: LED1 красный прямоугольный 2,5 мм (2,5 милиКандел) и LED2 зелёный диффузионный 3 мм (40-80 милиКандел). Удобно применять smd светодиоды, если вы не будете устанавливать готовую плату в корпус.

Минимальная мощность резистора R2 (22 Ohm) 2 Ватта, а R5 (11 Ohm) 1 Ватт. Все отсальные 0,125-0,25W.

Переменный резистор на 22 килоОма должен быть обязательно типа СП5-2 (импортный 3296W). Такие переменные резистора имеют очень точную регулировку сопротивления, которое можно плавно подстраивать крутя червячную пару, похожую на бронзовый болтик.

Фото измерения вольтажа li-ion аккумулятора от сотового телефона до зарядки (3.7V) и после (4.2V), ёмкость 1100 mA*h.

Печатная плата для литиевого зарядного

Печатная плата (PCB) существует в двух форматах для разных программ — архив находится . Размеры готовой печатной платы в моём случае 5 на 2,5 см. По бокам оставил пространство для креплений.

Как работает зарядка

Как работает готовая схема такого зарядного устройства? Сначала аккумулятор заряжается постоянных током, который определяется сопротивление резистора R5, при стандартном номинале 11 Ом он будет примерно 100 мА. Далее, когда перезаряжаемый источник энергии будет иметь напряжение 4,15-4,2 вольта начнется зарядка постоянным напряжением. Когда же ток зарядки снизится до маленьких значений светодиод D1 перестанет светиться.

Как известно, стандартным напряжение для зарядки Li-ion является 4,2V, данную цифру необходимо установить на выходе схемы без нагрузки, с помощью вольтметра, так аккумулятор будет заряжается полностью. Если же немножко снизить напряжение, где-то на 0,05-0,10 Вольт, то ваш аккумулятор будет заряжаться не до конца, но так он прослужит дольше. Автор статьи ЕГОР .

Обсудить статью ЗАРЯДНОЕ ЛИТИЕВЫХ АККУМУЛЯТОРОВ


Я сделал себе зарядное устройство для четырех литий-ионных аккумуляторов. Кто-то сейчас подумает: ну сделал и сделал, таких полно в интернете. И я сразу хочу сказать, что моя конструкция способна заряжать как одну батарею, так и четыре сразу. Все аккумуляторы заряжаются независимо друг от друга.
Это дает возможность заряжать одновременно батареи из разных устройств и с разным начальным зарядом.
Я сделал зарядник для батарей типа 18650, которые у меня используются в фонарике, powerbanks, ноутбуке и тп.
Схема состоит из готовых модулей и собирается очень быстро и просто.

Понадобится

  • — 4 шт.
  • — 4 шт.
  • Скрепки канцелярские.

Изготовление зарядного устройства под разное количество аккумуляторов

Сначала сделаем батарейный отсек. Для этого берем универсальную монтажную плату с большим количеством отверстий и обычные канцелярские скрепки.


Откусываем у скрепок вот такие уголки.


Вставляем в плату, предварительно примерив по длине батарей нужных вам. Потому, что такое зарядное устройство можно сделать не только под 18650 аккумуляторы.


Запаиваем снизу платы части скрепок.


Затем берем контроллеры зарядки и размещаем их на оставшемся месте платы, желательно напротив каждого аккумулятора.


Контроллер зарядки будет крепиться на вот таких ножках, сделанных из разъема PLS.


Припаиваем сверху модуль и снизу к плате. По этим ножкам побежит ток питания к модулю и ток заряда к батареям.


Четыре секции готовы.


Далее для коммутации зарядных мест установим кнопки или тумблера.


Подключается все это дело вот таким образом:


Вы спросите — почему кнопки только три а не четыре? А я отвечу — так как один модуль всегда будет работать, потому что один аккумулятор будет заряжаться всегда, иначе нет смысла вообще втыкать зарядник.
Напаиваем токопроводящие дорожки.


Итог таков, что кнопками можно подключать место для зарядки от 1 до 4 аккумуляторов.


На модуле заряда установлен светодиод, который показывает что батарея, которая от него заряжается — зарядилась или нет.
Я собрал все устройство за полчаса. Питается оно от 5-ти вольтового блока питания (адаптера), его, кстати, тоже нужно выбирать с умом, чтобы оно тянуло зарядку сразу всех четырех батарей одновременно. Так же всю схему можно питать от USB компьютера.
Подключаем переходник к первому модулю, а дальше включаем нужные кнопки и напряжение с первого модуля будет переходить на другие места, в зависимости от включенных переключателей.

Современный человек пользуется множеством электронных гаджетов. Это ноутбук, мобильный телефон, планшет, фотоаппарат и многие другие. Большинство этих устройств работают от литиевых аккумуляторов. Ведь мы ценим их именно за то, что это мобильные устройства. Однако за портативность приходится расплачиваться тем, что нужно постоянно заряжать аккумуляторы. Для этого вам потребуется зарядное устройство для литиевых аккумуляторов. В большинстве случаев зарядные устройства поставляются в комплекте с самим устройством. Этот тот же адаптер питания ноутбука или телефона. В идеале, конечно, для зарядки должно использоваться именно штатная зарядка. Но что делать, если она потеряна или вышла из строя. Нужно подобрать подходящее зарядное устройство. Что при этом учесть, обсудим в этой статье.

В общем случае зарядное устройство для должно иметь на выходе напряжение 5 вольт и ток, величина которого соответствует (0,5─1)*Сн. Сн – это номинальная ёмкость аккумулятора. К примеру, для литиевого элемента ёмкостью 2200 мАч, зарядка должна выдавать ток от 1,1 ампера.

Большинство зарядных устройств солидных производителей проводят зарядку Li аккумуляторов в несколько стадий. Первый этап идёт при постоянной величине тока 0,2─1 С и напряжении 4,1─4,2 В (здесь имеется в виду напряжение на 1 элемент или банку). Эта стадия продолжается примерно 40─50 минут. Второй этап проводится при постоянном напряжении. Есть устройства, которые для ускорения процесса зарядки, используют импульсный режим. Для литий─ионных систем с графитовой системой необходимо ограничивать напряжения значением 4,1 вольта на один элемент.

Если использовать напряжение выше 4,1 вольта, то можно увеличить энергетическую плотность аккумулятора. Но при этом начинаются окислительные реакции, которые сокращают срок службы батареи. В более поздних моделях эта проблема была устранена добавками. И на них напряжение в процессе зарядки можно увеличивать до 4,2 вольта с отклонением 0,05 на один элемент.

Если говорить о литиевых аккумуляторах промышленного назначения и для военной сферы, то для них зарядные устройства поддерживают напряжение 3,9 вольта. Это обеспечивает длительный срок службы и надёжность.


Если зарядное устройство выдаёт ток 1С, то аккумулятор зарядится примерно за 2─3 часа. При достижении полного заряда и напряжение достигает величины отсечки, ток резко уменьшается и составляет несколько процентов от первоначального значения.

Стоит сказать, что при увеличении зарядного тока время зарядки практически не уменьшается. При более высоком токе быстрее растёт напряжение на первой стадии процесса, но второй этап подзарядки в этом случае идёт дольше.

Существуют зарядные устройства способные зарядить литиевую батарею примерно за час. Такое зарядное для литиевых аккумуляторов не имеет второго этапа и АКБ готова к работе уже после завершения первой стадии. Уровень заряда аккумуляторного элемента при этом будет составлять 70 процентов. Но, в силу природы батарей литиевого типа, для них это не критично.


На графике выше можно видеть три этапа зарядки Li аккумулятора:

  • Первый. Через батарею протекает максимально возможный (1С) ток заряда. Эта стадия заканчивается при увеличении напряжения до порогового значения;
  • Второй. Напряжение остаётся максимальным (4,1─4,2 вольта), а зарядный ток уменьшается до 3 процентов от первоначальной величины;
  • Третий. Компенсирующий заряд при его хранении (проводится примерно раз в 20 дней).

На этапе хранения для литиевых аккумуляторов струйная зарядка невозможна из-за того, что это приводит к металлизации Li. Но кратковременные подзарядки постоянным током компенсируют потери заряда. Такая зарядка должна выполняться, когда напряжения элемента падает до 4,05 вольта. Процесс зарядки прекращается при 4,2 вольта.

И ещё один важный момент. Литиевые аккумуляторные элементы очень чувствительны к перезаряду. Даже при небольшой перезарядке на поверхности минусового электрода начинается металлизация лития. Он очень активен и взаимодействует с электролитом. В результате реакции на катоде происходит выделение кислорода, повышается давление. В результате может произойти разгерметизация элемента, воспламенение и даже небольшой взрыв.

Кроме того, если при заряде постоянно превышать предел по напряжению, срок службы литиевых батарей снижается. Поэтому в большинстве литиевых аккумуляторов помимо самих элементов присутствует плата защиты.

Плата контролирует процесс заряда и разряда элементов по нижнему и верхнему пределу напряжения. Часто используются температурные датчики отключающие элементы при 90 градусов по Цельсию. В некоторых видах батарей имеется механический клапан, открывающийся при увеличении давления внутри корпуса выше определённого предела.

Есть исключения. К примеру, аккумуляторы с наличием марганца в их составе не имеют такой защиты. Марганец сильно тормозит металлизацию на аноде и образование кислорода. Поэтому в такой защите нет необходимости.

Всё это нужно иметь в виду при выборе зарядного устройства. Если вы будете заряжать литиевую банку напрямую без контроллера, напряжение должно контролироваться постоянно. Но гораздо лучше использовать устройства с автоматическим контролем или заряжать батарею через плату защиты.

Зарядные устройства для различных гаджетов

Зарядки для аккумуляторов смартфонов

Если вы лишились штатного зарядного устройства от своего телефона, вам поможет «лягушка». Это одно из наиболее распространённых устройств. Название зарядка получила за характерную форму.


Пользоваться ей проще простого. У зарядки есть 2 регулируемых по ширине контакта: плюс и минус. Вам нужно установить их в положение, подходящее для заряжаемого аккумулятора. Затем вставляется аккумулятор, чтобы был контакт с его выводами, и фиксируется верхней прижимной планкой. Естественно, что при установке нужно соблюдать полярность. Затем устройство вставляется в разъём 220 вольт и заряжается, пока индикатор не покажет окончание процесса.

Схема зарядного устройства для Li-Ion аккумуляторов

Таймер 555

Как известно, литий-ионный аккумулятор необходимо заряжать в контролируемых условиях, если его заряжать обычным зарядным, то это может привести к повреждению или даже взрыву батареи.

Кроме того литий-ионные аккумуляторы не любят излишек заряда, после того, как напряжение достигает верхнего порога, напряжение заряда должно быть снято.

Рассматриемая здесь схема зарядного устройства отвечает вышеуказанным условиям, и подключенный аккумулятор никогда не будет перезаряжен.

В данной схеме таймер 555 используется в качестве компаратора, при соответствующих настройках его контакты 2 и 6 являются входами для контроля нижнего и верхнего порога напряжения.

Рис.1 Схема зарядного устройства для Li-Ion аккумуляторов

Вход 2 контролирует порог напряжения низкого уровня заряда, а также инициирует высокой уровень сигнала на выводе 3 микросхемы в случае, если уровень напряжения падает ниже установленного предела.

Вход 6 контролирует верхний порог напряжения и устанавливает на выходе 3 низкий уровень сигнала, если уровень контролируемого напряжения станет выше установленного предела .

Рассмотрим работу схемы: предположим, что полностью разряженный литий-ионный аккумулятор (на уровне около 3.0V) подключен ко входу зарядного устройства. Если предположить, что порог отключения установлен на уровне 3.2 В, то на выводе 3 появится высокий уровень напряжения, транзистор откроется и аккумулятор начнет заряжаться.

Как только батарея достигает полного заряда 4.2 В (на это значение настроен вход 6 микросхемы), на выходе 3 появится напряжение низкого уровня, батарея будет отключена от цепи заряда.

Наличие транзисторного каскада обеспечивает возможность зарядки большим током.

Трансформатор должен быть выбран с напряжением не более 6 В и расчитан на ток не менее 1/5 емкости аккумулятора.

Настройка. Для настройки вместо аккумулятора подключают регулируемый источник постоянного напряжения. Переменный резистор R5 настраиваем отключения зарядного устройства. С помощью него следует установить порог отключения лог.»1″ на выходе DA1 равным 4,2 В. Аналогичным образом регулируют сопротивление переменного резистора R2, в зависимости от которого включается режим зарядки. Порог включения зарядки должен быть примерно 3 В. Ток заряда настраивается подбором резистором R.

Смотрите также: Универсальное мобильное зарядное устройство

 


Зарядное устройство для li-ion аккумуляторов своими руками.

Как сделать зарядное устройство для li-ion аккумуляторов своими руками из подручных материалов практически даром.


Собираем простое зарядное для Литий-ионных аккумуляторов, практически из хлама.

 

Накопилось у меня большое количество аккумуляторов от ноутбучных аккумуляторов, формата 18650. Обдумывая как их заряжать, я решил не заморачиваться с китайскими модулями, да и закончились они у меня к тому времени. Решил собрать воедино две схемы. Датчик тока и плата BMS с аккумулятора мобильного телефона. Проверено на практике. Хоть и схема примитивная, но она работает и успешно, ни одного аккумулятора не пострадало.

Схема зарядного устройства

Схема зарядного устройства для зарядки li-ion аккумуляторов.

Материалы и инструменты


  • шнур USB;
  • крокодильчики;
  • плата защиты BMS;
  • пластиковое яйцо от киндера;
  • два светодиода разного цвета;
  • транзистор кт361;
  • резисторы на 470 и 22 ома;
  • двухватный резистор 2.2 ома;
  • один диод IN4148;
  • инструменты.

Изготовление зарядного устройства


Шнур USB разбираем и снимаем разъем. У меня это от какого-то аипада.

К крокодилам припаиваем провода.

Глубокую часть пластикового киндера утяжеляем, я залил гайку М6 термоклеем.

Спаиваем нашу простую схемку. Все сделано навесным монтажом и распаяно на плате BMS. Светодиод я применил сдвоенный, но можно два одноцветных. Транзистор выпаял из старой советской радио-аппаратуры.

Провода продеваем в отверстие второй, мелкой, половинке пластикового киндера. Припаиваем схему.

Все компактно запихиваем в пластиковое яйцо. Для светодиода делаем отверстие.

Подключаем к USB порту пк или китайской зарядке, у них тока все равно мало.

Во время зарядки горит оранжевым цвет. Т.е. горят оба светодиода.

Когда заряд окончен, горит зеленый, тот который подключен через диод IN4148.

Можно проверить схему, отключив от аккумулятора, загорится светодиод зеленого цвета, свидетельствующий об окончании заряда.

Видео по сборке зарядного устройства

Подробности сборки отображены на видео:


Зарядное устройство для литий-ионных аккумуляторов. Схема

Это простое зарядное устройство для литий-ионных аккумуляторов, а так же и литий-полимерных аккумуляторов построено на широко известном линейном стабилизаторе LM317.

Процесс заряда показан на графике ниже. В первый момент процесса зарядки ток заряда постоянен, при достижении целевого уровня напряжения (Umax) на аккумуляторе, зарядное устройство переходит в режим, когда напряжение остается постоянным, а ток асимптотически стремится к нулю.

Блок питания 0…30 В / 3A

Набор для сборки регулируемого блока питания…

Выходное напряжение литий-ионных и литий-полимерных аккумуляторов, как правило, составляет 4,2В (для некоторых типов 4,1 В). Обычно, выходное напряжение не совпадает с номинальным напряжением которое составляет 3,7В (иногда 3,6В).

Не рекомендуется заряжать данный тип аккумуляторов до полных 4,2В, так как это уменьшает срок службы аккумулятора. Если уменьшить выходное напряжение до 4,1В, емкость падает на 10%, но в тоже время срок службы (количество циклов) увеличится почти в два раза. При эксплуатации аккумуляторов, нельзя доводить номинальное напряжение ниже 3,4…3,3В.

Описание зарядного устройства

Как уже было сказано, зарядка построена на стабилизаторе LM317. Li-Ion и Li-Pol довольно требовательны к точности зарядного напряжения. Если вы хотите, произвести заряд до полного напряжения (обычно 4,2В), то необходимо выставить это напряжение с точностью плюс/минус 1%. После зарядки до 90% емкости (4,1В), точность может быть немного меньше (около 3%).

Схема с применением LM317 обеспечивает достаточно точную стабилизацию напряжения. Целевое напряжение устанавливается потенциометром R2. Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно, стабилизировать его с помощью шунтирующего резистора Rx и NPN транзистора (VT1).

Если падение напряжения на резисторе Rx достигает примерно 0,95В, то транзистор начинает открываться. Это уменьшает напряжение на контакте «Общий» стабилизатора Lm317 и тем самым стабилизируется ток.

Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путем изменения сопротивления Rx. Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax. Указанное на схеме значение резистора Rx соответствует току в 200мА.

Цифровой мультиметр AN8009

Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS…

Входное напряжение питания зарядного устройства должно находиться в диапазоне от 9 до 24 вольт. Превышение данного уровня увеличивает потери мощности в цепи LM317, снижение — нарушит правильную работу (нужно пересчитывать падение напряжения на шунте и минимальное напряжения на контакте «Общий»). Транзистор VT1 можно заменить на BC237, KC507, C945 или отечественный КТ3102.

Стабилизатор LM317 необходимо разместить на радиаторе. Зарядное устройство устойчиво к короткому замыканию на выходе. Стабилизатор в худшем случае (короткое замыкание) рассеивает потери мощности: P = U х I макс. Максимально допустимая потеря LM317 в корпусе TO220 составляет 20 ватт.

Зарядка литиевых элементов

Зарядка литиевых элементов
Elliott Sound Products Зарядка литиевых элементов

Авторские права © 2016 — Род Эллиотт (ESP)
Страница создана в ноябре 2016 г., опубликована в феврале 2017 г.
Последнее обновление в октябре 2018 г.

Вершина
Указатель статей
Основной указатель

Содержание
Введение
1 — Система управления батареями (BMS)
2 — Профиль зарядки
3 — Источники питания постоянного напряжения и постоянного тока (зарядные устройства)
4 — Цепь зарядки одной ячейки ИС
5 — Зарядка нескольких элементов
6 — Защита батареи
7 — Мониторинг состояния заряда (SOC)
8 — Проекты с батарейным питанием
Выводы
Ссылки

Введение

Зарядка литиевых батарей или элементов (теоретически) проста, но может быть сопряжена с трудностями, о чем свидетельствуют многочисленные серьезные отказы в коммерческих продуктах.К ним относятся портативные компьютеры, мобильные («сотовые») телефоны, так называемые «ховерборды» (также известные как балансировочные доски) и даже самолеты. Балансировочные щиты вызвали ряд пожаров в домах и разрушили или повредили многие объекты недвижимости по всему миру. Если элементы не заряжены должным образом, существует высокий риск вентиляции (выброса газов под высоким давлением), что часто сопровождается возгоранием.

Литий — самый легкий из всех металлических элементов, он плавает на воде. Он очень мягкий, но быстро окисляется на воздухе.Воздействия водяного пара и кислорода часто бывает достаточно, чтобы вызвать возгорание, особенно если присутствует тепло (например, из-за перезарядки литиевого элемента). Воздействие влажного / влажного воздуха вызывает образование газообразного водорода (из водяного пара), который, конечно, легко воспламеняется. Литий плавится при 180 ° C. Большинство авиакомпаний настаивают на том, чтобы литиевые элементы и батареи заряжались не более чем на 30% при транспортировке из-за вполне реального риска катастрофического пожара. Несмотря на ограничения, литиевые батареи теперь используются почти во всем новом оборудовании из-за очень высокой плотности энергии и небольшого веса.

Батареи имеют скорость заряда и разряда, обозначенную буквой «C» — емкость батареи или элемента в Ач или мАч (ампер или миллиампер-час). Таким образом, аккумулятор емкостью 1,8 Ач (1800 мАч) имеет рейтинг «C» 1,8 А. Это означает, что (по крайней мере, теоретически) аккумулятор может обеспечивать ток 180 мА в течение 10 часов (0,1 ° C), 1,8 A в течение 1 часа или 18 A в течение 6 минут (0,1 час или 10 ° C). В зависимости от конструкции литиевые батареи могут обеспечивать ток до 30 ° C и более, поэтому наша гипотетическая батарея емкостью 1800 мАч теоретически может обеспечивать ток 54A в течение 2 минут.Емкость также может быть указана в Втч (ватт-часах), хотя эта цифра обычно не используется, кроме как в рекламных брошюрах.

В США и некоторых других странах оценка Wh требуется транспортным компаниям, чтобы они могли определить необходимый стандарт упаковки. Один аккумулятор 1,8 Ач имеет запасенную энергию 6,7 Втч [4] . В качестве альтернативы может потребоваться указать содержание лития. В справочнике также показано, как это можно рассчитать, хотя любой сделанный расчет будет только приблизительным, если производитель батарей специально не укажет содержание лития.Причина этого — риск возгорания — перевозчики не любят, когда грузы загораются, а содержание лития может определять способ доставки товаров. Если батареи поставляются отдельно (не встроены в оборудование), они должны быть заряжены не более чем на 30%.

В отличие от некоторых старых аккумуляторных технологий, литиевые батареи нельзя (и не следует) оставлять на плавающем заряде, хотя может быть , если напряжение поддерживается ниже максимального напряжения заряда. Для большинства используемых ячеек максимальное напряжение ячейки равно 4.2 В, называемое напряжением «заряда насыщения». Напряжение заряда должно поддерживаться на этом уровне только достаточно долго, чтобы ток заряда упал до 10% от начального значения или 1С. Однако это может быть интерпретировано, потому что начальный ток заряда может иметь широкий диапазон, в зависимости от батареи и зарядного устройства.

К сожалению, несмотря на то, что существует бесчисленное количество статей о зарядке литиевых батарей, существует почти столько же различных предложений, рекомендаций и мнений, сколько и статей.Одна из основных вещей, которая важна при зарядке литиевой батареи, — это обеспечить, чтобы напряжение на каждой ячейке никогда не превышало максимально допустимое, а это означает, что необходимо контролировать каждую ячейку в батарее. Существует множество доступных ИС, которые были специально разработаны для балансной зарядки литиевых батарей, при этом некоторые системы довольно сложны, но чрезвычайно универсальны с точки зрения обеспечения оптимальной производительности.

В то время как традиционные литий-ионные (Li-Ion) или литий-полимерные (Li-Po) имеют номинальное напряжение ячейки 3.70 В, Li-железо-фосфат (LiFePO 4 , он же LFP — феррофосфат лития) составляет исключение с номинальным напряжением элемента 3,20 В и зарядкой до 3,65 В. Многие коммерческие батареи LiFePO 4 имеют встроенные схемы балансировки и защиты, и их нужно только подключить к соответствующему зарядному устройству. Относительно новым дополнением является литий-титанат (LTO) с номинальным напряжением ячейки 2,40 В и зарядкой до 2,85 В.

Зарядные устройства для этих альтернативных литиево-химических элементов несовместимы с обычными 3.70-вольтовый Li-Ion. Необходимо предусмотреть возможность идентификации систем и обеспечения правильного зарядного напряжения. Литиевая батарея на 3,70 В в зарядном устройстве, разработанном для LiFePO 4 , не получит достаточного заряда; LiFePO 4 в обычном зарядном устройстве может вызвать перезарядку. В отличие от многих других химических элементов, литий-ионные элементы не могут поглощать перезаряд, поэтому необходимо знать конкретный химический состав аккумулятора и адаптировать условия зарядки.

Литий-ионные элементы

безопасно работают в пределах указанных рабочих напряжений, но аккумулятор (или элемент в аккумуляторе) становится нестабильным, если случайно зарядить его до напряжения выше указанного.При длительной зарядке выше 4,30 В литий-ионного элемента, рассчитанного на 4,20 В, на аноде будет металлический литий. Катодный материал становится окислителем, теряет стабильность и выделяет углекислый газ (CO2). Давление в ячейке повышается, и если заряду позволяют продолжить, устройство прерывания тока, отвечающее за безопасность ячейки, отключается при 1000–1380 кПа (145–200 фунтов на квадратный дюйм). При дальнейшем повышении давления защитная мембрана на некоторых литий-ионных элементах разрывается при давлении около 3450 кПа (500 фунтов на квадратный дюйм), и в конечном итоге ячейка может выйти из строя — с пламенем!

Не все ячейки рассчитаны на то, чтобы выдерживать высокое внутреннее давление, и будут иметь видимые выпуклости задолго до того, как давление достигнет значений, близких к указанным.Это верный признак того, что элемент (или аккумулятор) поврежден, и его нельзя использовать снова. К сожалению, во многих статьях, которые вы найдете в Интернете, обсуждая платы баланса (в частности), говорится о качестве элементов (или их отсутствии) и / или качестве зарядного устройства (то же самое), но не упоминается обсуждаемая система управления батареями (BMS). следующий.

Это один из наиболее важных элементов зарядного устройства для литиевых батарей, но редко упоминается в большинстве статей, посвященных возгоранию батарей.В общем, предполагается (или неизвестно автору), что аккумуляторная батарея включает — или , если включает — схему защиты, чтобы гарантировать, что каждая ячейка контролируется и защищена от перезарядки. Вероятно, что дешевые (или поддельные) аккумуляторные блоки вообще не включают схему защиты, и любой аккумулятор без этой важной схемы, как правило, следует избегать, если у вас нет надлежащего внешнего балансного зарядного устройства с многополюсным разъемом. Проблема в том, что продавцы редко раскрывают (или даже знают), есть ли у аккумулятора защита или нет.


1 — Система управления батареями (BMS)

Это не особенно полезно, но многие продавцы аккумуляторов и зарядных устройств не проводят различия между контролем аккумулятора и защитой аккумулятора . Это две отдельные функции, и, как правило, они представляют собой отдельные элементы схемы. К сожалению, термин «BMS» может означать либо мониторинг, либо защиту, в значительной степени в зависимости от определения, используемого продавцом, и / или понимания того, что на самом деле продается.

Я буду использовать термин «балансировка» применительно к управлению процессом зарядки, а для аккумуляторов (в отличие от одиночных ячеек) это процесс балансировки, который гарантирует, что каждая ячейка тщательно контролируется во время зарядки для поддержания правильного максимального значения ячейки. Напряжение. Защита Цепи обычно подключены к аккумулятору постоянно и часто интегрируются в аккумуляторный блок. Они описаны ниже. В некоторых случаях защита и балансировка могут быть предоставлены как комплексное решение, и в этом случае оно действительно заслуживает названия «BMS» или «система управления батареями».

Для правильного управления процессом зарядки более чем с одной ячейкой необходима система балансировки батареи. абсолютно необходима . Цепи баланса отвечают за обеспечение того, чтобы напряжение на любой ячейке никогда не превышало максимально допустимое, и часто интегрируются с зарядным устройством. Некоторые из них имеют дополнительные возможности, например, контроль температуры ячейки. В больших установках отдельные контроллеры ячеек взаимодействуют с центральным «главным» контроллером, который обеспечивает сигнализацию устройству, на которое подается питание, с указанием состояния заряда (поскольку этот параметр может быть определен — это меньше, чем точная наука), наряду с любыми другими данные, которые можно считать важными.

Для сравнительно простых батарей с количеством ячеек от 2 до 5, дающих номинальное напряжение от 7,4 В до 18,5 В соответственно, баланс ячеек не представляет особой сложности. Это действительно становится проблемой, когда, возможно, 110 ячеек соединены последовательно, что дает выходное напряжение около 400 В (как, например, в электромобиле). Ячейки также могут быть соединены параллельно, чаще всего как последовательно-параллельная сеть. В общепринятой терминологии (особенно для «любительских» батарей для моделей самолетов и т.п.) батарея будет обозначаться как 5S (5 ячеек серии) или 4S2P (4 ячейки серии, каждая из которых состоит из 2 ячеек параллельно).

Параллельная работа ячеек не является проблемой, и возможно (хотя обычно не рекомендуется), что они могут иметь разную емкость. Конечно, они должны использовать ту же химию. При последовательном запуске ячейки должны быть как можно ближе к идентичности. Конечно, по мере того, как звонки стареют, они будут делать это с разной скоростью — одни клетки всегда будут портиться быстрее, чем другие. Именно здесь система балансировки становится важной, потому что элемент (-ы) с наименьшей емкостью будет заряжаться (и разряжаться) быстрее, чем другие в упаковке.Большинство балансных зарядных устройств используют регулятор на каждой ячейке, что гарантирует, что напряжение заряда каждой отдельной ячейки никогда не превышает максимально допустимое.

В простейшей форме это можно сделать с помощью цепочки прецизионных стабилитронов, что на самом деле довольно близко к обычно используемым системам. Напряжение должно быть очень точным и в идеале должно находиться в пределах 50 мВ от желаемого максимального напряжения заряда. Хотя напряжение заряда насыщения обычно составляет 4,2 В на элемент, срок службы батареи можно продлить, ограничив напряжение заряда до 4.1 вольт. Естественно, это приводит к немного меньшему накоплению энергии.

Два основных компонента BMS будут рассмотрены отдельно ниже. Их можно дополнить мониторингом производительности (состояние заряда, оставшаяся емкость и т. Д.), Но в этой статье основное внимание уделяется важным моментам — тем, которые максимизируют как безопасность, так и время автономной работы. Так называемые «топливомеры» — это отдельная тема, и здесь они рассматриваются лишь вскользь.


2 — Профиль зарядки

На графике показаны основные элементы процесса зарядки.Первоначально зарядное устройство работает в режиме постоянного тока (ограничение тока) с максимальным током в идеале не более 1С (1,8 А для элемента или аккумулятора 1,8 Ач). Часто будет меньше, а иногда и намного меньше. При зарядке при 0,1C (180 мА) время зарядки составит 30 часов, если применяется заряд полного насыщения. Однако, когда используется сравнительно медленная зарядка (обычно менее 0,2 ° C), можно прекратить зарядку, как только элемент (-ы) достигнет 4,2 В, и заряд насыщения не нужен.Например, на основе «нового» алгоритма зарядки элементу, показанному на рисунке 1, может потребоваться от 12 до 15 часов для зарядки при 0,1 ° C, и цикл зарядки завершается, как только напряжение достигает 4,2 вольт. Это несколько мягче по сравнению с литий-ионным аккумулятором, и напряжение минимизировано.


Рисунок 1 — Профиль заряда литий-ионных аккумуляторов (1 элемент)

Как ясно видно на графике, быстрая зарядка означает, что емкость отстает от напряжения заряда, а 1С достаточно быстрая — особенно для аккумуляторов, предназначенных для устройств с низким потреблением энергии.Примерно через 35 минут напряжение (почти) достигло максимума 4,2 В, и ток заряда начинает падать, но элемент заряжен только примерно до 65%. Более низкая скорость заряда означает, что уровень заряда более точно соответствует напряжению. Как и все батареи, вы никогда не извлекаете столько, сколько вставляете, и обычно вам нужно вложить примерно на 10-20% больше ампер-часов (или миллиампер-часов), чем вы получите обратно во время разряда.

Некоторые зарядные устройства обеспечивают предварительный заряд, если напряжение элемента меньше 2.5 вольт. Обычно это постоянный ток, равный 1/10 от номинального полного заряда постоянного тока. Например, если ток заряда установлен на 180 мА, элемент будет заряжаться до 18 мА до тех пор, пока напряжение элемента не поднимется примерно до 3 В (это зависит от конструкции зарядного устройства). Однако большинству систем никогда не потребуется предварительное кондиционирование, потому что электроника будет (или должна!) Отключиться до того, как элемент достигнет потенциально опасного уровня разряда.

При использовании литий-ионные батареи следует хранить в прохладном месте.Нормальная комнатная температура (от 20 ° до 25 ° C) является идеальной. Не рекомендуется оставлять заряженные литиевые батареи в автомобилях на солнце, как и в любом другом месте, где температура может быть выше 30 ° C. Это вдвойне важно, когда аккумулятор заряжается. В разряженном состоянии требуются некоторые средства отключения, чтобы гарантировать, что напряжение элемента (любого элемента в батарее) не упадет ниже 2,5 вольт.

Обычно лучше не заряжать литиевые батареи полностью и не допускать их глубокого разряда.Срок службы батареи может быть увеличен за счет зарядки примерно до 80-90%, а не до 100%, так как это почти устраняет «напряжение напряжения», возникающее, когда напряжение элемента достигает полных 4,2 вольт. Если аккумулятор будет храниться, рекомендуется зарядка 30-40%, а не полная. Есть много рекомендаций, и большинство из них игнорируются. Однако это не вина пользователей — производители телефонов, планшетов и фотоаппаратов могут предложить вариант с пониженной оплатой — для этого достаточно вычислительной мощности.Это особенно важно для предметов, которые не имеют заменяемой пользователем батареи, потому что это часто означает, что в остальном совершенно хорошее оборудование выбраковано только потому, что батарея устала. Учитывая распространение вредоносных программ практически для каждой операционной системы, важно убедиться, что параметры заряда аккумулятора никогда не могут быть установлены таким образом, чтобы это могло вызвать повреждение.


3 — Источники питания постоянного напряжения и постоянного тока (зарядные устройства)

Во время начальной части цикла зарядки источник питания зарядного устройства должен быть постоянным.Текущее регулирование не обязательно должно быть совершенным, но оно должно быть в разумных пределах. Нас не очень волнует, действительно ли источник питания 1 А дает 1,1 А или 0,9 А, или он немного меняется в зависимости от напряжения на регуляторе. Мы, очевидно, должны быть очень обеспокоены, если выяснится, что максимальный ток составляет 10 А, но этого просто не произойдет даже с довольно грубым регулятором.

Для чисто аналоговой конструкции LM317 хорошо подходит для задачи регулирования тока, а также идеально подходит для регулирования основного напряжения.Это уменьшает общую BOM (спецификацию материалов), поскольку не требуется несколько различных деталей. Конечно, это оба линейных устройства, поэтому эффективность низкая, и для них требуется напряжение питания, превышающее общее напряжение батареи, по крайней мере, на 5 вольт, а желательно несколько больше.

В качестве альтернативы использованию двух микросхем LM317 вы можете добавить пару транзисторов и резисторов для создания ограничителя тока. Однако это работает не так хорошо, площадь печатной платы будет больше, чем у версии, показанной здесь, и экономия средств минимальна.В приведенной ниже схеме не предусмотрена возможность «предварительного кондиционирования» или «пробуждения» перед подачей полного тока. Это не важно, если аккумулятор никогда не может разряжаться ниже 3 В, и может даже не понадобиться при минимальном напряжении 2,5 В. Если напряжение разряженного элемента меньше 2,5 В, потребуется предварительный заряд C / 10. Если вы когда-либо заряжаете только по тарифу C / 10, более низкий тариф не требуется.


Рисунок 2 — Цепь заряда при постоянном токе / постоянном напряжении

Показанная схема ограничивает ток до значения, определяемого R1.При 12 Ом ток составляет 100 мА (достаточно близко — на самом деле 104 мА), который задается сопротивлением и внутренним опорным напряжением 1,25 В. Для 1 А используйте 1,2 Ом (рекомендуется 5 Вт), и значение можно определить для любого необходимого тока вплоть до максимального 1,5 А, который может обеспечить LM317. При более высоком токе стабилизатору потребуется радиатор, особенно на начальном этапе заряда, когда на U1 будет значительное напряжение. Диоды предотвращают обратную полярность батареи к регулятору (U2), если батарея подключена до включения источника постоянного тока.D1 должен быть рассчитан как минимум на удвоенный максимальный ток и в идеале должен быть устройством Шоттки, чтобы минимизировать рассеяние и потери напряжения.

Это просто базовое зарядное устройство, которое может быть разработано в соответствии с требованиями, описанными выше. Однако это далеко не полная система, поскольку на данном этапе отсутствуют система управления и балансировочные схемы. Каждая система будет отличаться, но базовая схема достаточно гибкая, чтобы вместить большинство батарейных блоков из 2-4 ячеек. Зарядку можно остановить, подключив вывод «Adj» U1 к земле с помощью транзистора, как показано на рисунке.Когда зарядка завершена, на конец R3 подается напряжение (5 В в порядке), и ограничитель тока отключается. Имейте в виду, что батарея будет разряжена комбинацией цепей баланса и тока, проходящего через R4, R5 и VR1 (последний составляет около 5,7 мА).


4 — Цепь зарядки одноэлементной ИС

Зарядное устройство на одну ячейку (или батареи с параллельными элементами) концептуально довольно просто. Однако при рассмотрении всех требований становится очевидным, что простого регулятора с ограничением тока, показанного выше, может быть недостаточно.Многие производители ИС имеют готовые зарядные устройства для литиевых элементов на кристалле, при этом большинству не требуется ничего, кроме программирующего резистора, пары байпасных конденсаторов и дополнительного светодиодного индикатора. Один (из многих), который включает в себя все необходимое, — это Microchip MCP73831, показанный ниже. Большинство крупных производителей ИС производят специализированные ИС, и ассортимент огромен. TI (Texas Instruments) производит ряд устройств, предназначенных для полных приложений BMS, от одноэлементных до батарей на 400 В, используемых для электромобилей.Еще одна простая ИС — LM3622, которая доступна в нескольких версиях, в зависимости от напряжения конечной точки. Также доступна версия для двухэлементной батареи, но в ней отсутствует схема балансировки, что делает ее довольно бессмысленной (IMO).


Рисунок 3 — Зарядное устройство для одной ячейки с использованием MCP73831 IC

Доступны четыре напряжения оконечной нагрузки — 4,20 В, 4,35 В, 4,40 В и 4,50 В, поэтому важно выбрать правильную версию для того типа аккумулятора, который вы будете заряжать. Режим постоянного тока управляется R2, ​​который используется для «программирования» ИС.Оставление разомкнутой цепи контакта 5 («PROG») запрещает зарядку. ИС автоматически прекращает зарядку, когда напряжение достигает максимума, установленного ИС, и подает «дополнительный» заряд, когда напряжение элемента падает примерно до 3,95 вольт. Дополнительный светодиодный индикатор может использоваться для индикации заряда или окончания заряда, либо того и другого с помощью трехцветного светодиода или отдельных светодиодов. Выход состояния разомкнут, если ИС отключена (например, из-за перегрева) или если батарея отсутствует. После начала зарядки выходной сигнал состояния становится низким, а после завершения цикла зарядки — высоким.Обратите внимание, что эта ИС доступна только в упаковке SMD, а версии со сквозным отверстием недоступны. То же касается и большинства устройств других производителей.

Показанное зарядное устройство представляет собой линейный регулятор, поэтому он рассеивает мощность при зарядке элемента. Если напряжение разряженной ячейки составляет 3 В, ИС будет рассеивать только 300 мВт при токе заряда 100 мА. Если увеличить до максимума, который может обеспечить ИС (500 мА), ИС будет рассеивать 1,5 Вт, а это значит, что она сильно нагреется (в конце концов, это небольшое SMD-устройство).Если напряжение элемента будет ниже 3 В (глубокий разряд из-за аварии или длительного хранения), рассеяние будет таким, что ИС почти наверняка отключится, так как у нее есть внутреннее измерение перегрева. Он будет циклически включаться и выключаться до тех пор, пока напряжение на ячейке не поднимется достаточно сильно, чтобы уменьшить рассеивание и обеспечить непрерывную работу. Зарядные устройства Switchmode намного эффективнее, но они больше, сложнее и дороже в сборке.

Некоторые контроллеры оснащены датчиком температуры или термистором для контроля температуры ячейки.Такие микросхемы, как LTC4050, будут заряжаться только при температуре от 0 ° C до 50 ° C при использовании с указанным термистором NTC (отрицательный температурный коэффициент). Другие могут быть сконструированы так, чтобы их можно было установить так, чтобы ИС сама контролировала температуру. Они предназначены для установки, когда ИС находится в прямом тепловом контакте с ячейкой. Последовательный транзистор должен быть внешним по отношению к ИС, чтобы его рассеяние не влияло на температуру кристалла ИС.

На приведенном выше рисунке резистор программирования тока установлен на 10 кОм, что устанавливает ток заряда примерно на 100 мА.В таблице данных для IC есть график, который показывает зависимость тока заряда от программируемого резистора, и, похоже, нет формулы, которую можно было бы применить. Резистор 2 кОм обеспечивает максимальный номинальный ток зарядки 500 мА. Как обсуждалось ранее, медленная зарядка, вероятно, является лучшим вариантом для максимального срока службы элемента, если только элемент не предназначен для быстрой зарядки. К сожалению, на ИС задано максимальное напряжение, и его нельзя уменьшить, чтобы ограничить напряжение немного меньшим значением, что продлит срок службы элемента.R1 допускает около 2,5 мА для светодиода, поэтому может потребоваться тип с высокой яркостью. При желании сопротивление R1 можно уменьшить до 470 Ом.

Для слаботочной зарядки, вероятно, нет причин не использовать источник питания с точностью 4,2 В и последовательный резистор. Процесс зарядки будет довольно медленным, но если он ограничен примерно 0,1C или 100 мА (в зависимости от того, что меньше), цикл зарядки займет около 15 часов. Резистор должен быть выбран так, чтобы обеспечить требуемый ток 1,2 В на нем (12 Ом для 100 мА).Существует небольшая вероятность того, что слабый ток вызовет какое-либо повреждение элемента, и хотя это довольно грубый способ зарядки, нет причин, по которым он не должен работать идеально. Я пробовала, и никаких «противопоказаний» нет.


5 — Цепи балансировки аккумуляторной батареи

Хотя зарядка одной ячейки (или батареи с параллельными ячейками) довольно проста с использованием правильной (-ых) ИС (-ий), становится труднее, когда есть две или более ячейки, соединенные последовательно, для создания батареи с более высоким напряжением.Поскольку напряжение на каждой ячейке необходимо контролировать и ограничивать, вы получаете довольно сложную схему. Опять же, есть множество вариантов от большинства основных производителей ИС, и во многих случаях требуется специальный микроконтроллер для управления схемами мониторинга отдельных ячеек.

Несомненно, существуют продукты, которые не обеспечивают какой-либо формы балансировки заряда, и именно они с наибольшей вероятностью могут вызвать проблемы при использовании, включая возгорание. Использование литиевых батарей без правильно сбалансированного зарядного устройства вызывает проблемы, и этого не следует делать даже с самыми дешевыми продуктами.Вы можете представить себе, что в пакете из 2-х ячеек необходимо контролировать только одну ячейку, а другая будет сама заботиться о себе. Однако это не так. Если ячейка, которая не отслеживается, имеет меньшую емкость, она будет заряжаться быстрее, чем другая ячейка. Оно может достичь опасного напряжения до того, как контролируемая ячейка достигнет своего максимума.

Принцип многоканального мониторинга достаточно прост по своей концепции. Только когда вы понимаете, что к каждой ячейке необходимо применять довольно сложные и точные схемы, это становится пугающим.Поскольку все ячейки находятся под разным напряжением, главному контроллеру требуются схемы сдвига уровня для каждого монитора ячейки. Здесь могут использоваться оптоизоляторы или более «обычные» схемы переключения уровня, но последние обычно не подходят для высоковольтных аккумуляторных блоков.


Рисунок 4 — Упрощенные схемы многоячеечной балансировки

Примечание: Показанные схемы являются концептуальными и предназначены для демонстрации основных принципов. Они не предназначены для конструирования, и микросхемы, показанные на букве «А», не являются каким-либо конкретным устройством, так как «настоящие» используемые ИС часто управляются специальным микроконтроллером.Нет смысла отправлять мне электронное письмо с просьбой указать типы устройств, потому что они не существуют как отдельная ИС. Идея состоит только в том, чтобы показать основы — это не проектная статья, она предназначена в первую очередь для освещения проблем, с которыми вы столкнетесь при работе с ячейками серии LiPo.

Существует два класса схем балансировки ячеек — активные и пассивные (оба показаны пассивными). Пассивные системы сравнительно просты и могут работать очень хорошо, но у них низкая энергоэффективность.Маловероятно, что это будет проблемой для небольших батарей (2-5 ячеек серии), заряжаемых по относительно низким ценам (1С или меньше). Тем не менее, это важно для больших пакетов, используемых в электрических велосипедах или автомобилях, потому что они требуют значительных денег для зарядки, поэтому неэффективность BMS приводит к более высокой стоимости одной зарядки и значительным потерям энергии.

Я не собираюсь даже пытаться показать полную схему для многоячеечной балансировки, потому что большинство из них полагаются на очень специализированные ИС, и конечный результат одинаков независимо от того, кто производит микросхемы.Система, показанная на «A», использует управляющий сигнал для зарядного устройства, чтобы уменьшить его ток, когда первая ячейка в батарее достигает своего максимального напряжения. Резистор, показанный на рисунке, может пропускать максимальный ток 75 мА при 4,2 В, и зарядное устройство не должно обеспечивать больше этого значения, иначе цепь разряда не сможет предотвратить перезаряд. Каждый резистор рассеивает только 315 мВт, но это быстро складывается для очень большого аккумуляторного блока, и именно здесь активная балансировка становится важной.

Реализация для устройств разных производителей сильно различается и зависит от принятого подхода.Некоторые из них управляются микропроцессорами и предоставляют микропроцессору информацию о состоянии для регулировки скорости заряда, в то время как другие являются автономными и часто в основном аналоговыми. Схема, показанная выше (‘B’), упрощена, но также вполне пригодна для использования, как показано. Три потенциометра по 20 кОм отрегулированы так, чтобы подавать точно 4,2 В на каждый регулятор. Когда действует балансировка (в конце заряда), доступный ток от зарядного устройства должен быть меньше 50 мА, иначе шунтирующие регуляторы не смогут ограничить напряжение.У этого типа балансировщика есть важное ограничение — если одна ячейка выйдет из строя (низкое напряжение или закорочено), остальные элементы будут серьезно перезаряжены!

Однако (и это важно), как и во многих других решениях, он не может оставаться подключенным, когда аккумулятор не заряжается. На каждой ячейке имеется постоянный сток около 100 мкА, и, если предположить, что ячейки 1,8 Ач, как и раньше, они будут полностью разряжены примерно через 2 года. Хотя это может показаться не проблемой, если оборудование не используется в течение некоторого времени, вполне возможно, что элементы разрядятся ниже точки невозврата.

Довольно много зарядных устройств, которые я тестировал, находятся в таком же положении. Их нельзя оставлять подключенными к батарее, поэтому необходимы некоторые дополнительные схемы, чтобы гарантировать отключение балансных цепей при отсутствии питания от зарядного устройства. Один продукт, который я разработал для клиента, нуждался во внутреннем балансировочном зарядном устройстве, поэтому была добавлена ​​релейная цепь для отключения балансных цепей, если зарядное устройство не было запитано. См. Раздел 8 для получения более подробной информации об этом подходе.

Для любой системы «активных стабилитронов», как показано выше, жизненно важно, чтобы выходное напряжение зарядного устройства было жестко регулируемым и имело температурное слежение, которое соответствует напряжению эмиттер-база транзисторов (Q1 — Q3).Зарядное устройство могло бы легко продолжать обеспечивать свой максимальный выходной ток, но при этом весь его рассеивался бы в цепях байпаса элемента. Это также делает невозможным определение фактического тока батареи, поэтому он, вероятно, не выключится, когда должен.


6 — Схемы защиты аккумулятора

Защита аккумулятора и / или элемента важна для обеспечения того, чтобы ни один элемент не заряжался сверх безопасных пределов, а также для контроля аккумулятора при разряде, чтобы отключить аккумулятор в случае неисправности (например, чрезмерный ток или температура), а также для включения выключить аккумулятор, если его напряжение упадет ниже допустимого минимума.В идеале каждая ячейка в батарее должна контролироваться, чтобы каждая ячейка была защищена от глубокого разряда. Для литий-ионных элементов они не должны разряжаться ниже 2,5 В, и даже лучше, если минимальное напряжение элемента будет ограничено до 3 вольт. Потеря емкости в результате более высокого напряжения отсечки невелика, потому что напряжение литиевого элемента падает очень быстро, когда оно достигает предела разряда.

Поскольку эти цепи обычно встроены в аккумуляторную батарею и постоянно подключены, важно, чтобы они потребляли минимально возможный ток.Все, что потребляет более нескольких микроампер, разряжает батарею, особенно если ее емкость относительно мала. Элемент (или аккумулятор) на 500 мА / ч будет полностью разряжен за 500 часов (20 дней), если цепь потребляет 1 мА, но это продлится почти до 3 лет, если потребление тока можно уменьшить до 20 мкА.

Цепи защиты

часто включают в себя обнаружение перегрузки по току, а некоторые могут отключать навсегда (например, с помощью внутреннего предохранителя), если батарея сильно разряжена.Многие используют плавкие предохранители с самовозвратом (например, устройства Polyswitch), или перегрузка обнаруживается электронным способом, и батарея отключается только на время существования неисправности. Существует много подходов, но важно знать, что некоторые внешние события (например, статический разряд) могут вывести цепь (и) из строя. С литиевыми батареями следует обращаться осторожно — всегда.


Рисунок 5 — Схема приложения SII S-8253D

На рисунке выше показана схема защиты трехэлементной литиевой батареи.Он не уравновешивает ячейки, но обнаруживает, превышает ли какая-либо ячейка в пакете пороговое значение «перезарядки», и прекращает зарядку. Он также остановит разряд, если напряжение на любой ячейке упадет ниже минимального. Переключение контролируется внешними полевыми МОП-транзисторами, и зарядное устройство должно быть настроено на правильное напряжение (12,6 В для показанной трехэлементной схемы, если предположить, что литий-ионные элементы).

Эти микросхемы (и другие микросхемы различных производителей) довольно распространены в азиатских платах BMS. Таблицы данных обычно не очень дружелюбны, и в некоторых случаях предоставляется огромное количество информации, но мало в виде схем приложений.Это кажется обычным для многих из этих микросхем других производителей — предполагается, что пользователь хорошо знаком со схемами балансировки батарей, что не всегда так. Показанный S-8253 имеет типичный ток потребления 14 мкА во время работы, и его можно уменьшить почти до нуля, если использовать CTL (управляющий) вход для отключения ИС, когда аккумулятор не используется или не заряжается. Полевые МОП-транзисторы отключат вход / выход, если элемент заряжен или разряжен сверх пределов, определенных ИС.


7 — Мониторинг состояния заряда (SOC) «Уровнемеры» батареи

часто являются не более чем уловкой, но новые методы сделали науку несколько менее произвольной, чем это было раньше. Самый простой (и наименее полезный) — контролировать напряжение батареи, потому что литиевые батареи имеют довольно пологую кривую разряда. Это означает, что необходимо обнаруживать очень небольшие изменения напряжения, а напряжение является очень ненадежным индикатором состояния заряда. Контроль напряжения может быть приемлемым для легких нагрузок в ограниченном диапазоне температур.Он отслеживает саморазряд, но общая точность оставляет желать лучшего.

Так называемый «кулоновский счет» измеряет и регистрирует заряд, идущий в батарею , и энергию, потребляемую от батареи , и вычисляет вероятное состояние заряда в любой момент времени. Он не дает точных данных об аккумуляторе, который из-за возраста изнашивается, и не может учитывать саморазряд, кроме как путем моделирования. Системы счета кулонов должны быть инициализированы циклом «обучения», состоящим из полной зарядки и разрядки.Изменения, вызванные температурой, не могут быть надежно определены.

Анализ импеданса

— это еще один метод, который потенциально является наиболее точным (по крайней мере, согласно Texas Instruments, которая производит ИС, выполняющие анализ). Контролируя импеданс элемента (или аккумулятора), можно определить степень заряда независимо от возраста, саморазряда или текущей температуры. TI называет свой метод анализа импеданса «Impedance Track ™» (сокращенно IT) и делает несколько довольно смелых заявлений о его точности.Я не могу комментировать так или иначе, потому что у меня нет батареи, использующей его, и у меня нет средств для запуска тестов, но это кажется многообещающим из информации, которую я видел до сих пор.

Эта статья посвящена надлежащему контролю заряда и разряда, а не контролю состояния заряда. Последнее удобно для конечного пользователя, но не является важной частью процесса зарядки или разрядки. Я не планирую предоставлять дополнительную информацию о «датчиках уровня топлива» в целом, независимо от технологии.


8 — Проекты с батарейным питанием

Ячейка 18650 (диаметр 18 мм и длина 65 мм) стала очень популярной для многих портативных устройств, и теперь они легко доступны по довольно разумным ценам.Конечно, не все они равны, и многие онлайн-продавцы выдвигают довольно диковинные заявления о емкости. Подлинные элементы 18650 имеют типичную емкость от 1500 мА / ч (миллиампер-час) до 3500 мА / ч, но подделки часто сильно преувеличивают оценки. Я видел, как они рекламировались как имеющие мощность до 6000 мА / ч, что просто невозможно. Максимальное значение, которое я видел, составляет 9 900 мА / ч, и это даже на больше невозможно, но, похоже, никого не волнует, что покупателей вводят в заблуждение.

Ячейка 18650 — это основа многих аккумуляторных батарей для ноутбуков, при этом 6-элементная батарея является довольно распространенной.Они могут быть подключены последовательно / параллельно для обеспечения удвоенной емкости (в мА / ч) при 11,1 вольт. Батарейный отсек содержит схемы балансировки и защиты, и элементы не подлежат замене. Это (ИМО) позор, потому что всегда будет дешевле заменить элементы, а не весь герметичный аккумулятор. Тем не менее, элементы в этих пакетах, как правило, относятся к типу «с выступами», с металлическими выступами, приваренными к элементам, поэтому они не зависят от физического контакта для электрического соединения.Это означает, что сделать их «заменяемыми пользователем» невозможно.

Одним из преимуществ использования отдельных ячеек является то, что многих проблем, поднятых в этой статье, можно избежать, по крайней мере, до некоторой степени. Будучи отдельными элементами, они обычно используются в пластиковом «батарейном блоке», обычно соединенном последовательно. Набор из четырех может обеспечить номинальное напряжение ± 7,4 В (каждая ячейка — 3,7 В), и этого достаточно для работы многих схем операционных усилителей, включая микрофонные предусилители, испытательное оборудование и многие другие.Зарядка проста — извлеките элементы из аккумуляторной батареи и заряжайте их параллельно с помощью специального зарядного устройства Li-Ion. При условии, что зарядное устройство использует правильное напряжение на клеммах (не более 4,2 В, предпочтительно немного меньше) и ограничивает пиковый зарядный ток в соответствии с используемыми элементами, зарядка безопасна и балансировка не требуется.

Как и во всем, есть предостережения. Схема, на которую подается питание, требует дополнительных схем для отключения аккумуляторной батареи при достижении минимального напряжения.Обычно это 2,5 В на элемент, поэтому автомат должен достаточно точно определять это и отключать аккумулятор, когда напряжение достигает минимума. Однако, если вы используете «защищенные» элементы, у них есть небольшая печатная плата внутри корпуса элемента, которая отключит питание, если элемент закорочен, он (обычно) предотвращает перезарядку и (обычно) имеет выключатель пониженного напряжения.

Но есть одна загвоздка! Хотя они по-прежнему используют то же обозначение размера (18650), многие защищенные ячейки немного длиннее. Некоторые из них могут быть до 70 мм в длину и не помещаются в аккумуляторные отсеки, предназначенные для «настоящих» ячеек 18650.Другие имеют правильную длину, но имеют меньшую емкость, потому что сама ячейка немного меньше, поэтому схема защиты подойдет. Эти ячейки также различаются положительным концом окончания — некоторые используют «кнопку» (почти такую ​​же, как у большинства щелочных ячеек), в то время как другие имеют плоскую вершину. Часто они не взаимозаменяемы.

Чтобы запутать ситуацию, есть также литиевые элементы размера AA (диаметр 14500 — 14 мм × длина 50 мм). Поскольку это элементы с напряжением 3,7 В, это элементы , а не «AA», даже если они одинакового размера.Вы также можете купить «фиктивные» элементы AA, которые представляют собой не что иное, как оболочку размера AA (с оберткой, как у «настоящих» элементов), которая обеспечивает короткое замыкание. Они используются вместе с литий-ионными элементами в устройствах, предназначенных для использования двух или четырех элементов. Используются один или два Li-Ion и один или два фиктивных элемента, и большинство устройств вполне довольны результатом. Моя «рабочая лошадка» цифровая камера оснащена парой литий-ионных элементов размера AA и парой манекенов, и обычно ее нужно заряжать только каждые несколько недель (или даже до пары месяцев, если она мало используется).Нет абсолютно никакого сравнения между литий-ионными элементами и NiMh-элементами, которые я использовал ранее.


Существует несколько способов безопасного использования более «традиционных» литий-ионных аккумуляторов. В проекте, над которым я работал некоторое время назад, использовался литий-ионный аккумулятор 3S (три последовательных элемента) с номинальным напряжением 11,1 В. Он был установлен в корпусе вместе с электроникой, поэтому извлекать его для зарядки было нецелесообразно. Вместе с аккумулятором было установлено небольшое балансировочное зарядное устройство, балансировочные клеммы которого подключены через реле.Это было необходимо, потому что в противном случае балансировочные цепи разрядили бы аккумулятор. Стоимость зарядного устройства была такой, что было бы неразумно пытаться построить его за те же деньги. Даже получить необходимые детали может быть непросто!

При добавлении реле и балансировочного зарядного устройства в систему необходимо было только подключить внешний источник питания (12 В) к стандартной розетке постоянного тока на задней панели, и это активировало бы реле и зарядило аккумулятор. Реле отключились, как только отключился внешний источник напряжения.Это сделало потенциально утомительную задачу (подключение зарядного устройства и балансировочного разъема) к тому, с чем «средний» пользователь мог бы легко справиться. Те, кто использует устройство, обычно (решительно) нетехнически, и ожидать, что они возятся с неудобными разъемами, было не вариант. Фотография используемого мною аранжировки показана ниже. Обычно используемый аккумулятор был рассчитан на 1500 мА / ч и мог поддерживать непрерывную работу системы регистрации данных в течение 24 часов. Зарядное устройство можно было подключить или вынуть во время работы системы.


Рисунок 6 — Система зарядки литий-ионных аккумуляторов 3S

Балансировочное зарядное устройство разработано специально для аккумуляторов 2S и 3S и стоит менее 10 долларов США у онлайн-поставщика различных аккумуляторов для хобби, зарядных устройств и т.д. питание отключено. Без использованной схемы отключения реле балансные цепи разрядили бы аккумулятор за пару дней. Схема, питаемая от показанной системы, имела встроенный детектор напряжения, который был разработан, чтобы выключить все, когда общее напряжение питания упало примерно до 8 вольт.Плавкий предохранитель (½A) был включен в линию с выходом постоянного тока в качестве окончательной системы защиты, чтобы избежать катастрофического отказа силовой схемы.

На фото вы видите плату балансировочного зарядного устройства, установленную над платой реле и разъема. Светодиоды были выдвинуты так, чтобы они выглядывали через заднюю панель, а входной разъем постоянного тока находится в крайнем левом углу. Сильноточные выводы от батареи в этом приложении не используются, потому что потребляемый ток намного ниже максимальной скорости разряда.Два реле видны справа, и только три балансных клеммы отключены, когда внешний источник постоянного тока отсутствует. Балансировочное зарядное устройство выглядит очень скудным, но у него есть несколько SMD-микросхем и других деталей на нижней стороне платы.


Рисунок 7 — Схема системы зарядки литий-ионных аккумуляторов 3S

На принципиальной схеме показано, как подключена система. Это легко сделать любому, кто думает об использовании подобного устройства, и небольшой кусок Veroboard легко соединяется с реле и диодами.Диод показан параллельно катушкам реле, и это необходимо для того, чтобы обратная ЭДС не повредила цепь зарядного устройства при отключении входа 12 В. D1 должен выдерживать полный входной ток зарядного устройства, который в данном примере составляет менее 1 А. Вся сложность в зарядном устройстве баланса — все остальное максимально просто. D1 предотвращает обратную передачу напряжения батареи от зарядного устройства, поэтому реле будут активированы только при наличии внешнего источника питания.Предохранитель следует выбирать в соответствии с нагрузкой. Эта схема подходит только для слаботочных нагрузок, поскольку в ней не используются сильноточные выводы батареи.

Это только одно из многих возможных приложений, и, как описано выше, иногда проще использовать стандартное зарядное устройство, чем собрать его с нуля. С другими приложениями у вас может не быть выбора, потому что «лучшие» зарядные устройства могут стать довольно дорогими и могут оказаться непригодными для повторного использования указанным способом. Для единичных или небольших производственных циклов использование того, что вы можете получить, обычно более рентабельно, но это меняется, если должно быть изготовлено большое количество единиц.


Выводы

Литиевые элементы и батареи — это современный «современный уровень техники» в технологиях хранения. За прошедшие годы усовершенствования сделали их намного безопаснее, чем ранние версии, и справедливо сказать, что разработка ИС является одним из основных достижений, поскольку существует ИС (или семейство ИС), предназначенное для мониторинга и контроля процесса зарядки и ограничения. напряжения, приложенные к каждой ячейке в батарее. Этот процесс снизил риск повреждения (и / или возгорания), вызванного перезарядкой, и продлил срок службы литиевых батарей.

На самом деле ни один состав батареи не может считаться на 100% безопасным. Ni-Mh и Ni-Cd (никель-металл-гидридные и никель-кадмиевые) элементы не будут гореть, но они могут вызвать сильный ток при коротком замыкании, что вполне способно вызвать возгорание изоляции на проводах, воспламенение печатных плат и т. Д. токсичен, поэтому утилизация регулируется. Свинцово-кислотные батареи могут (и взрываются) взорваться, заливая все вокруг серной кислотой. Они также способны создавать большой выходной ток и выделять взрывоопасную смесь водорода и кислорода при перезарядке.Когда вам нужна высокая плотность энергии, альтернативы литию нет, и при правильном обращении риск на самом деле очень низок. Хорошо сделанные элементы и батареи будут иметь все необходимые гарантии от катастрофического отказа.

Это не означает, что литиевые батареи всегда будут безопасными, что было доказано многочисленными сбоями и отзывами по всему миру. Однако следует учитывать огромное количество используемых литиевых элементов и батарей. Каждый современный мобильный телефон, ноутбук и планшет использует их, и они распространены во многих моделях товаров для хобби и большинстве новых фотоаппаратов — и это лишь небольшой образец.В модельных самолетах используются литиевые батареи, потому что они обладают такой хорошей плотностью энергии и малым весом, а многие из последних модных моделей (например, дронов / квадрокоптеров) были бы непригодны для использования без литиевых батарей. Попробуйте оторвать его от земли со свинцово-кислотным аккумулятором на борту!

Обычно рекомендуется избегать дешевых азиатских безымянных литиевых элементов и батарей. Хотя некоторые могут быть совершенно нормальными, у вас нет реального возмещения, если кто-то сожжет ваш дом дотла.Мало надежды на то, что жалоба на веб-сайт онлайн-аукциона приведет к финансовому урегулированию, хотя это в равной степени может относиться к товарам известных брендов, купленным в обычных магазинах. Поскольку в большинстве инструкций (часто непрочитанных и регулярно игнорируемых) говорится, что литиевые батареи нельзя заряжать без присмотра, это трудный аргумент. Однако, если учесть количество используемых литиевых батарей, отказы на самом деле случаются очень редко. К сожалению, когда происходит сбой и происходит , результаты могут быть плачевными.Вероятно, не помогает то, что СМИ поднимают большой шум каждый раз, когда выясняется, что литиевая батарея имеет потенциальную неисправность — очевидно, это достойно новостей.

Одно можно сказать наверняка — эти батареи должны быть заряжены должным образом, с соблюдением всех необходимых мер предосторожности против перенапряжения (полная балансировка элементов). Убедитесь, что батареи никогда не заряжаются, если температура равна или ниже 0 ° C, а также если она превышает 35-40 ° C. Литий становится нестабильным при 150 ° C, поэтому необходим тщательный контроль температуры элементов, если вы должны заряжать при высоких температурах, и в идеале он должен быть частью зарядного устройства.Избегайте использования литиевых элементов и батарей там, где их корпус может быть поврежден или они могут подвергаться воздействию высоких температур (например, прямого солнечного света), поскольку это повышает внутреннюю температуру и резко снижает надежность, безопасность и срок службы батареи.

Как должно быть очевидно, один литиевый элемент довольно легко зарядить. Вы можете использовать специальную ИС, но даже гораздо более простая комбинация регулятора 4,2 В и последовательного резистора подойдет для базового (медленного) зарядного устройства. Зарядные устройства с одной ячейкой (или несколькими параллельными ячейками) можно приобрести довольно дешево, а те, которые я использовал, работают хорошо и представляют очень небольшой риск.Даже в этом случае я никогда не выйду из дома, пока заряжается литиевая батарея или элемент. Я никогда не сталкивался с лично у были проблемы с литий-ионными батареями или элементами, и я использую довольно много из них для различных целей. Это помимо самых распространенных — телефонов, планшетов и ноутбуков. Литий-ионная химия оказалась гораздо более надежным вариантом по сравнению с Ni-Mh (металлогидридом никеля), где мне недавно пришлось утилизировать (как в переработчике, а не в цикле самих элементов) более половины из тех, что у меня были!

Когда вам нужно много энергии в небольшом, легком корпусе с возможностью перезарядки до 500-1000 раз, нет лучшего материала, чем литий.Если к ним относятся с уважением и не злоупотребляют, вы обычно можете рассчитывать на долгие и счастливые отношения со своими элементами и батареями. Они не идеальны, но они определенно превосходят большинство других химикатов с большим отрывом. О LiFePO 4 (широко известных как просто LFP, LiFePO или LiFe) можно много сказать, потому что они используют более стабильный химический состав и с меньшей вероятностью сделают что-нибудь «неприятное». Однако до тех пор, пока ими не злоупотребляют, литий-ионные элементы и батареи могут прожить безопасную, долгую и счастливую жизнь.

Для схемы отключения батареи, которая полностью отключает батарею, когда напряжение падает до заданного предела, см. Проект 184. Это было разработано специально для предотвращения чрезмерной чрезмерной разрядки, если оборудование с батарейным питанием случайно остается включенным после использования.


Список литературы
  1. Литий — Википедия
  2. Почему загораются литиевые батареи
  3. Зарядка литий-ионных батарей
  4. Расчет литиевых батарей (FedEx)
  5. UPS расширяет зоны обслуживания опасных грузов — вам необходимо выполнить поиск по сайту
  6. SII S8253 Лист данных (Seiko)
  7. Проблемы безопасности литий-ионных аккумуляторов


Основной индекс
Указатель статей
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2016. Воспроизведение или повторная публикация любыми способами, электронными, механическими или электромеханическими, строго запрещены. в соответствии с международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только в личных целях, а также разрешает сделать одну (1) копию для справки. Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Страница создана и авторские права © ноябрь 2016, опубликовано в феврале 2017 г. / Обновлено в сентябре 2018 г. — только небольшие изменения. / Октябрь 2018 г. — добавлен раздел 8.


Цепь зарядного устройства для литий-ионных аккумуляторов

Схема зарядного устройства для литий-ионных аккумуляторов

Эта простая в сборке схема зарядного устройства для литий-ионных аккумуляторов сделана на микросхеме IC MCP73831 / 2. Это миниатюрный одноэлементный полностью интегрированный контроллер управления зарядом литий-ионных и литий-полимерных аккумуляторов.Он доступен в крошечной упаковке, поэтому лучше всего подходит для компактных ручных и портативных приложений.


Эта микросхема MCP73831 / 2 обеспечивает постоянный ток и постоянное напряжение для зарядки аккумулятора, а также можно изменять диапазон напряжения и значение тока. Диапазон выходного напряжения можно фиксировать с помощью четырех доступных вариантов: 4,20 В, 4,35 В, 4,40 В или 4,50 В, а затем значение тока можно изменять с помощью внешнего резистора, подключенного к выводу PROG.

Принципиальная схема

Строительство и работа

Эта схема предназначена для зарядки литий-ионной аккумуляторной батареи с регулируемым выходным током, здесь четырехконтактный селекторный переключатель помогает нам изменять зарядный ток.Регулируемый источник питания 5 В постоянного тока подается на вывод VDD контроллера заряда. Конденсатор C1 выполняет работу фильтра, а светодиод 1 показывает состояние источника входного питания, резисторы различных номиналов (2 кОм, 3,3 Ом, 5 кОм и 10 кОм) подключаются к переключателю выбора четырех выводов, а затем общий вывод подключается к выводу PROG, путем выбора другого резистора мы может иметь различное значение зарядного тока (от 15 мА до 500 мА).

Светодиод 2 показывает состояние зарядки аккумулятора, а светодиод 3 светится, если аккумулятор заряжается полностью.Целевой литий-ионный аккумулятор подключен между контактом 3 и землей.

MCP73831 / 2 Распиновка

Примечание: —

  • Эта схема дает выходной ток, зависящий от резистора, подключенного к выводу PROG (5). Проверьте выходной ток и номинальный ток батареи, прежде чем применять к зарядке. .
  • Перед подключением к штырю зарядки (VBAT) проверьте полярность аккумулятора.
  • Это непроверенная схема. Измерьте все параметры при создании прототипа.

Основы проектирования схемы зарядки аккумуляторов

Зарядка аккумуляторов проста (теоретически) — подайте напряжение на клеммы, и аккумулятор зарядится. Если важны безопасная зарядка, быстрая зарядка и / или максимальное время автономной работы, тогда все усложняется. В этой статье будут рассмотрены различные аспекты зарядки никель-металл-гидридных (NiMH), никель-кадмиевых (NiCd), литий-ионных (Li-ion) и свинцово-кислотных (PbA) аккумуляторов.

Три наиболее распространенных аккумулятора в электронных устройствах: NiMH, NiCd и Li-ion.Для этих аккумуляторов показатель C является важным фактором при определении параметров зарядки. «C» обозначает емкость аккумулятора при разряде в течение одного часа. Например, аккумулятор емкостью 1000 мАч можно заряжать при температуре 0,33 ° C, в результате чего ток заряда составляет около 0,33 мА в течение трех часов для достижения полной зарядки. Емкость этих батарей определяется относительно минимально допустимого напряжения, называемого напряжением отключения. Именно это напряжение обычно определяет «разряженное» состояние батареи.В этот момент еще есть заряд, но его извлечение может привести к повреждению аккумулятора.

Для батарей PbA номинальная мощность в ампер-часах (Ач) обычно является важным фактором при определении методологии зарядки. Емкость аккумулятора рассчитывается исходя из полной разрядки; напряжение отсечки не учитывается и не обязательно является фактической полезной емкостью.

Зарядка аккумуляторов в электронных устройствах

Номинальное напряжение NiMH и NiCd аккумуляторов около 1.2 В на элемент, и их обычно следует заряжать до 1,5–1,6 В на элемент. Дельта-температура (dT / dt), температурный порог, обнаружение пикового напряжения, отрицательное дельта-напряжение и простые таймеры — это методы, используемые для определения того, когда следует прекратить зарядку NiMH и NiCd аккумуляторов. Для более ответственных применений одно или несколько устройств можно объединить в одном зарядном устройстве.

Обнаружение пикового напряжения используется в схеме зарядки аккумулятора стабилизатора постоянного тока (CCR), показанной ниже. Используя точку обнаружения пикового напряжения 1.5 В на элемент приведет к зарядке примерно до 97% полной емкости NiMH и NiCd аккумуляторов.

Блок-схема простой схемы зарядки аккумулятора стабилизатора постоянного тока. (Изображение: ON Semiconductor)

Общие рекомендации по зарядке литий-ионных аккумуляторов

С соответствующей осторожностью показанное выше зарядное устройство CCR можно использовать для зарядки литий-ионного аккумулятора. Литий-ионные аккумуляторы часто заряжаются до 4,2 В / элемент при 0,5 ° C или менее до емкости, близкой к 1 ° C, иногда с более медленной скоростью зарядки.Задача состоит в том, чтобы поддерживать температуру ниже 5 ° C. Более высокая температура во время зарядки может привести к катастрофическому событию, например к пожару. А температура литий-ионного аккумулятора обычно больше всего повышается на последних этапах зарядки. Этот контроллер CCR пытается устранить эту потенциальную проблему, не включая вторую ступень зарядки с более низкой скоростью. Исключение второй стадии зарядки помогает продлить срок службы батареи, а также помогает поддерживать ее безопасную работу. Однако отказ от второго этапа зарядки также означает, что аккумулятор будет заряжаться только до нуля.85C, или 85% от его максимальной емкости.

Если литий-ионный аккумулятор не заряжается очень медленно (обычно 0,15 ° C или даже меньше), прекращение заряда при достижении напряжения 4,2 В / элемент приведет к зарядке аккумулятора максимум до 0,7 ° C. Некоторые батареи могут нагреваться только до 0,4 ° C.

Зарядка литиевых батарей при напряжении менее 4,2 В на элемент возможна, но также не рекомендуется. В то время как батареи другого химического состава не заряжаются при низком напряжении, литиевые батареи заряжаются, но не достигают полной зарядки. Преимущество зарядки при более низком напряжении состоит в том, что срок службы значительно увеличивается, но при гораздо меньшей емкости.

Хотя простые схемы зарядки аккумуляторов с постоянным током могут обеспечить низкую стоимость и относительно медленную зарядку, для повышения производительности необходимы многоступенчатые технологии. Для литий-ионных аккумуляторов зарядка должна быть прекращена; непрерывная подзарядка недопустима. Избыточный заряд литий-ионных аккумуляторов может повредить элемент, что может привести к появлению металлического лития и стать опасным.

На приведенной ниже диаграмме показан более оптимальный подход к зарядке литиевых аккумуляторов. Если аккумулятор полностью или почти полностью разряжен, процесс начинается с непрерывной зарядки, за которой следует более медленная и более быстрая предварительная зарядка.После достижения заранее определенного уровня заряда, в зависимости от конкретной заряжаемой батареи, происходит быстрая зарядка на основе подхода постоянного тока до тех пор, пока не будет достигнуто критическое напряжение батареи, обычно около 4,2 В / элемент. После этого следует зарядка при постоянном напряжении для завершения процесса. В этот момент зарядка прекращается, и на аккумулятор не подается напряжение.

Кривые зарядки литий-ионного аккумулятора

. (Изображение: Monolithic Power Systems)

Существует множество альтернативных топологий для зарядки литий-ионных аккумуляторов.Двумя общими из них являются узкое напряжение постоянного тока и гибридная ускоренная зарядка, оптимизированная для конкретных случаев использования.

Узкое напряжение постоянного тока

Узкое напряжение постоянного тока (NVDC) изначально было инициативой Intel ™, разработанной для повышения эффективности системы за счет снижения диапазона напряжения системной нагрузки в ноутбуках и планшетных компьютерах. Это достигается заменой обычного зарядного устройства на системное зарядное устройство с понижающим преобразователем. Это позволяет оптимизировать преобразователь постоянного тока в постоянный (понижающий) и убрать переключатель тракта питания, сэкономив рассеиваемую мощность, площадь платы и стоимость.

На рисунке ниже показан пример реализации NVDC. Система подключается к адаптеру через понижающий преобразователь. NVDC работает как понижающий преобразователь, когда аккумулятор заряжается и когда аккумулятор дополняет адаптер для обеспечения питания системы.

Зарядное устройство

NVDC для таких приложений, как ультра-книги или планшеты. (Изображение: ON Semiconductor)

Из-за меньшего колебания напряжения NVDC имеет более высокий общий КПД, чем зарядное устройство Hybrid Power Boost (HPB) (обсуждается в следующем разделе), и обычно обеспечивает лучшую переходную характеристику линии.Два недостатка NVDC включают:

  • Более низкое напряжение в системе приводит к более высоким токам на шине, что увеличивает потери проводимости в дорожках печатной платы и сводит на нет часть экономии энергии, достигаемой при использовании устройств с более низким номинальным напряжением.
  • Поскольку используются полевые транзисторы и катушки индуктивности с более высоким номинальным током, размер, стоимость и рассеиваемая мощность зарядного устройства могут быть выше.

Гибридная ускоренная зарядка

Как NVDC, так и HPB позволяют адаптеру и батарее работать вместе, обеспечивая нагрузку на систему, когда она превышает номинальные параметры адаптера.HPB в обратном направлении подает энергию батареи к системной шине. В то же время конфигурация NVDC быстро включает QBAT (на рисунке выше), чтобы батарея могла помочь адаптеру и обеспечить питание системы.

В конфигурации HPB понижающий преобразователь работает нормально, в то время как адаптер обеспечивает питание системы и заряжает аккумулятор. Когда мощности адаптера недостаточно, понижающий преобразователь работает в обратном направлении, позволяя батарее дополнять адаптер. HPB можно реализовать с помощью обычного адаптера.

Гибридное зарядное устройство для аккумуляторов. Упрощенная схема. (Изображение: Renesas)

Внедрение HPB требует изменения контроллера зарядного устройства. По сравнению с обычным зарядным устройством HPB позволяет аккумулятору обеспечивать дополнительную мощность при необходимости. Недостатком является то, что эффективность системы зарядки при небольшой нагрузке ниже.

Например, в планшетах и ​​портативных компьютерах HPB используется для обеспечения максимальной производительности ЦП и ГП одновременно во время игр.В этом случае и адаптер переменного тока, и аккумулятор могут одновременно подавать питание на систему. Когда заряд аккумулятора превышает 40%, HPB автоматически запускается в зависимости от требований программы. Когда HPB работает, аккумулятор разряжается. Когда заряд аккумулятора падает ниже 30%, работа HPB приостанавливается, и аккумулятор начинает заряжаться.

Трехступенчатая зарядка свинцово-кислотных

Свинцово-кислотные батареи

также требуют нескольких этапов зарядки для оптимальной работы.Однако по сравнению с рассмотренными выше литиевыми батареями это намного более простой процесс. Хотя зарядные устройства для аккумуляторов PbA имеют от двух до пяти уровней зарядки, трехступенчатые зарядные устройства (также называемые трехфазными или трехступенчатыми) являются наиболее распространенными. Три этапа: объем, абсорбция и тонкая струйка.

Обозначение DIN 41773 для трехфазной зарядки PbA — «IUoU». IUoU означает: «I» (постоянный ток, объемная зарядка), «Uo» (постоянное напряжение, абсорбционная зарядка) и «U» (также постоянное напряжение, непрерывная зарядка).Независимо от маркировки трех фаз, цель состоит в том, чтобы полностью зарядить аккумулятор за относительно короткое время, сохранить длительный срок службы аккумулятора и поддерживать аккумулятор полностью заряженным до тех пор, пока он подключен к зарядному устройству.

Во время стадии накопления аккумулятор достигает примерно 80% полного заряда, если предполагается, что постоянный ток составляет примерно 25% от номинального значения ампер-часов (Ач) аккумулятора. Эта цифра в 25% может варьироваться от производителя к производителю, требуя, чтобы объем заряда составлял всего 10% от номинала Ач.Практически в каждом случае зарядка быстрее, чем 25% от номинального значения Ач на этапе накопления, сократит срок службы батареи. Интеллектуальное зарядное устройство можно использовать для максимально быстрой зарядки аккумулятора при сохранении температуры ниже 100 ° F . Хотя это может быть эффективным, оно также может сократить срок службы некоторых батарей, поэтому следует соблюдать рекомендации производителя.

Трехступенчатая схема зарядки герметичных свинцово-кислотных аккумуляторов. (Изображение: Vorp Energy)

Во время стадии поглощения (иногда называемой «стадией выравнивания») оставшиеся 20% заряда завершаются.На этом этапе контроллер перейдет в режим постоянного напряжения, поддерживая заданное напряжение зарядки, обычно между 14,1 и 14,8 В постоянного тока, в зависимости от конкретного типа заряжаемой свинцово-кислотной батареи, при этом соответственно уменьшая ток зарядки. Если аккумулятор был поврежден (например, из-за образования перманентного сульфата) и ток не падает должным образом, зарядное устройство должно выключиться или немедленно переключиться на плавающую ступень.

Зарядное устройство снижает зарядное напряжение до 13.0 В постоянного тока и 13,8 В постоянного тока, опять же, в зависимости от конкретного типа свинцово-кислотной батареи, заряжаемой во время фазы поплавка. Зарядный ток снижен до более чем 1% от номинальной емкости аккумулятора. Свинцово-кислотные аккумуляторы можно держать в плавучем состоянии неограниченное время. Фактически, поддержание батареи в плавающем состоянии увеличивает срок ее службы, поскольку исключает возможность саморазряда, разряда батареи до неприемлемо низкого уровня и причинения необратимого ущерба.

Сводка

Зарядка аккумулятора в теории проста, но практическая реализация, обеспечивающая максимальную производительность и срок службы аккумулятора, намного сложнее и часто требует многоступенчатой ​​зарядки.Хотя конструкции регуляторов постоянного тока могут эффективно заряжать NiMH и NiCd аккумуляторы, они менее чем эффективны для зарядки аккумуляторов Li и PbA. Для аккумуляторов Li и PbA необходимы различные комбинации многоступенчатой ​​зарядки постоянным током и зарядки постоянным напряжением, чтобы обеспечить максимальную производительность, продлить срок службы аккумуляторов и обеспечить безопасную работу.

Список литературы

3-ступенчатые контроллеры заряда для зарядки солнечной батареи, зарядное устройство Vorp Energy
, Википедия Цепь зарядки регулятора постоянного тока
, ON Semiconductor Зарядное устройство для гибридной мощности
(HPB) с интерфейсом SMBus, Renesas
Как выбрать заряд литий-ионного аккумулятора ИС управления монолитными энергосистемами

(PDF) КОНСТРУКЦИЯ ВЫСОКОЭНЕРГЕТИЧЕСКОГО ЗАРЯДНОГО УСТРОЙСТВА ДЛЯ ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ

требует специальной схемы для балансировки всех ячеек [3].На самом деле

каждая литий-ионная батарея имеет разное внутреннее сопротивление

, что приводит к разбалансировке ячеек во время зарядки

. Несколько факторов, которые также могут привести к несбалансированности ячеек

, таких как вариации в сборке элементов,

разные уровни приема заряда, разные скорости зарядки

и количество доступных разрядов, градиент температуры

в аккумуляторном блоке и распределение мощности

в система [4].

Несимметрия вызывает неравные индивидуальные напряжения, когда батарея, подключенная к серии

, заряжается, поскольку одна или несколько ячеек

достигают максимального уровня раньше остальных. Для того, чтобы

сбалансировать элементы батареи, существует несколько способов балансировки элементов

,

с разнообразием в алгоритме управления зарядкой

,

, которые могут быть применены.

Фактически, элементы с несимметричным напряжением могут снизить полную емкость аккумуляторной батареи

до 25% (типично) емкости аккумулятора

с разницей в 150 мВ между элементами при полном заряде

.Это приводит к уменьшению доступной емкости батареи

,

, поскольку самая слабая ячейка в цепочке

,

определяет ее эффективную емкость. Следовательно, напряжение

аккумуляторных элементов поддерживается равным или в пределах допустимой разницы

во время зарядки. Элементы батареи

,

считаются сбалансированными, если диапазон емкости каждого элемента

находится в пределах 3% [2].

Существует несколько методов балансировки ячеек литий-ионного аккумулятора

.Это шунтирующий заряд, шунтирующий заряд

, диссипативный резистор, а также преобразователь энергии.

В этой конструкции шунтирование заряда выбрано как метод

балансировки. Шунтирование заряда — это метод уравновешивания конечного заряда элемента

. Метод

балансировки ячеек с шунтированием заряда выборочно шунтирует зарядный ток вокруг

каждой ячейки, когда они становятся полностью заряженными. На рисунке 2 показан метод балансировки ячеек с шунтирующим зарядом

[3].В этом методе

зарядный ток шунтируется через несимметричный элемент

, так что он заряжается с более низкой скоростью. Этот метод

очень эффективен, но требует большой мощности рассеивающего резистора

, а также сильноточных переключателей, таких как

, по сравнению с другими методами.

2.3 Алгоритм управления зарядкой

Алгоритм управления зарядкой — это набор правил, которым

следуют микроконтроллеру при зарядке литий-ионной батареи.

,

— это несколько алгоритмов управления зарядкой, которые можно использовать

, и это зависит от выбранного метода балансировки ячеек

. Рекомендуемый алгоритм балансировки ячеек для метода шунтирования заряда

следующий [4]: ​​

1) Определите несбалансированные ячейки.

2) Включите балансировку ячеек во время зарядки.

3) Периодически прекращайте зарядку и измеряйте элементы

4) Если элементы сбалансированы, отключите действие балансировки

и продолжайте заряжать до полной емкости уровня

.

5) Если ячейки не сбалансированы, продолжайте заряд с активным действием балансировки

в течение другого периода.

6) Измеряйте ячейку каждый период. Продолжайте балансировать

, если ячейки не совпадают; прекратить балансировку, если совпадают ячейки

.

7) Если элементы не сбалансированы после полной зарядки,

продолжить балансировку во время разрядки.

8) Элементы становятся несбалансированными чаще, когда время зарядки

слишком велико.

9) Уравновешивающее действие улучшается, когда ячейки

заряжаются медленнее.

10) Избегайте как можно большего количества быстрых зарядов и

сопоставьте действие балансировки с периодом заряда

, позволяя при этом время балансировки иметь место.

Полностью заряженный аккумулятор с правильной балансировкой ячеек алгоритм

должен иметь более 90% полной емкости

.

2.4 Защита аккумулятора

Схема защиты очень важна для зарядного устройства

, особенно для зарядного устройства литий-ионных или других литиевых аккумуляторов

.Он обеспечивает эффективное сохранение характеристик батареи

и защищает батарею от повышенного тока

, перенапряжения, пониженного напряжения, а также превышения температуры

. Короткое замыкание, например, может повредить батарею

и, следовательно, требует, чтобы цепь измерения тока

контролировала зарядный ток. При обнаружении перегрузки по току

зарядку необходимо немедленно остановить,

, иначе это приведет к повреждению как батареи, так и самого зарядного устройства

.

Как обсуждалось ранее, следует избегать перенапряжения, поэтому

B

1

S

1

B

2

B

3

B

n

S

2

S

3

S

n

Переключение

Управление

I

R

1

R

2

R

3

R

n

Рис.2. Шунтирующий / рассеивающий заряд

Литий-ионный (Li-Ion) Зарядное устройство

Мы можем заряжать Ni-Cd или Ni-MH, просто установив последовательный резистор, чтобы ограничить ток от источника питания, чтобы обеспечить эффективную нагрузку. Но не так с литий-ионным элементом (Li-Ion), который имеет большую емкость, чем когда-либо, и не требует полной разрядки для их зарядки, но требует строго контролируемой зарядки.

Если говорить о литий-ионном элементе, заряжается третий раз от пачки Ni-MH или одной шестой того же кадмия.Но для этого требуется относительно высокий ток питания элемента во время процесса зарядки и он должен быть обеспечен в импульсном управлении рельсов.

При этом типе зарядки аккумулятора неконтролируемое подтекание (например, обычное в системах охранной сигнализации) или резистор нагрузки, включенный последовательно с проводом питания без исключения, он сам разрушится

Но есть ряд активных компонентов, полупроводников, способных нести нагрузку, управлять и обслуживать эти элементы практически без дополнительных внешних компонентов.

На схеме мы видим типичную схему зарядного устройства для литий-ионных аккумуляторов, где выясняется, что легче добиться производительности, аналогичной дискретной электронике. Эта микросхема отвечает за измерение состояния батареи (через ее клемму FeedBack) и отправляет ее через клемму выхода управляющего напряжения (Out). Конденсатор позволяет паразитировать на ВЧ-фильтре и потенциометре 50 для настройки системы в соответствии с рабочим напряжением ячейки.

Эта схема зарядного устройства для литий-ионных аккумуляторов может питаться постоянным напряжением от 6 до 10 В с током, равным 1.В 5 раз больше емкости заряжаемых ячеек.

После включения питания или включения аккумулятора в цепь проверьте состояние зарядки аккумулятора и, при необходимости, нагрузки. После того, как цепь перейдет в режим ожидания, периодически проверяйте состояние ячеек, чтобы определить, следует ли продолжать зарядку.

Схема зарядного устройства для литий-ионных аккумуляторов предназначена для аккумуляторов с литий-ионными элементами. Важно отметить, что эта батарея не может заряжаться ни последовательно, ни параллельно, поэтому система должна быть собрана для каждой ячейки, которую вы хотите заряжать одновременно.

Теги: Литий-ионный аккумулятор Зарядное устройство для литий-ионных аккумуляторов Зарядное устройство для литий-ионных аккумуляторов Схема зарядного устройства для литий-ионных аккумуляторов

Разборка универсального зарядного устройства для литий-ионных аккумуляторов

Результаты разборки продукта могут быть использованы любителями / производителями, чтобы узнать, какие компоненты используются в электронном продукте. Такие знания могут помочь понять, как работает система, включая новаторские конструктивные особенности, и могут облегчить процесс обратного проектирования схемы.Эта статья, содержащая подробные сведения о разборке универсального зарядного устройства для литий-ионных аккумуляторов, представляет собой скромную попытку в этом направлении и результат ряда экспериментов, проводимых время от времени.

Литий-ионный аккумулятор и зарядное устройство для литий-ионного аккумулятора

Литий-ионные (Li-ion) батареи

стали популярными для портативной электроники, такой как смартфоны, потому что они обладают самой высокой плотностью энергии среди всех коммерческих аккумуляторных технологий. Поскольку литий является высокореактивным материалом (неправильная зарядка современного литий-ионного элемента может привести к необратимому повреждению или, что еще хуже, к нестабильности и потенциальной опасности), литий-ионные аккумуляторы необходимо заряжать в тщательно контролируемом режиме постоянного тока / постоянного напряжения. уникален для этой клеточной химии.

Универсальное зарядное устройство для литий-ионных аккумуляторов

Зарядное устройство, представленное здесь, представляет собой китайский продукт за 1 доллар, доступный под разными торговыми марками. С помощью регулируемого набора контактов это зарядное устройство способно заряжать почти все распространенные литий-ионные аккумуляторные батареи. Ниже приводится объяснение того, как включить зарядное устройство, вставить аккумулятор в зарядное устройство и зарядить его.

  • Включите зарядное устройство в розетку переменного тока (AC180 — 240V)
  • Поместите аккумулятор в основание (3.Литий-ионный 7 В)
  • Переместите контакты зарядного устройства, чтобы совместить их с клеммами « + » и «» аккумулятора. Зарядное устройство автоматически определит полярность « + » и «».
  • Теперь горит индикатор « power », а индикатор « зарядка » будет мигать во время зарядки
  • Индикатор « Full Charge » загорается, когда аккумулятор полностью заряжен

Важной особенностью этого зарядного устройства является встроенный механизм определения обратной полярности.Когда мы вставляем аккумулятор, система автоматически регулирует его выходную полярность в соответствии с текущей ситуацией, чтобы обеспечить безопасный и здоровый процесс зарядки. Кроме того, интеллектуальный адаптивный алгоритм зарядки предлагает полезные функции, такие как обнаружение окончания заряда, пополнение заряда, защита от перезарядки, обнаружение разряженной батареи, восстановление почти разряженной батареи и т. Д.

Разборка отражений

  • Внутренняя электроника : Электроника зарядного устройства состоит из двух одинаково важных частей; «странный» блок питания smps и «загадочное» зарядное устройство.Основным компонентом схемы smps является транзистор 13001 TO-92, а зарядное устройство построено на базе 8-контактного DIP-чипа HT3582DA от HotChip (http://www.hotchip.com.cn). Согласно техническому описанию, HT3582DA — это универсальная микросхема управления зарядным устройством с автоматической идентификацией полярности батареи, защитой от короткого замыкания и защитой от перегрева (максимальный ток 300 мА).

Вот его внутри:

Зарядное устройство для литий-ионных аккумуляторов внутри

Я также заметил, что сама печатная плата очень универсальна — главное, что отличает одно зарядное устройство от многих других, представленных на рынке, — это изменение схемы SMPS (подробнее об этом позже — см. Лабораторную записку).

  • Принципиальная схема : Сейчас хорошее время, чтобы перейти к схеме грязно выглядящей печатной платы (отслеживаемой и проверенной мной).

Схема

  • Лабораторное примечание : Как указывалось ранее, главное, что отличает одно зарядное устройство от многих других, представленных на рынке, — это изменение схемы SMPS. В качестве примера было замечено, что значение R1 изменилось до 1,5M или 2,2M, а R2 — до 56R или 47R в некоторых других зарядных устройствах.Аналогичным образом был заменен C2 на тип 10 мкФ / 25 В.

К сожалению, больше ничего не известно о трансформаторе smps (X1) и микросхеме контроллера зарядного устройства (IC1), кроме китайского технического описания, заполненного некоторыми необработанными данными. Следующее чудо — отсутствие традиционного высоковольтного фильтра постоянного тока / буферного конденсатора (обычно один тип 4,7 мкФ — 10 мкФ / 400 В) на входе в SMPS. Однако очевидно, что высоковольтный входной диод 1N4007 (D1) преобразует входной переменный ток в пульсирующий постоянный ток. Силовой транзистор 13003 (T1) переключает питание на трансформатор smps (X1) с переменной частотой (вероятно, выше 50 кГц).

Трансформатор smps имеет две первичные обмотки (основная обмотка и обмотка обратной связи) и вторичная обмотка. Простая схема обратной связи регулирует выходное напряжение; колебания обратной связи от обмотки обратной связи и обратная связь по напряжению от связанных компонентов объединены в силовом транзисторе 13001. Затем транзистор управляет трансформатором smps. На вторичной (выходной) стороне диод 1N4148 (D3) выпрямляет выход трансформатора smps в постоянный ток, который фильтруется конденсатором 220 мкФ (C3) перед подачей желаемого выходного напряжения (около 5 В) на остальную часть схемы.

На протяжении всего эксперимента по разборке на контактах зарядного устройства (без аккумулятора) было обнаружено 4,1 В постоянного тока, и там также наблюдалось наличие импульсной активности (с аккумулятором).

И, наконец, предполагается, что выходной сигнал ШИМ (с определенной частотой), генерируемый микросхемой контроллера заряда аккумулятора HT3582DA, заряжает аккумулятор. Встроенные АЦП и ШИМ (без внешних компонентов) позволяют реализовать эффективное зарядное устройство для литий-ионных аккумуляторов!

LM317 Зарядное устройство для литий-ионных аккумуляторов · Один транзистор

Создайте это простое, но универсальное зарядное устройство для литий-ионных элементов с LM317 или LM338 и TL431

Несмотря на то, что у меня есть несколько модулей TP4056 для зарядки литий-ионных элементов, эти маленькие печатные платы выделяют много тепла, и зарядный ток уменьшается с увеличением температуры.Поскольку у меня есть параллельные пары ячеек от аккумуляторов для ноутбуков, я бы хотел зарядить их более сильным током. Еще одно ограничение этих модулей заключается в том, что максимальный ток заряда не может быть изменен, если я не заменю небольшой резистор SMD. Поэтому я сделаю свое собственное зарядное устройство для литий-ионных аккумуляторов с LM317 (LM338). Использование линейного регулятора не решает проблему тепловыделения, но, по крайней мере, я могу поставить его на радиатор.

Литий-ионные элементы

необходимо заряжать в два этапа. Во-первых, пока они не достигнут порогового напряжения, зарядное устройство работает как источник постоянного тока.Этот ток зависит от ячейки, но обычно подаваемая энергия (в Ач) должна быть менее 80 процентов емкости батареи (Ач). Когда напряжение достаточно возрастет, зарядное устройство должно переключиться в режим постоянного напряжения, поддерживая стабильное значение 4,2 В (или 4,1 В для некоторых ячеек) до тех пор, пока ток не упадет.

Моя схема не пытается заменить модуль TP4056. Они хорошо подходят для зарядки литий-ионных аккумуляторов от USB-портов 5 В. Их небольшой размер также является важной причиной их использования. Следующая схема имеет большие размеры и не подходит для портативных устройств.Это больше похоже на верстаковое зарядное устройство. Есть две предустановки для зарядного тока (фактические токи будут зависеть от номинала некоторых резисторов). Его также можно использовать для зарядки двух последовательных ячеек (в зависимости от номинала двух других резисторов). LM317 можно заменить на LM338, если вам нужен зарядный ток до 5 А. Будьте осторожны при замене других частей, которые должны будут пропускать более высокий ток (мы увидим позже).

Схема зарядного устройства Li-Ion LM317 / LM338

R2 и D4 составляют простой индикатор тока.Диод 1N5404 имеет прямое падение напряжения, которое увеличивается с увеличением тока. Это падение используется для включения транзистора Q1, который управляет светодиодом и охлаждающим вентилятором регулятора. При низких токах R2 создает путь для тока, который определяет еще более низкое падение напряжения, гарантируя, что транзистор больше не смещен. Точная точка, в которой это происходит, зависит как от диода, так и от параллельного резистора. Это всего лишь элементарный индикатор тока, который может потребовать некоторых экспериментов с различными частями, чтобы заставить его работать должным образом.Замена диода допускается только на диоды выпрямительного типа другого типа. Не используйте диоды Шоттки. Сопротивление резистора R2 можно уменьшить до 3,9 Ом. При таком слабом смещении транзистор не может управлять нагрузками с большим током. Я тестировал небольшой 40-миллиметровый вентилятор с потребляемым током всего 80 мА.

Остальная часть схемы представляет собой ограниченный по току источник питания LM317, настроенный на выходное напряжение 4,1–4,2 В. U2 (TL431) используется как опорное напряжение для настройки выхода. С помощью R5, R6, R8 и SW1 зарядный ток можно установить следующим образом.Максимально доступный выходной ток составляет 1,5 А для LM317 и 5 А для LM338. Используя эквивалентное сопротивление между выходом регулятора и нагрузкой, вы можете ограничить этот ток: I = 1,25 / R . Схема использует SW1 для переключения между двумя токами зарядки. Важно знать, что R6 и R8 никогда не должны быть одновременно в этой цепи. С помощью R5 и R8 переключатель может выбирать между R5 + R8 и R5. В этом случае I 1 = 1,25 / (R5 + R8) (режим малого тока), а I 2 = 1.25 / R5 (сильноточный режим). SW1 в этой ситуации может быть однополюсным двухконтактным переключателем, предназначенным для замыкания R8.

У вас могут быть резисторы R5 и R6. В этом случае I 1 = 1,25 / R5 , а I 2 = 1,25 / R6 . Значения резистора на схеме были выбраны для высокого тока 1,25 А и низкого тока 0,57 А. Используйте любые значения, которые вам нужны, помня, что рассеиваемая мощность составляет P = I 2 R . Выбирайте резисторы с подходящей мощностью (обычно в два раза больше, чем нужно).

R9, R10 и RV1 устанавливают напряжение. Это максимальное напряжение, которого может достичь аккумулятор при полной зарядке. Для литий-ионных элементов это 4,1 В или 4,2 В (см. Технические характеристики элемента). Значения из схемы подходят для одной ячейки или пакета параллельных ячеек. На холостом ходу отрегулируйте RV1 до тех пор, пока выходное напряжение не станет 4,1 или 4,2 В. Если вы заряжаете две последовательные ячейки, R9 должен быть 22 кОм, а выходное напряжение без нагрузки должно быть 8,2 или 8,4 В. Не забудьте использовать балансировочную схему для ячеек. Даже три последовательных элемента могут быть заряжены с помощью R9 = 39 кОм и правильно рассчитанных конденсаторов / последовательных резисторов светодиодов / вентилятора.

Печатная плата зарядного устройства Li-Ion

Для LM338 более высокие токи заряда могут быть установлены с теми же резисторами. Важно заменить D4 и F1 деталями, которые могут выдерживать ток. Дорожки на печатной плате не совсем подходят для больших токов. Красные дорожки на приведенном выше рисунке следует залудить, чтобы увеличить их поперечное сечение и ток. Используйте свой паяльник, чтобы нанести припой на эти дорожки.

Печатная плата размером 7,2 на 7 см, односторонняя. Сверху необходимо добавить проволочную перемычку (см. Шелкографию).Минимальное входное напряжение для этой схемы следующее. Держите его как можно ближе к этим значениям, чтобы уменьшить тепловыделение, но не меньше. Убедитесь, что SMPS / трансформатор может подавать достаточный ток.

AC / DC 1 ячейка / параллельная упаковка 2-х серийные ячейки Ячейки 3 серии
Переменный ток на J1 7,4 В переменного тока 10,3 В переменного тока 13,3 В переменного тока
Постоянный ток при J2 8.4 В постоянного тока 12,6 В постоянного тока 16,8 В постоянного тока

Нижняя сторона печатной платы с отверстиями для потока воздуха

Во время использования D4, U1, R5, R6 и R8 нагреваются. Это нормально. При зарядке большими токами и LM338 вы можете отключить индикатор зарядки, заменив D4 проволочной перемычкой. Таким образом вы удалите нагретую часть. Если вы оставите ячейку подключенной к зарядному устройству без питания, светодиод PWR останется включенным, чтобы напоминать вам о необходимости отключить ячейку.

Предупреждение! Не размещайте литий-ионные элементы слишком близко к этой цепи, потому что она нагревается во время использования. Избегайте нагрева литий-ионных аккумуляторов. Рекомендуется положить зарядное устройство и аккумуляторы в безопасное место и следить за ними во время зарядки. Неправильно построенное зарядное устройство и / или поврежденные элементы могут привести к возгоранию элементов.

Загрузки

Список литературы

  1. z-матрица . Схема простейшего самодельного литий-полимерного зарядного устройства (2006 г.) на форуме RC Groups.
  2. Простое зарядное устройство для литий-ионных / липоаккумуляторов для самостоятельной сборки электроники (схема из [1]).
  3. Цепь зарядки литий-ионного аккумулятора 3,6 В LM317 на 320 В.
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *