Схема разрядки для никель кадмиевых аккумуляторов своими руками: Зарядное устройство для NiMH аккумулятора

Содержание

Зарядное устройство для NiMH аккумулятора


Недавно получил комплект никель-металлогидридных аккумуляторных (NiMH) батарей для шуруповерта «Bosch» 14.4V, 2.6Ah. Аккумуляторы фактически имели малую емкость, хотя эксплуатировались под нагрузкой лишь незначительное время и имели малое число циклов разряд(работа) — заряд. По этой причине решил разобрать батареи, выполнить их поэлементные замеры для определения характеристик и возможного восстановления, использования «выживших» элементов в других самоделках требующих отдачи большого тока в короткое время. Эта работа поэтапно описана в заметке «Автоматическое устройство для разряда аккумулятора».

После разборки батареи


был выполнен подготовительный разряд элементов на указанном устройстве, с контролем по минимальному остаточному напряжению 0,9…1,0 вольт, для исключения глубокого разряда. Далее потребовалось простое и надежное зарядное устройство для их полной зарядки.

Требования к зарядному устройству

Производители NiMH аккумуляторов рекомендуют выполнять заряд с величиной тока в интервале 0,75-1,0С. При этих режимах, КПД процесса зарядки, большую часть цикла, максимально высокий. Но к моменту окончания процесса зарядки, КПД резко снижается и энергия переходит в выделение тепла. Внутри элемента резко растёт температура и давление. Аккумуляторы имеют аварийный клапан, который может открыться при увеличении давления. При этом свойства аккумулятора будут безвозвратно потеряны. Да и сама высокая температура оказывает негативное влияние на структуру электродов батарейки.

По этой причине, для никель-металлогидридных аккумуляторов очень важным является контроль режимов и состояния батареи при зарядке, момента окончания процесса зарядки, для исключения перезаряда или разрушения аккумулятора.

Как указывалось, в конце процесса заряда NiMH аккумуляторной батареи её температура начинает расти. Это является основным параметром для отключения заряда. Обычно в качестве критерия прекращения заряда берётся рост температуры более чем на 1 градус за минуту. Но при небольших токах заряда (менее 0,5С), когда температура растёт достаточно медленно, это обнаружить сложно. Для этого может быть использовано абсолютное значение температуры. Таким значением принимают 45-50°C. В этом случае заряд должен быть прерван, и возобновлён (при необходимости) после остывания элемента.

Также необходимо установить ограничение по времени заряда. Его можно рассчитать по емкости батареи, величине тока зарядки и КПД процесса, плюс 5-10 процентов. В этом случае, при нормальной температуре процесса, зарядное устройство отключают по установленному времени.

При глубоком разряде NiMH аккумулятора (менее 0,8В) ток заряда, предварительно, устанавливается на уровне 0,1…0,3С. По времени этот этап ограничен и составляет около 30 минут. Если за это время аккумулятор не восстанавливает напряжения 0,9…1,0В, то элемент беспереспективен. В положительном случае, далее выполняют заряд с увеличенной величиной тока в интервале 0,5-1,0С.

И еще, о сверхбыстром заряде аккумуляторных батарей. Известно, что при заряде до 70% своей ёмкости никель-металлогидридный аккумулятор имеет КПД зарядки близкий к 100 процентам. Поэтому, на этом этапе возможно увеличить ток для ускоренного его прохождения. Токи в таких случая ограничивают значением 10С. Высокий ток легко может привести к перегреву аккумулятора и разрушению структуры его электродов. Поэтому использование сверхбыстрого заряда рекомендуется только при постоянном контроле процесса зарядки.

Процесс изготовления зарядного устройства для NiMH аккумулятора рассмотрен ниже.

1. Установление исходных данных.
— Зарядка элемента постоянной величиной тока 0,5…1,0С до номинальной емкости.

— Выходной ток (регулируемый) – 20…400 (800) ma.
— Стабилизация выходного тока.
— Выходное напряжение 1,3…1,8 В.
— Входное напряжение — 9…12 В.
— Входной ток — 400 (1000) ma.

2. В качестве источника питания для ЗУ выбираем мобильный адаптер 220/9 вольт, 400 ma. Возможна замена на более мощный (например, 220/1,6…12В, 1000 ma). Изменений в конструкции ЗУ при этом не потребуется.

3. Рассмотрим схему зарядного устройства


Вариант конструкции зарядного устройства аккумулятора представляет собой узел стабилизации и ограничения тока и выполнен на одном элементе операционного усилителя (ОУ) и мощном составном n-p-n транзисторе КТ829А. ЗУ дает возможность регулировки тока заряда. Стабилизации установленного тока происходит за счет повышения или понижения выходного напряжения.

В точке соединения резистора R1 и стабилитрона VD1 образуется стабильное опорное напряжение. Изменяя величину напряжения, снятого с потенциометра R2 резисторного делителя, на неинвертирующем входе операционного усилителя (вывод 3), изменяем величину выходного напряжения (вывод 6), а следовательно и ток через VТ1. Резистором R5 ограничиваем ток в цепи заряжаемого аккумулятора. Изменение падения напряжения на R5 при отклонении зарядного тока, через обратную связь (ООС) на инвертирующий вход ОУ (вывод 2), корректирует и стабилизирует выходной ток ЗУ. Установленный R2 ток будет стабилен до конца зарядки этого и последующих однотипных аккумуляторов.

Данная схема стабилизатора тока весьма универсальна и может применяться для ограничения тока в различных конструкциях. Схема легка в повторении, состоит из простых и доступных радиокомпонентов и при верном монтаже сразу начинают работать.

Особенностью данной схемы является возможность применить имеющиеся в наличии операционные усилители с напряжением питания на уровне 12В, например, К140УД6, К140УД608, К140УД12, К140УД1208, LM358, LM324, TL071/081. Транзистор КТ829А — основной силовой элемент и весь ток проходит по нему, поэтому обязательно устанавливается на теплоотвод. Выбор транзистора определяется необходимым зарядным током установленным для зарядки аккумулятора.

4. Выбираем корпус для зарядного устройства. Он определит форму, конструкцию, условия теплоотвода и внешний вид ЗУ. В данном случае выбран алюминиевый аэрозольный баллон. Удаляем его верхнюю часть.

5. Отрезаем от универсальной монтажной платы часть, равную по ширине внутреннему диаметру баллона. Желательно плотное, без качки, вхождение платы в баллон.

6. Комплектуем ЗУ деталями согласно схемы. Аэрозольный колпачок по размеру хорошо подходит в качестве ручки потенциометра.

7. Закрепляем транзистор на радиаторе и устанавливаем радиатор на краю платы, согласно фото.

8. Припаиваем выводы транзистора к контактным площадкам платы.

9. Распаиваем сопротивление, ограничивающее максимально возможный ток заряда аккумулятора. Так как весь ток заряда проходит через резистор R5, то для лучшего охлаждения резистора, он набран из широко распространенных (МЛТ-1) четырех паралельно соединенных резисторов по 22 ома, мощностью по 1 вт. Дополнительно, последовательно установлен резистор на 1,8 ома мощностью 5 вт. Общее сопротивление R5 составило около 7 ом ( средней мощностью 4 вт). Сопротивление и комплектация резисторов зависят от планируемого тока зарядки и наличия деталей у изготовителя.

10. Соберем управляющую часть ЗУ на макетной монтажной плате. Присоединим изготовленную силовую часть ЗУ и подключим нагрузку – заряжаемый аккумулятор. Для проверки работы и отладки режимов, подключим ЗУ к регулируемому блоку питания. Проверяем диапазон регулировки зарядного тока, при необходимости подбираем величину резисторов R2 и R3.

11. Переносим управляющую часть ЗУ на рабочую платку


и присоединяем ее к силовой части.

12. На плате, сбоку, устанавливаем гнездо для подключения блока питания ЗУ (адаптера или другого БП).

13. Устанавливаем ЗУ в корпус, расположив радиатор в его верхней (открытой) части.
Предварительно сверлим в нижней цилиндрической части корпуса ряд отверстий диаметром 6 мм. Рабочее положение корпуса ЗУ вертикальное, поэтому в нем, аналогично печной трубе, создается естественная тяга. Воздух, нагреваемый резисторами и радиатором поднимается из корпуса вверх, затягивая холодный в нижние отверстия. Такая вентиляция работает эффективно, потому что значительный нагрев радиатора при 2-х, 3-х часовой работе ЗУ, практически не ощущается нагревом корпуса.

14. Зарядное устройство собрано рабочим комплектом и испытано под нагрузкой, полной зарядкой десятка аккумуляторов. ЗУ работает стабильно. При этом периодически ведётся контроль расчетного времени зарядки, а также температуры аккумулятора для отключения ЗУ при критических значениях. Использование «крокодильчиков» для подключения аккумулятора позволяет подключить к ЗУ контрольный амперметр (мультиметр) для регулировки зарядного тока. При зарядке последующих однотипных элементов, амперметр не нужен.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Зарядка для никель кадмиевых аккумуляторов своими руками

Для расчета времени зарядки никель-металл-гидридного аккумулятора (Ni-MH) можно использовать следующую упрощенную формулу:

Допустим у нас есть Ni-MH аккумулятор с ёмкостью 2000mAh, зарядный ток в нашем самодельном зарядном устройстве предположим 500mA. Делим емкость батареи на ток заряда и получаем 2000/500=4 часа!

Тем, кто не очень хорошо разбирается в радиоэлектронике и делает в этом направлении первые шаги, рекомендую собрать вот такую простую схему ЗУ, всего на одном биполярном транзисторе. В зависимости от выбранного номинала сопротивления R2 будет менятся зарядный ток и в принципе заряжать самые разные батаеи, даже литиевые.

Схема идеально подойдет для применения от бортовой сети автомобиля или от любого блока питания, с напряжением на выходе 6-12 вольт. Её можно использовать для зарядки мобильных телефонов, различных электронных игрушек, планшетов, MP3 и т.п. Схема достаточно универсальна, так как мы выбираемый зарядный ток. Горящий светодиод говорит о том, что идёт процесс зарядки.

В таблице выше указывается минимальное и максимальное напряжение питания ЗУ. Например, для зарядки АКБ 6В минимальное напряжение требуется 12В. Рекомендуется заряжать аккумулятор током, который в 10 раз ниже емкости батареи, а время для его заряда потребуется около 15 часов. Если в два раза увеличить зарядный ток, то и заряжать батарею можно в два раза быстрее и это не приведёт к повреждению батареи. Транзистор должен быть смонтирован на радиаторе.

Если в используете различные устройства в которых все еще используются пальчиковые батарейки, то их приходится часто менять, например в металл детекторе или GPS-Глонас туристическом навигаторе eTrex. Но есть решение этой проблемы замена обычных батареек на никелевые батареи стандарта АА. Вот тут и понадобится вам зарядка аккумуляторов АА

Биполярный транзистор и светодиод HL1 основа схемы источника постоянного тока. Прямое напряжение светодиода около 1,5 вольт минус напряжение эмиттерного перехода транзистора VT1 (0,6 В) следует через резистор номиналом 6,8 Ом или 15 Ом в зависимости от положения тумблера SA1. При выборе сопротивления номиналом 15 Ом в цепи эмиттерной цепи зарядный ток будет около 60 мА, а с сопротивлением 6,8 Ом ток будет 130 мА. Этого вполне хватает для зарядки никель-кадмиевый аккумулятора емкостью 600 mAh за 14 часов или 5 часов, в зависимости от резистора.

Компаратор на микросхеме LM393 применяется для автоматического отключения ЗУ. На его инверсном входе с помощью подстроечного сопротивления задано 2,9 вольт, а на его прямом входе отслеживается напряжение на аккумуляторе.

В момент процесса зарядки никель кадмиевого аккумулятора, внутренний выходной транзистор LM393 открыт и, поэтому, открыт и VT1. После заряда батареи на 80% или более, напряжение на клеммах аккумулятора станет выше 1,45 вольт. Напряжение на неинвертирующем входе DD2 станет выше опорного напряжения на инвертирующем входе и на выходе компаратора сигнал поменяется на противоположный, транзистор VT1 запирается, отключая источник тока.

Для того чтобы исключить переключение компаратора в диапазоне порогового напряжения, в конструкцию введена емкость конденсатор на 0,1 мкФ создающая обратную связь между выходом и инвертирующим входом микросхемы.

Четыре логических элемента И-НЕ DD1 применяются для построения двух генераторов с различными частотами. При соединении сигналов с них появляется тональный сигнал, который следует на пьезоэлектрический элементом в момент времени, когда заряд АКБ закончен.

Эта схема, выполнена с использованием 4-х биполярных транзисторов, в первую очередь применяется для зарядки 12 вольтовых Ni-Cd батарей. Кроме того можно заряжаться аккумуляторны на 6 и 9 вольт, но придется уменьшить мощность устройства. Встроенный регулятор тока регулирует зарядный ток до четырех ампер. Когда он достигает своего максимума, напряжение на сопротивление R1 — 0.7В, поэтому открывает транзистор Q1. В это момент времени транзистор Q2 открыт и шунтирует базу Q3 на землю, что приводит к смещению режима Q4, через который происходит зарядка. Так осуществляется регулировка зарядного тока. При зарядке аккумуляторов с низким уровнем напряжения, избыток напряжения ЗУ будет падать на Q4.

Первичная обмотка трансформатора типовая на 230 вольт, напряжение вторичной обмотки должно быть около 30 вольт, при токе в 3 ампера. Диодный моста собрал на четырех диода 1N5400; Предохранитель F1 на ток 500 мА. Резистор R1 найти проблематично из-за нестандартного сопротивления, его можно заменить параллельным соединением резисторов, сопротивлением по 0,3 Ом каждый. Схему можно дополнить фильтрующим конденсатором и защитой от переплюсовки.

ЗУ опмсаное в статье предназначено в первую очередь для заряда Ni-MH никелевых аккумуляторов. Основа его специализированная микросборка управления зарядом LT4060. Предоставленная ниже схема достаточно мощная и эффективная, она применяется для быстрого (около часа) заряда Ni-MH АКБ.

Обычно выпускаются в форм-факторах AA или AAA, но не только. Использовавшиеся не так давно NiCd аккумуляторы отживают свой век, тем более, зарядное устройство, собранное своими руками для работы с NiMH , будет прекрасно работать и с NiCd аккумуляторами, но не наоборот. По сравнению с NiCd, NiMH многозарядные батареи имеют на 30…40% более высокую удельную емкость, обладают меньшим эффектом «памяти», и главное не содержат опасного для экологии металла кадмия.

Основой схемы является специализированная микросхема быстрого контроллера заряда MAX712. ЗУ отлично подойдет для быстрой зарядки Ni-Cd аккумуляторных батарей. Ток заряда при этом способен достигать значения в 300 миллиампер. После того, как процесс быстрой зарядки окончен, ЗУ заряжает батарею низким током, около 12 мА.

Данная конструкция ЗУ отлично подойдет для зарядки двух аккумуляторных батарей стандарта AA Ni-MH или Ni-Cd практически любой емкости (при условии, что обе батареи одинаковы) зарядным током около 0,5 A. ЗУ будет заряжть аккумулятор 700mAh Ni-Cd около 1,5 часа, 1500mAh Ni-MH приблизительно 3,5 часов, и 2500mAh Ni-MH почти 5,5 часов.

Изготовление зарядного устройства (ЗУ) для NiCd аккумуляторов

Зарядные устройства для NiCd аккумуляторов достаточно дешевы. Обычно изготовление внешнего зарядного устройства под популярные размеры аккумуляторов, таких как ААА, АА, C и D, не отнимет много сил и времени. Умение сконструировать подобное устройство окажется полезным и тем, кто захочет встроить ЗУ в робота. В отличие от большинства дешевых ЗУ, которые продолжают заряжать аккумулятор током порядка C/10 даже после его полной зарядки, наше устройство уменьшает зарядный ток до порядка С/30 после того, как батареи оказались полностью заряженными. Такая процедура рекомендована для NiCd аккумуляторов и поможет обеспечить их длительную работоспособность.

Следующая информация позволит вам самостоятельно изготовить ЗУ для стандартного NiCd аккумулятора.

Зарядное устройство представляет собой отдельный блок, схема его подключения приведена на рис. 3.7 в иллюстративных целях. Такую схему легко разместить в корпусе робота, при этом потребуется разъем для соединения с ЗУ. Кроме того, необходим двухполюсный двухпозиционный переключатель, помещенный между разъемом и остальной схемой. Этот переключатель соединяет источник питания (аккумулятор) либо с остальной схемой робота, либо с ЗУ. Обесточивание робота необходимо потому, что в противном случае ток заряда аккумулятора уменьшится (см. рис. 3.7).

Рис. 3.7. Двухпозиционный переключатель, управляющий зарядом АКБ

Питание зарядного устройства можно осуществлять, используя либо обычный трансформатор, либо портативный блок питания, совмещенный со штекерной вилкой (типа используемых для питания плееров). Я предпочитаю последний, поскольку он дает на выходе постоянный ток. Если вы используете трансформатор, то вам дополнительно потребуются сетевой предохранитель, диодный мост, сглаживающий конденсатор и соединительные провода.

В любом случае вы должны подобрать характеристики трансформатора или выпрямителя под тип заряжаемой батареи. Подбор выпрямителя по выходному напряжению и току снизит рассеиваемую мощность на регуляторе LM317; например, не стоит использовать трансформатор на 12 В для зарядки 6-вольтовых батарей.

На рис. 3.8 показана схема блока питания ЗУ. Выходное напряжение может равняться 6, 12, 18, 24 или 36 В в зависимости от типа используемого трансформатора, диодного моста и конденсатора.

Рис. 3.8. Сетевой трансформатор и выпрямительный блок

Схема зарядного устройства приведена на рис. 3.9. Она включает в себя регулятор напряжения LM317 и ограничивающий ток резистор. Величина сопротивления ограничительного резистора зависит от силы тока, необходимого для зарядки аккумуляторной батареи.

Рис. 3.9. Схема зарядного устройства

Ограничительный резистор

Большинство производителей NiCd аккумуляторов рекомендуют заряжать их током, равным 1/10 от их емкости, что обозначается C/10. Таким образом, батарея размера АА емкостью 0,85 Ач необходимо заряжать током C/10 или 85 мА в течение 14 часов. После полной зарядки батареи производители рекомендуют снизить ток до уровня порядка C/30 (1/30 емкости батареи) для поддержания батареи в полностью заряженном состоянии без риска перезаряда или иных повреждений.

В нашем случае рассчитаем характеристики ЗУ для зарядки аккумулятора, состоящего из 4 последовательно соединенных элементов С-типа. Емкость каждого элемента составляет 2000 мАч. Таким образом, ток C/10 составит 200 мА. Стандартное напряжение каждого элемента составляет приблизительно 1,3 В, следовательно, напряжение батареи 4 х 1,3 = 5,2 В. Следовательно, можно использовать 6-вольтовый трансформатор, поддерживающий ток не менее 200 мА.

Для расчета сопротивления ограничивающего ток резистора используется формула:

R=1,25/Icc

Где Icc необходимый ток. Подставляя в формулу 200 мА (0,2 А) получаем:

1,25/0,2=6,25 Ом

Таким образом, сопротивление ограничительного резистора должно быть порядка 6,25 Ом. На схеме (рис. 3.9) этот резистор обозначен R2. Заметим, что на схеме резистор R2 имеет номинал 5 Ом. Это ближайший стандартный номинал резистора по отношению к рассчитанному.

C/30 резистор

Чтобы уменьшить силу тока до значения C/30, мы последовательно включаем еще один резистор, номинал которого составляет 2R или около 12,5 Ом. На схеме этот резистор обозначен как R3. Также подбирается резистор ближайшего стандартного номинала. В нашем случае его значение равно 10 Ом.

Принцип работы ЗУ

В ЗУ в качестве источника постоянного тока используется регулятор напряжения LM317. Ограничительный резистор для значения тока C/10 обозначен на схеме R2 (см. рис. 3.9). Значение R2 равно 5 Ом в сравнении с расчетным значением 6,25 Ом. Использование стандартного резистора близкого номинала не нарушит правильную работу ЗУ. Резистор для значения тока C/30 обозначен как R3. Стандартный номинал этого резистора также близок к расчетному и не нарушает нормальной работы ЗУ. Позже вы увидите, что ЗУ способно осуществлять и «быструю» зарядку аккумуляторов, поскольку имеет устройство контроля выходного потенциала.

V1 представляет собой переменный резистор номиналом 5 кОм. Он предназначен для отпирания тиристора после полной зарядки NiCd батареи. Тиристор в свою очередь переключает двухпозиционное реле, имеющее две группы контактов.

При подаче напряжения на схему ток протекает через регулятор LM317, заряжая батарею током порядка C/10. Резистор R3 при этом закорочен одной из групп контактов реле. Ток также протекает через резистор R1, ограничивающий ток светодиодов D1 и D2. После включения питания загорается красный светодиод D1, который сигнализирует о том, что происходит зарядка.

В процессе зарядки напряжение на потенциометре V1 возрастает. После 14 часов напряжение оказывается достаточным для отпирания тиристора. Через открытый тиристор напряжение поступает на обмотку двухпозиционного реле. Реле включается, красный светодиод гаснет и зажигается зеленый светодиод. Зеленый светодиод показывает, что батарея полностью заряжена. Другая группа контактов реле размыкает закороченный резистор R3. Включение резистора R3 уменьшает зарядный ток до порядка C/30. Диод D3 блокирует протекание тока из аккумулятора в схему ЗУ.

Определение напряжения срабатывания V1

Для нормальной работы схемы необходимо, чтобы тиристор отпирался только после полной зарядки NiCd батареи. Наиболее просто это сделать следующим образом: вставить полностью разряженную батарею в ЗУ, заряжать ее в течение 14 часов, а потом подрегулировать V1. После завершения процесса зарядки медленно поворачивать движок потенциометра V1 до срабатывания реле. При этом должен зажечься светодиод зеленого цвета.

Особенности конструкции

При самостоятельном конструировании ЗУ обратите внимание на следующее. Наиболее критичным является подбор ограничительных резисторов для значений тока C/10 и C/30. Для расчета их номиналов воспользуйтесь приведенными формулами. Рассеиваемая мощность этих резисторов порядка 2 Вт.

Если зарядный ток достаточно велик (более 250 мА), то для отвода тепла снабдите схему LM317 радиатором. Если ЗУ включить до соединения с батареей, то моментально сработает реле, включится зеленый светодиод и зарядный ток окажется равным C/30.

Если ЗУ будет использоваться при более высоких значениях напряжений – пропорционально увеличьте сопротивление R1, ограничивающее ток, протекающий через светодиоды. Например, для напряжения 12 В сопротивление R1 будет равно 680 Ом, для напряжения 24 В – 1,2 кОм соответственно.

При больших значениях напряжения может потребоваться резистор, ограничивающий ток обмотки реле. Полезно измерить реальные значения тока C/10 и C/30, протекающего через заряжаемую батарею, что позволит судить о правильности работы устройства.

Последовательное и параллельное соединение

Способ соединения элементов в батарею определяет необходимые характеристики трансформатора по напряжению и току. Если батарея состоит из 8 элементов типа С, соединенных параллельно, то необходимо умножить необходимый для каждого элемента ток на 8. Если емкость отдельного элемента составляет 1200 мАч, то зарядный ток C/10 будет равен 120 мА. Для 8 параллельных элементов ток составит около 1 А (8х 120 мА=960 мА=0,96 А). Необходимое напряжение составит 1,5 В. Соответственно, необходим трансформатор, выдающий напряжение 1,5 В при токе 1 А. Если эти элементы соединены последовательно, то необходимое напряжение составит 12 В при токе 120 мА.

Быстрое ЗУ

Многие современные NiCd аккумуляторные батареи можно заряжать быстрее при условии, что после их полной зарядки ЗУ переключится в режим C/30. Типичным является удвоение зарядного тока при сокращении времени зарядки в два раза. Таким образом, можно заряжать батарею током C/5 в течение 7 часов.

Хотя я не пробовал использовать данную схему ЗУ для быстрой зарядки, но не вижу оснований, почему она не должна работать. Если вы хотите это сделать, необходимо сперва подстроить потенциометр под значение тока C/10, а потом уменьшить номинал резистора R2 в два раза.

Список деталей

• U1 регулятор напряжения LM317

• L1 двухпозиционное реле с двумя группами контактов

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

Автор:
Опубликовано 01.01.1970

Так, товарищи. Сейчас мы с вами будем заряжать аккумуляторы, просто, качественно, а главное — быстро. Для чего воспользуемся микросхемой MAX713 от компании MAXIM. Это специализированная микросхема, заточенная именно под зарядку указанных типов аккумуляторов.

Итак, что же она умеет — подходите ближе, сейчас увидите.
Итак MAX713 позволяет:

  • заряжать Никель-Кадмиевые и Никель-МеталлоГидридные аккумуляторы в количестве от 1 до 16 штук одновременно;
  • в режиме быстрого заряда регулировать ток заряда от С/3 до 4С, где С — емкость аккумулятора;
  • в режиме медленного заряда доводить аккумуляторы до кондиции током С/16;
  • отслеживание состояния аккумулятора и автоматический переход от быстрого заряда к медленному;
  • в отсутствии зарядного тока через микросхему «утекает» всего 5мкА от аккумуляторов;
  • возможность отключения заряда по температурным датчикам или по таймеру;

Ну и хватит — и так вон сколько получилось.
Как обычно, чтобы разговаривать предметно, смотрим на схему:

Вообще говоря, как мы помним еще со староглиняных времен, заряжать аккумуляторы рекомендовалось током 0,1С, где С — емкость аккумулятора. Однако, с тех пор утекло много пива и производители научились делать более совершенные аккумуляторы, позволяющие учинять над собой такое безобразие, как быстрый заряд (Fast Charge).
«It»s okey», говорят они — вы можете заряжать наши аккумуляторы гораздо большим током — главное не превышать значение 4С, иначе может случиться big-bada-bum.

Разумеется, чем больший зарядный ток используется в процессе зарядки, тем меньше времени нужно на эту самую зарядку. Однако, все же, увлекаться сильно не стоит — ток током, а долговечность аккумулятора тоже не последнее дело. Поэтому, в MAX713 реализован не только быстрый, но и медленный заряд (Trickle Charge), который включается по достижении аккумулятором полного заряда большим зарядным током.

Схема, показанная выше позволяет заряжать два аккумулятора, ёмкостью по 1000мА/ч каждый, током С/2, то есть 500мА.
Имеется индикация включения питания — HL1 и индикация быстрого заряда — HL2.
Аккумуляторы включаются последовательно.
Входное напряжение должно быть равно 6 вольтам. Вы еще тут? А ну бегом за паяльником!

Что? Вам надо заряжать четыре аккумулятора сразу? И не 1000мА/ч, а 1200?
Ну ладно, тогда не бежим за паяльником, а слушаем дальше.

Как я уже говорил, эта микросхема позволяет заряжать до 16 аккумуляторов, током до 4С. Итак, что же от нас требуется, чтобы спроектировать зарядное устройство под наши конкретные цели?

  1. Определиться с зарядным током аккумуляторов. Неплохо было бы узнать, какой максимальный зарядный ток рекомендует производитель. Ну а если не узнали, тогда уж на свой страх и риск. Для начала, я бы не стал превышать С/2.
  2. Решить сколько аккумуляторов нужно заряжать одновременно. После этого, согласно Таблице 1 определить, куда припаивать выводы PGM0 и PGM1. Разумеется, чтобы не перепаивать каждый раз микросхему, нужно предусмотреть переключатель, если нужно заряжать разное количество аккумуляторов.
  3. Подобрать входное напряжение на зарядное устройство. Оно может быть рассчитано по формуле:
    U=2+(1,9*N),
    где N — количество аккумуляторов
    Но это напряжение не может быть меньше 6 вольт.
    То есть, если вы будете заряжать даже один аккумулятор — входное напряжение должно составлять 6 вольт.
  4. Определить мощность выходного транзистора, после чего по справочнику подобрать подходящий. Мощность определяется так:
    P=(U in — U batt )*I charge ,
    где:
    U in — максимальное входное напряжение,
    U batt — напряжение заряжаемых аккумуляторов — суммарное, разумеется,
    I charge — зарядный ток.
  5. Посчитать сопротивление R1. R1=(V in -5)/5 — сопротивление получается в килоомах, чтобы получить Омы надо посчитанное значение умножить на 1000.
  6. Определить сопротивление R6. R6=0.25/I charge Если I charge подставляется в амперах, сопротивление мы получим в Омах, если а миллиамперах, то в килоомах. Не теряйтесь.
  7. Выбираем время заряда. Это нужно для того, чтобы в случае неисправного аккумулятора, зарядное устройство не гоняло его, бедолагу бесконечное число часов, а отключило по таймеру, даже если аккумулятор и не зарядился. Для выбора времени заряда пользуемся Таблицей 2. И прикручиваем ноги PGM2 и PGM3 согласно этой таблице. Разумеется, не забудьте учесть при этом зарядный ток, который был выбран, а то может случиться так, что устройство отключится раньше, чем зарядится аккумулятор.

Собственно говоря и все. Дальше будут таблицы.

Таблица 1. Задание количества заряжаемых аккумуляторов.

Количество аккумуляторов

Соединить PGM 1 с…

Соединить PGM 0 с…

Схема умного зарядного устройства для Ni-Cd аккумуляторов (MAX713)

Традиционная («безопасная») зарядка никель-кадмиевых аккумуляторов током, значение которого в десять раз меньше емкости аккумулятора, удовлетворяет далеко не всех пользователей, поскольку в этом случае для гарантированной полной его зарядки требуется затратить более десяти часов.

Между тем аккумуляторы можно безопасно заряжать и большими токами, соответственно сокращая время зарядки. При этом, однако, необходим постоянный контроль за состоянием заряжаемого аккумулятора, чтобы избежать его выхода из строя.

Момент, когда никель-кадмиевый аккумулятор полностью заряжен, можно надежно установить, измеряя зависимость его напряжения от времени зарядки. В общем виде она показана на рис. 1.

Полностью заряженному аккумулятору соответствует момент, когда напряжение на нем достигает максимума. Поскольку для различных экземпляров абсолютное значение максимума может различаться, этот параметр нельзя использовать для однозначного определения окончания зарядки.

«Интeллeктyaпьныe,’ зарядные устройства, периодически измеряя напряжение на заряжаемом аккумуляторе определяют момент когда изменение напряжения сменит знак (напряжение начнет уменьшаться), и прекращают зарядку.

Рис. 1.

Точнее, обычно переводят зарядное устройство в безопасный режим зарядки малым током. Следует отметить, что уменьшение напряжения по отношению к максимуму после его прохождения невелико-около 10 мВ на один элемент, и для его регистрации нужна измерительная аппаратура с соответствующим разрешением

Второй параметр, который принято контролировать при быстрой зарядке, — время. Его рассчитывают исходя из тока быстрой зарядки, и даже если за это время напряжение на аккумуляторе не достигло максимума, зарядку прекращают.

Это позволяет в какой-то мере уменьшитъ опасность выхода из строя зарядного устройства если в него установлен дефектный аккумулятор, у которого может и не произойти смены знака изменения напряжения в процессе зарядки.

Есть еще один параметр который наряду со сменой знака изменения напряжения на аккумуляторе объективно отражает завершение процесса зарядки, — температура корпуса аккумулятора.

Однако этот параметр относится к числу наиболее трудно контролируемых, поскольку требует установления надежного теплового контакта датчика температуры с корпусом заряжаемого аккумулятора.

Более того, в герметичных аккумуляторных батареях которые в основном используются в современной носимой аппаратуре, это в принципе невозможно. Поэтому на практике зарядку аккумуляторов с контролем температуры не применяют.

Но при этом приходится также отказываться и от предельных — очень быстрых режимов зарядки.

Микросхема МАХ713

Для реализации описанных алгоритмов зарядки выпускают специализированные микросхемы которые выполняют все перечисленные выше функции контроля и управления. К их числу относится например микросхема МАХ713. Она позволяет заряжать как единичный элемент, так и батарею, состоящую из нескольких аккумуляторов.

Контрольное время для быстрой зарядки может быть в пределах от 22 до 264 минут (восемь дискретных значений), а ток — в пределах от 4С до 0,ЗЗС (С — емкость аккумулятора) Все эти параметры устанавливают программно. Предусмотрена в микросхеме МАХ713 и функция контроля температуры заряжаемого аккумулятора.

При расчете режима быстрой зарядки никель-кадмиевых аккумуляторов сначала выбирают зарядный ток I, ориентируясь на требуемое время зарядки. Следует заметить, что при отсутствии надежного контроля температуры заряжаемого аккумулятора выбирать его более 2С не рекомендуется.

По окончании режима быстрой зарядки ток снижают до значений, безопасных в течение длительного периода («дозарядка»). В микросхеме МАХ713 это значение например выбрано около 30 мА и не зависит от тока быстрой зарядки.

Принципиальная схема зарядного устройства

Схема «интеллектуального» зарядного устройства для никель-кадмиевых аккумуляторов, выполненного на микросхеме МАХ713, приведена на рис 2, Источник питания напряжением 12 В подключают к разъему X1.

Он должен обеспечивать ток нагрузки, по крайней мере на 50 мА больше максимального зарядного тока. При напряжении питания 12В можно заряжать батареи содержащие до девяти аккумуляторов.

В авторском варианте для питания устройства использовался обычный сетевой адаптер, обеспечивающий ток нагрузки до 300 мА при напряжении 12 В Светодиод HL1 индицирует работу устройства в целом, а светодиод HL2 — режим быстрой зарядки.

Рис 2. Принципиальная схема умного зарядного устройства.

Если он не светится, то это означает, что зарядка закончена Аккумулятор (батарею) подключают к разъему Х2 Зарядный ток регулирует транзистор VТ1. Если после включения устройства с подключенным аккумулятором светодиод HL2 не светится, значит, аккумулятор заряжен.

Программирование микросхемы производят подключением выводов 3 (PGM0), 4 (PGM1). 9 (PGM2) и 10 (PGM3) к выводам микросхемы 15 (+), 12 (ВАТТ-) 16 (REF). Они могут быть также и не подключены к чему-либо (OPEN). Через выводы PGM0 и PGM1 программируют число аккумуляторов в батарее (табл 1). а через выводы PGM2 и PGM3-таймер окончания быстрой зарядки (табл. 2).

Перед выбором окончательной версии устройства задают число элементов N в аккумуляторной батарее, подлежащей зарядке, и зарядный ток.

Исходя из первого параметра, определяют подключение выводов 3 и 4 микросхемы (в соответствии с табл 1), а по второму параметру — ориентировочное время зарядки Т (в часах) по формуле Т=С/0,8І. Здесь С подставляют в мАч, а I — в мА. В табл. 2 находят ближайшее большее значение программируемого интервала времени зарядки и определяют соответствующее ему подключение выводов 9 и 10 микросхемы.

На следующем этапе рассчитывают мощность Р (в ваттах), которая будет рассеиваться на транзисторе ?Т1, по формуле P=(Umax — Umin)*1. Здесь Umax — максимальное напряжение на выходе источника питания, В; Umin, — минимальное напряжение на батарее аккумуляторов, В: I — ток зарядки A.

Umin рассчитывают исходя из числа элементов и минимального напряжения на одном аккумуляторе обычно полагают 1В. На основе этого расчета выбирают транзистор и выясняют, нужен ли для него теплоотвод.

Сопротивление резистора R2 (в кило-омах) рассчитывают по формуле R2=U/5 1, где U — минимальное напряжение источни ка питания в вольтах Сопротивление резистора R5 (в омах) рассчитывают по формуле R5=0 25/I, где I — ток зарядки в амперах.

Приведенные на схеме номиналы соответствуют минимальному напряжению источника питания 12В и току зарядки 0,25 А. При напряжении питания 12 В можно заряжетъ батареи не более чем из семи аккумуляторов.

Steven Avritch. A Smart Charger For Nickel-Cadmium Batteries — QST 1994 September p.40-42. Р2001, 1.

Зарядка для никель кадмиевых аккумуляторов. Схема и описание

В предыдущей статье мы рассмотрели схему зарядки для литий ионных аккумуляторов. Эта же зарядка для никель кадмиевых аккумуляторов предназначена для зарядки двух никель-кадмиевых аккумуляторов постоянным током. Устройство имеет 2 режима зарядки, автоматическое отключение зарядки и звуковой сигнал окончания зарядки.

Описание работы зарядного устройства для никель-кадмиевых аккумуляторов

Схема питания зарядного устройства состоит от понижающего трансформатора, имеющего на выходе вторичной обмотки 12 вольт, двух выпрямительных диодов (VD1 и VD2) и сглаживающего конденсатора C1 на 1000 мкФ. Далее напряжение поступает на DA1 — трехвыводной стабилизатор напряжения 7806 создающего 6 вольт для питания схемы.

Транзистор VT1 и светодиод HL1 являются основой источника постоянного тока. Прямое напряжение красного светодиода (около 1,5 вольт) минус напряжение база-эмиттер транзистора VT1 (около 0,6 В) проходит через резистор сопротивлением 6,8 Ом или 15 Ом в зависимости от положения переключателя SA1. При выборе резистора 15 Ом в цепи эмиттера зарядный ток составляет около 60 мА, в то время как с резистором 6,8 Ом ток равен 130 мА.

Этого достаточно, чтобы зарядить никель-кадмиевый аккумулятор емкостью 600 mAh (AA) за 14 часов и 5 часов соответственно. Если нет подходящего сопротивления, то его можно получить путем параллельного соединения нескольких резисторов, либо последовательным соединением резисторов.

Компаратор LM393 (DD2) используется для режима автоматического отключения зарядки. На его инвертирующем входе при помощи подстроичного резистора установлено 2,9 вольт (номинальное), в то время как его неинвертирующий входе отслеживает напряжение на аккумуляторе.

В то время, когда никель кадмиевый аккумулятор заряжается, внутренний выходной транзистор (в LM393) открыт и, следовательно, открыт транзистор VT1 источника тока. После того, как аккумулятор зарядится примерно на 80% или более от своей емкости, напряжение на клеммах аккумулятора превысит 1,45 вольт.

Напряжение на неинвертирующем входе (вывод 3) DD2 превысит опорное напряжение на инвертирующем входе (вывод 2). Это приведет к тому, что на выходе компаратора сигнал изменяется на противоположный, транзистор VT1 закроется и отключится источник тока.

Для того чтобы исключить постоянное переключение компаратора на границе порогового напряжения, в схему добавлен конденсатор на 0,1 мкФ обеспечивающий обратную связь между выходом и инвертирующим входом компаратора.

Четыре логических элемента И-НЕ микросхемы DD1 используются для построения двух простых генераторов с разными частотами. При соединении сигналов с этих генераторов образуется тональный сигнал, который воспроизводится пьезоэлектрическим элементом в момент, когда заряд закончен.

Электрический паяльник с регулировкой температуры

Мощность: 60/80 Вт, температура: 200’C-450’C, высококачествен…

Простое универсальное зарядное устройство для малогабаритных аккумуляторов

Здравствуйте, уважаемые читатели сайта sesaga.ru. Для питания носимой малогабаритной радиоаппаратуры широко применяют литий-ионные (Li-Ion), никель-кадмиевые (Ni-Cd) и никель-металлгидридные (Ni-Mh) аккумуляторы. При соблюдении правил заряда они служат несколько лет и выдерживают около 1000 циклов зарядка-разрядка.

Однако для аккумуляторов на основе никеля, например Ni-Cd, нужен особый подход, так как они обладают эффектом «депрессии напряжения», который еще называют «эффектом памяти». «Эффект памяти» возникает в процессе эксплуатации аккумулятора, если его систематически подзаряжать, не разрядив до напряжения 0,9 — 1 В [1].

Т.е. если зарядить не полностью разряженный аккумулятор, то он отдаст энергию только до того уровня, с которого началась зарядка. А так как в основном их так и подзаряжают, не проходя полные циклы зарядки-разрядки, то со временем этот уровень только увеличивается, из-за чего емкость аккумулятора уменьшаться, отчего пользователь приходит к выводу, что аккумулятор начинает приходить в негодность.

Однако не стоит бояться этого электрохимического процесса, так как он накапливающийся, является обратимым и легко устраняется.
Чтобы уменьшить возникновение «эффекта памяти» производители рекомендуют периодически разряжать аккумуляторы до напряжения 0,9 — 1 В, а потом заряжать до 1,45 – 1,48 В.

Предлагаемое простое универсальное зарядное устройство позволяет частично автоматизировать этот процесс и проводить зарядку и разрядку Ni-Cd и Ni-Mh аккумуляторов током до 260 мА.

1. Описание работы и схема устройства

В процессе работы зарядное устройство постоянно контролирует напряжение на заряжаемом аккумуляторе и автоматически отключает ток при достижении полной зарядки. Оно позволяет одновременно и независимо заряжать и разряжать два аккумулятора типоразмера АА или ААА.
Принципиальная схема устройства изображена на рисунке.

Функционально оно выполнено в виде двух каналов с общим питанием, имеющих по одному узлу зарядки и разрядки. Все переключения для осуществления процессов зарядки и разрядки производятся переключателями SA1 и SA2, а в качестве источника питания применено ЗУ сотового телефона с выходным стабилизированным напряжением 5 В и током не менее 1 А.

Рассмотрим работу одного канала и начнем с узла зарядки [2].
В процессе зарядки контроль напряжения на заряжаемом аккумуляторе происходит непрерывно. На транзисторах VT1 и VT2 собран триггер Шмитта, который сравнивает напряжение на заряжаемом аккумуляторе GB1 или GB2 с образцовым, поступающим на базу VT1 с движка подстроечного резистора R2.

Образцовое напряжение образовано стабилитроном VD1, резисторами R1 и R2. Резистором R1 задается рабочий ток стабилитрона (около 10 mA), а резистором R2 устанавливают нужное пороговое напряжение.

При подключении к зарядному устройству разряженного аккумулятора транзистор VT2 закрыт, а VT1 и VT3 открыты. Коллекторный ток транзистора VT3 через замкнутый контакт SA2.1 выключателя SA2 заряжает аккумулятор.

Как только напряжение на аккумуляторе достигнет заданного порогового значения сработает триггер и транзисторы VT1, VT3 закроются, а VT2 откроется и включит светодиод HL1, сигнализирующий об окончании зарядки.

Выключателем SА1 выбирают типоразмер аккумулятора и задают необходимый зарядный ток равный 110 или 260 mA.

В замкнутом положении контакта SA1.2 зарядка осуществляется током 110 mA, позволяющим заряжать аккумуляторы емкостью 850, 1100 и 1600 mA/ч. В замкнутом положении контакта SA1.1 зарядка осуществляется током 260 mA, позволяющим заряжать аккумуляторы емкостью 2100, 2600, 2700 и 2850 mA/ч.

Выключателем SА2 устройство переводят в режимы зарядки или разрядки.

Кнопочный выключатель SB1 предназначен для принудительного запуска зарядного устройства, если аккумулятор разряжен не до конца. Нажатие выключателя приводит к установке триггера в состояние, соответствующее режиму зарядки.

Теперь рассмотрим работу узла разрядки, который питается от разряжаемого аккумулятора и при достижении на нем напряжения 0,9 — 1.1 В автоматически прекращает процесс разрядки [3].

При кратковременном нажатии кнопки SB2 на базу транзистора VT5 через резистор R11 подается напряжение с аккумулятора GB1 или GB2. Если оно превышает порог открывания транзистора VT5 (примерно 0,6 В), он открывается и открывает транзистор VT4, через участок коллектор-эмиттер которого происходит разрядка аккумулятора.

По мере разрядки аккумулятора напряжение на нем снижается, и когда оно упадет ниже порога открывания транзистора VT5, тот закрывается и закрывает VT4. Процесс разрядки прекращается. В качестве нагрузки и индикатора работы блока разрядки применена лампа накаливания HL3 с номинальным напряжением 1 В. Также можно применить лампы на напряжение 1,5 и 2 В.

Вместо лампы можно установить резистор сопротивлением 20 – 30 Ом. В этом случае не будет индикации и придется периодически смотреть напряжение на разряжаемом аккумуляторе.

2. Конструкция и детали

Зарядно-разрядное устройство смонтировано на печатной плате из одностороннего фольгированного стеклотекстолита размером 60×45 мм и помещено в пластмассовый корпус. В виду простоты схемы устройство можно собрать на макетной плате или же вообще навесным монтажом.

Печатная плата разработана для двух каналов и ее рисунок предоставлен. Маркировка элементов показана только для одного канала, так как второй канал идентичен.

На следующем рисунке показано расположение деталей на плате, а также их маркировка согласно принципиальной схеме.

Батарейные отсеки, светодиоды и лампы накаливания, а также переключатели и кнопочные выключатели размещены на внешней части корпуса. Батарейные отсеки сначала приклеиваются к корпусу клеем, а затем дополнительно крепятся винтами. Винты используются с головкой впотай.

Монтаж батарейных отсеков и переключателей выполнен навесным монтажом непосредственно внутри корпуса. Кнопочные выключатели расположены в задней части корпуса и гибким проводом соединены с печатной платой.

В устройстве применены резисторы мощностью 0,125 Вт. Резистор R2 подстроечный многооборотный любого типа. Вместо транзисторов КТ315Б (VT1, VT2) и КТ814Б (VT3) можно использовать любые с подобными параметрами. Транзисторы КТ814 снабжены теплоотводами.

Транзистор КТ502 (VT4) заменим на любой кремниевый с максимальным током коллектора не менее 150 mA. Транзистор КТ3102Г (VT5) выбран с повышенным коэффициентом по току и заменим на любой с похожими параметрами.

С блоком питания устройство соединяется обычным USB кабелем. Разъем, который используется для соединения с телефоном, отрезается, а жилки красного и черного цвета используются для подачи питания. Красная жилка – плюс, а черная — минус.

3. Налаживание

Если устройство собрано правильно и из исправных деталей, налаживание сводится лишь к установке уровня образцового напряжения и, если требуется, настройке токов зарядки для пальчиковых и мизинчиковых аккумуляторов.

Для настройки устройства необходимо иметь пальчиковый и мизинчиковый аккумуляторы. Пальчиковый должен быть заряжен до напряжения 1,48 – 1.49 В.

Если зарядного устройства нет, то аккумулятор заряжается этим зарядным устройством до величины напряжения 1,48 – 1.49 В. В процессе зарядки напряжение на аккумуляторе контролируется измерительным прибором. Как только он зарядится до указанной величины, можно приступать к настройке.

Настройка уровня образцового напряжения

При подаче питания на устройство должны загореться светодиоды HL1 и HL2 обоих каналов. В батарейный отсек вставляется пальчиковый аккумулятор, заряженный до напряжения 1,48 – 1,49 В и производится настройка уровня образцового напряжения первого канала.

Вращением движка подстроечного резистора R2 добиваются погасания светодиода HL1. Затем медленным вращением движка в обратную сторону добиваются включения светодиода. Для точности настройки эту операцию повторяют 2 — 3 раза.

Теперь аккумулятор вставляют в отсек второго канала и производят его настройку таким же образом.

Настройка тока зарядки аккумуляторов

Для удобства настройки в процессе монтажа выводы силового транзистора VT3 временно припаивают к плате отрезками монтажного провода длиной 70 — 80 мм. Провод вывода коллектора разрезают пополам и к его концам подключают миллиамперметр с пределом измерения не менее 500 mA.

Переключатель SA2 первого канала переводят в положение «Заряд», а SA1 в положение «260» и на устройство подают питание.

Далее берут разряженный аккумулятор емкостью 2100 — 2850 mA/ч, вставляют в соответствующий бокс и по миллиамперметру контролируют ток зарядки. Если ток находится в пределах 250 — 270 mA, то ничего не делают. Если ток ниже предела, сопротивление резистора R3 увеличивают на несколько десятков Ом, если выше – уменьшают.

Затем переключатель SA1 переводят в положение «110», в соответствующий бокс вставляют разряженный мизинчиковый аккумулятор емкостью 850 — 1100 mA/ч и таким же образом производят настройку зарядного тока резистором R4, чтобы он находился в пределах 100 – 120 mA.

Таким же образом настраивается второй канал. Теперь снимают питание с зарядного устройства и силовой транзистор VT3 впаивают на место как положено.

Настройка тока разрядки аккумуляторов

Осталось проверить и по необходимости настроить ток разрядки.
Питание на устройство не подается. Переключатель первого канала SA2 переводится в положение «Разряд», а цепь эмиттера транзистора VT4 разрывается и в разрыв включается миллиамперметр с пределом измерения не менее 200 mA.

Кнопкой «Пуск» запускается устройство и по миллиамперметру контролируют ток разрядки аккумулятора, который должен быть в пределах 80 — 100 mA. Если разрядный ток выше, то параллельно лампе включают резистор сопротивлением 15 – 47 Ом. Таким же образом настраивается второй канал.

Если возникли вопросы, обязательно посмотрите этот ролик.

Вот и все. Удачи!

Литература:

1. Б. Степанов, «Радио», 2006г, №5, стр. 34, Продлим «жизнь» Ni-Cd аккумуляторов!
2. В. Косолапов, «Радио», 1999 г, №2, стр. 36, Простое зарядное устройство.
3. А. С. Партин и Л. Партина, «Радиомир», 2007, №11, стр. 13, Автоматическая «разряжалка».

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

РадиоКот >Схемы >Питание >Зарядные устройства >

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

Так, товарищи. Сейчас мы с вами будем заряжать аккумуляторы, просто, качественно, а главное — быстро. Для чего воспользуемся микросхемой MAX713 от компании MAXIM. Это специализированная микросхема, заточенная именно под зарядку указанных типов аккумуляторов.

Итак, что же она умеет — подходите ближе, сейчас увидите.
Итак MAX713 позволяет:

  • заряжать Никель-Кадмиевые и Никель-МеталлоГидридные аккумуляторы в количестве от 1 до 16 штук одновременно;
  • в режиме быстрого заряда регулировать ток заряда от С/3 до 4С, где С — емкость аккумулятора;
  • в режиме медленного заряда доводить аккумуляторы до кондиции током С/16;
  • отслеживание состояния аккумулятора и автоматический переход от быстрого заряда к медленному;
  • в отсутствии зарядного тока через микросхему «утекает» всего 5мкА от аккумуляторов;
  • возможность отключения заряда по температурным датчикам или по таймеру;

Ну и хватит — и так вон сколько получилось.
Как обычно, чтобы разговаривать предметно, смотрим на схему:

Вообще говоря, как мы помним еще со староглиняных времен, заряжать аккумуляторы рекомендовалось током 0,1С, где С — емкость аккумулятора. Однако, с тех пор утекло много пива и производители научились делать более совершенные аккумуляторы, позволяющие учинять над собой такое безобразие, как быстрый заряд (Fast Charge).
«It»s okey», говорят они — вы можете заряжать наши аккумуляторы гораздо большим током - главное не превышать значение 4С, иначе может случиться big-bada-bum.

Разумеется, чем больший зарядный ток используется в процессе зарядки, тем меньше времени нужно на эту самую зарядку. Однако, все же, увлекаться сильно не стоит - ток током, а долговечность аккумулятора тоже не последнее дело. Поэтому, в MAX713 реализован не только быстрый, но и медленный заряд (Trickle Charge), который включается по достижении аккумулятором полного заряда большим зарядным током.

Схема, показанная выше позволяет заряжать два аккумулятора, ёмкостью по 1000мА/ч каждый, током С/2, то есть 500мА.
Имеется индикация включения питания — HL1 и индикация быстрого заряда — HL2.
Аккумуляторы включаются последовательно.
Входное напряжение должно быть равно 6 вольтам. Вы еще тут? А ну бегом за паяльником!

Что? Вам надо заряжать четыре аккумулятора сразу? И не 1000мА/ч, а 1200?
Ну ладно, тогда не бежим за паяльником, а слушаем дальше.

Как я уже говорил, эта микросхема позволяет заряжать до 16 аккумуляторов, током до 4С. Итак, что же от нас требуется, чтобы спроектировать зарядное устройство под наши конкретные цели?

  1. Определиться с зарядным током аккумуляторов. Неплохо было бы узнать, какой максимальный зарядный ток рекомендует производитель. Ну а если не узнали, тогда уж на свой страх и риск. Для начала, я бы не стал превышать С/2.
  2. Решить сколько аккумуляторов нужно заряжать одновременно. После этого, согласно Таблице 1 определить, куда припаивать выводы PGM0 и PGM1. Разумеется, чтобы не перепаивать каждый раз микросхему, нужно предусмотреть переключатель, если нужно заряжать разное количество аккумуляторов.
  3. Подобрать входное напряжение на зарядное устройство. Оно может быть рассчитано по формуле:
    U=2+(1,9*N),
    где N — количество аккумуляторов
    Но это напряжение не может быть меньше 6 вольт.
    То есть, если вы будете заряжать даже один аккумулятор — входное напряжение должно составлять 6 вольт.
  4. Определить мощность выходного транзистора, после чего по справочнику подобрать подходящий. Мощность определяется так:
    P=(Uin — Ubatt)*Icharge,
    где:
    Uin — максимальное входное напряжение,
    Ubatt — напряжение заряжаемых аккумуляторов — суммарное, разумеется,
    Icharge — зарядный ток.
  5. Посчитать сопротивление R1. R1=(Vin-5)/5 — сопротивление получается в килоомах, чтобы получить Омы надо посчитанное значение умножить на 1000.
  6. Определить сопротивление R6. R6=0.25/Icharge Если Icharge подставляется в амперах, сопротивление мы получим в Омах, если а миллиамперах, то в килоомах. Не теряйтесь.
  7. Выбираем время заряда. Это нужно для того, чтобы в случае неисправного аккумулятора, зарядное устройство не гоняло его, бедолагу бесконечное число часов, а отключило по таймеру, даже если аккумулятор и не зарядился. Для выбора времени заряда пользуемся Таблицей 2. И прикручиваем ноги PGM2 и PGM3 согласно этой таблице.
  8. Разумеется, не забудьте учесть при этом зарядный ток, который был выбран, а то может случиться так, что устройство отключится раньше, чем зарядится аккумулятор.

Собственно говоря и все. Дальше будут таблицы.

Таблица 1. Задание количества заряжаемых аккумуляторов.

Количество аккумуляторов

Соединить PGM 1 с…

Соединить PGM 0 с…

1

V +

V+

2

Не подсоединять

V+

3

REF

V+

4

BATT-

V+

5

V+

Не подсоединять

6

Не подсоединять

Не подсоединять

7

REF

Не подсоединять

8

BATT —

Не подсоединять

9

V+

REF

10

Не подсоединять

REF

11

REF

REF

12

BATT-

REF

13

V+

BATT-

14

Не подсоединять

BATT —

15

REF

BATT-

16

BATT-

BATT-

Таблица 2. Задание максимального времени заряда.

Время заряда (мин)

Выключение по падению напряжения

Соединить PGM 3 с…

Соединить PGM 2 с…

22

Выключено

V +

Не подсоединять

22

Включено

V +

REF

33

Выключено

V +

V+

33

Включено

V +

BATT-

45

Выключено

Не подсоединять

Не подсоединять

45

Включено

Не подсоединять

REF

66

Выключено

Не подсоединять

V+

66

Включено

Не подсоединять

BATT-

90

Выключено

REF

Не подсоединять

90

Включено

REF

REF

132

Выключено

REF

V+

132

Включено

REF

BATT-

180

Выключено

BATT —

Не подсоединять

180

Включено

BATT-

REF

264

Выключено

BATT —

V+

264

Включено

BATT —

BATT-

См. так же: Хождение под мухой или две недели с MAX713.


Как вам эта статья?

Заработало ли это устройство у вас?

Зарядное для никель- кадмиевых аккумуляторов. Автоматика в быту. Электронные устройства автоматики.

 

 

ЗАРЯДНЫЕ  УСТРОЙСТВА  ДЛЯ  РАЗЛИЧНЫХ  АККУМУЛЯТОРОВ

 

       Схемы  зарядных  устройств и источников питания  довольно часто публикуются на страницах популярных изданий. Эти конструкции рассчитаны на определённого пользователя и имеют соответствующую  схемотехнику. Элементная база также очень сильно различается, но каждая схема по своему уникальна и вносит свою лепту в развитие направления. Автор сайта разработал много схем источников питания и зарядных устройств, в разной степени оригинальных. В основном это схемы специализированного назначения, но многие прекрасно подходят для широкого применения . Эти схемы и представлены в разделе.  Начнём с зарядных устройств.   Первой конструкцией будет зарядное устройство для малогабаритных никель — кадмиевых  аккумуляторов.

        Зарядное устройство обеспечивает стабильный ток заряда и автоматически отключается  при достижении заданного напряжения на аккумуляторе.  Работа схемы оригинальна и автору пока не попадались подобные — дело в том, что в обычных схемах  окончание зарядки по достижении заданного напряжения  определяется во время протекания зарядного тока. Из-за наличия внутреннего сопротивления аккумуляторов напряжение полного заряда будет меняться при изменении зарядного тока, что затрудняет определение момента окончания зарядки. Предлагаемая схема работает иначе — в течение нескольких секунд на аккумулятор подаётся зарядный ток, затем он автоматически отключается примерно на 1 сек и производится замер ЭДС на аккумуляторе.  Известно, что ЭДС полностью заряженного никель — кадмиевого аккумулятора составляет 1,35 В —  если  на аккумуляторе достигнута эта величина,  переключается компаратор и срабатывает RS триггер, отключающий зарядный  ток и включающий светодиод «Аккумулятор заряжен».   Зарядное устройство позволяет заряжать аккумуляторные батареи  с максимальным напряжением  до 18 В.  Ток зарядки регулируется переменным резистором в пределах 10 — 200 мА, а  требуемое значение ЭДС аккумуляторной батареи, при которой зарядка прекращается  также устанавливается переменным резистором.  Во время протекания зарядного тока периодически мигает светодиод «Заряд».   Выходной транзистор необходимо установить на небольшой радиатор, площадь которого зависит от величины требуемого тока заряда и напряжения аккумуляторной батареи.  На оси переменных резисторов желательно насадить регулировочные ручки с указателями, и, с помощью мультиметра, произвести калибровку с нанесением указательных рисок на лицевой панели устройства.   Смотри остальные схемы: 

 

1.  Зарядное устройство с использованием таймера AN6780

2.  Зарядное устройство с компаратором напряжения

3.  Зарядное устройство с таймером на К561ИЕ16

4.  Зарядные устройства для автомобильных аккумуляторов ( главная страница раздела зарядных устройств для автомобилей)

 


Уважаемые посетители!
Все материалы сайта в случае их некоммерческого использования предоставляются бесплатно, хотя автор затрачивает достаточно большие средства на их обновление расширение и размещение.
Если Вы хотите, чтобы автор отвечал на Ваши письма, обновлял и добавлял  новые материалы — активней используйте контекстную рекламу,  размещённую на страницах — для себя  Вы  узнаете много нового и полезного,
а автору  позволит частично компенсировать собственные затраты  чтобы  уделять
Вам больше внимания.

ВНИМАНИЕ!

Вам нужно разработать сложное электронное устройство?

Тогда Вам сюда…

 

Изучены простые схемы зарядного устройства для никель-кадмиевых аккумуляторов

В статье обсуждается простая схема зарядного устройства для никель-кадмиевых аккумуляторов с автоматической защитой от перезарядки и зарядкой постоянным током.

Когда дело доходит до правильной зарядки никель-кадмиевого элемента, настоятельно рекомендуется остановить или прервать процесс зарядки, как только он достигнет полного уровня заряда. Несоблюдение этого может отрицательно сказаться на сроке службы элемента, значительно снижая эффективность его резервного копирования.

Простая схема зарядного устройства Ni-Cad, представленная ниже, эффективно решает критерий перезарядки, включая такие функции, как зарядка постоянным током, а также отключение питания, когда клемма элемента достигает значения полной зарядки.

Основные характеристики и преимущества

  • Автоматическое отключение при полном уровне заряда
  • Постоянный ток во время зарядки.
  • Светодиодная индикация отключения полного заряда.
  • Позволяет пользователю добавлять дополнительные ступени для одновременной зарядки до 10 никель-кадмиевых ячеек.
Принципиальная схема

Как это работает

Подробная простая конфигурация, описанная здесь, предназначена для зарядки одного элемента типа «AA» емкостью 500 мАч с рекомендованной скоростью заряда, близкой к 50 мА, тем не менее, ее можно удобно настроить для недорогой зарядки нескольких ячеек вместе, повторяя область, показанную пунктирными линиями.

Напряжение питания для схемы получается от трансформатора, мостового выпрямителя и регулятора 5 В IC.

Ячейка заряжена транзистором T1, который сконфигурирован как источник постоянного тока.

T1, с другой стороны, управляется компаратором напряжения с использованием триггера Шмитта ТТЛ N1. Во время зарядки элемента напряжение на выводах элемента поддерживается на уровне около 1,25 В.

Этот уровень оказывается ниже положительного порога срабатывания триггера N1, который поддерживает выход N1 на высоком уровне, а выход N2 становится низким. , позволяя T1 получать напряжение смещения базы через делитель потенциала R4 / R5.

Пока никель-кадмиевый элемент заряжается, светодиод D1 продолжает светиться. Как только элемент приближается к состоянию полного заряда, его напряжение на клеммах поднимается примерно до 1,45 В. Из-за этого повышается положительный порог срабатывания N1, вызывая высокий уровень на выходе N2.

Эта ситуация мгновенно отключает T1. Теперь аккумулятор перестает заряжаться, а светодиод D1 гаснет.

Поскольку положительный предел активации N1 составляет приблизительно 1,7 В и регулируется определенным допуском, включены R3 и P1, чтобы изменить его на 1.45 В. Отрицательный предел срабатывания триггера Шмитта составляет около 0,9 В, что ниже, чем напряжение на клеммах даже полностью разряженного элемента.

Это означает, что подключение разряженного элемента к цепи никогда не приведет к автоматическому инициированию зарядки. По этой причине имеется кнопка запуска S1, которая при нажатии принимает входной сигнал низкого уровня NI.

Для зарядки большего количества ячеек часть схемы, показанная в пунктирной рамке, может быть повторена отдельно, по одной для каждой батареи.

Это гарантирует, что, независимо от уровней разряда ячеек, каждый из них индивидуально заряжается до нужного уровня.

Конструкция печатной платы и наложение компонентов

В приведенной ниже конструкции печатной платы дублируются две стадии, позволяющие заряжать две ячейки Nicad одновременно от одной платы.

Зарядное устройство

Ni-Cad с использованием резистора

Это конкретное простое зарядное устройство может быть сконструировано из деталей, которые можно увидеть практически в любом контейнере для мусора конструктора.Для оптимального срока службы (количества циклов зарядки) никель-кадмиевые батареи необходимо заряжать относительно постоянным током.

Это часто достигается довольно легко, заряжая через резистор от напряжения питания, во много раз превышающего напряжение батареи. Изменение напряжения аккумулятора во время зарядки, вероятно, будет иметь минимальное влияние на ток заряда. Предлагаемая схема состоит только из трансформатора, диодного выпрямителя и последовательного резистора, как показано на рисунке 1.

Соответствующее графическое изображение помогает определить необходимое значение последовательного резистора.

Горизонтальная линия проводится через напряжение трансформатора по вертикальной оси до тех пор, пока она не пересечет указанную линию напряжения батареи. Затем линия, протянутая вертикально вниз от этой точки до пересечения с горизонтальной осью, впоследствии дает нам необходимое значение резистора в омах.

Например, пунктирная линия показывает, что если напряжение трансформатора составляет 18 В, а заряжаемая никель-кадмиевая батарея — 6 В, то значение сопротивления будет около 36 Ом для предполагаемого контроля тока.

Это указанное сопротивление рассчитано на выдачу 120 мА, в то время как для некоторых других значений зарядного тока значение резистора необходимо будет соответствующим образом уменьшить, например 18 Ом для 240 мА, 72 Ом для 60 мА и т. Д. D1.

Цепь зарядного устройства

NiCad с автоматическим контролем тока

Никель-кадмиевые батареи обычно требуют зарядки постоянным током. Показанная ниже схема зарядного устройства NiCad разработана для подачи либо 50 мА на четыре элемента 1,25 В (тип AA), либо 250 мА на четыре элемента 1.Элементы на 25 В (тип C) соединены последовательно, хотя их можно просто модифицировать для различных других значений заряда.

В обсуждаемой цепи никель-кадмиевого зарядного устройства R1 и R2 устанавливают выходное напряжение без нагрузки примерно на 8 В.

Выходной ток проходит через R6 или R7, и по мере его увеличения постепенно включается транзистор Tr1.

Это приводит к увеличению точки Y , включению транзистора Tr2 и разрешению точки Z стать менее и менее положительной.

Процесс, следовательно, снижает выходное напряжение и имеет тенденцию к снижению тока.В конечном итоге достигается уровень баланса, который определяется величиной R6 и R7.

Диод D5 блокирует заряжаемую батарею, обеспечивая питание выхода IC1 в случае отключения 12 В, что в противном случае могло бы вызвать серьезное повреждение IC.

FS2 встроен для защиты от повреждения заряжаемых аккумуляторов.

Выбор R6 и R7 осуществляется методом проб и ошибок, что означает, что вам понадобится амперметр с подходящим диапазоном, или, если значения R6 и R7 действительно известны, падение напряжения на них можно рассчитать по закону Ома. .

Зарядное устройство

Ni-Cd с использованием одиночного операционного усилителя

Эта схема зарядного устройства Ni-Cd предназначена для зарядки стандартных никель-кадмиевых аккумуляторов размера AA. Специальное зарядное устройство в основном рекомендуется для никель-кадмиевых элементов по той причине, что они обладают чрезвычайно низким внутренним сопротивлением, что приводит к увеличению зарядного тока, даже если используемое напряжение немного выше.

Зарядное устройство должно поэтому включать схему для ограничения тока заряда до правильного предела. В этой схеме T1, D1, D2 и C1 работают как традиционные понижающие, изолирующие, двухполупериодные выпрямители и цепи фильтрации постоянного тока.Дополнительные части предлагают текущие правила.

IC1 используется как компаратор с отдельным буферным каскадом Q1, обеспечивая в этой конструкции достаточно высокий выходной ток. На неинвертирующий вход IC1 подается опорное напряжение 0,65 В, представленное через R1 и D3. Инвертирующий вход подключается к земле через R2 в пределах уровней тока покоя, что позволяет выходу стать полностью положительным. Если к выходу подключен никель-кадмиевый элемент, через R2 может возникнуть сильный ток, в результате чего на R2 будет развиваться эквивалентное напряжение.

Оно может просто увеличиться до 0,6 В, тем не менее, увеличение напряжения в этой точке меняет входные потенциалы входов IC1 на противоположные, что приводит к снижению выходного напряжения и понижению напряжения около R2 обратно на 0,65 В. Максимальный выходной ток ( а также полученный зарядный ток) — это в результате ток, генерируемый с 0,65 В на 10 Ом, или, проще говоря, 65 мА.

Большинство никель-кадмиевых элементов AA обладают оптимальным предпочтительным зарядным током не более 45 или 50 мА, и для этой категории R2 необходимо увеличить до 13 Ом, чтобы получить соответствующий ток заряда.

Несколько вариантов быстрого зарядного устройства могут работать с током 150 мА, и для этого требуется понижение R2 до 4,3 Ом (3,3 Ом плюс 1 Ом последовательно на случай, если невозможно найти идеальную деталь).

Кроме того, T1 необходимо улучшить до варианта с номинальным током 250 мА, а Q1 должен быть установлен с использованием крошечного ребристого радиатора с болтовым креплением. Устройство может легко заряжать до четырех ячеек (6 ячеек, если T1 модернизирован до типа 12 В), и все они должны быть подключены последовательно к выходу, а не параллельно.

Схема универсального никель-кадмиевого зарядного устройства

На рисунке 1 показана полная принципиальная схема универсального никель-кадмиевого зарядного устройства. Источник тока разработан с использованием транзисторов T1, T2 и T3, которые обеспечивают постоянный зарядный ток.

Источник тока становится активным только тогда, когда никель-кадмиевые элементы подсоединены правильно. ICI предназначен для проверки сети путем проверки полярности напряжения на выходных клеммах. Если ячейки установлены правильно, контакт 2 микросхемы IC1 не может работать так же положительно, как на контакте 3.

В результате выход IC1 становится положительным и подает базовый ток на T2, который включает источник тока. Ограничение источника тока можно зафиксировать с помощью S1. После определения значений R6, R7 и RB можно предварительно установить ток 50 мА, 180 мА и 400 мА. Помещение S1 в точку 1 показывает, что никель-кадмиевые элементы можно заряжать, позиция 2 предназначена для ячеек C, а позиция 3 зарезервирована для ячеек D.

Разные детали

TR1 = трансформатор 2 x 12 В / 0,5 A
S1 = 3-х позиционный переключатель
S2 = 2-х позиционный переключатель

Источник тока работает по очень простому принципу.Схема устроена как сеть с обратной связью по току. Представьте, что S1 находится в позиции 1, а выход IC1 положительный. Т2 и 13 теперь начинают получать ток базы и инициируют проводимость. Ток через эти транзисторы составляет напряжение около R6, которое запускает работу T1.

Нарастающий ток вокруг R6 означает, что T1 может проводить с большей силой, что минимизирует базовый ток возбуждения для транзисторов T2 и T3.

Второй транзистор может в этот момент проводить меньше, и начальный рост тока ограничен.Таким образом реализуется достаточно постоянный ток с помощью R3 и подключенных никель-кадмиевых ячеек.

Пара светодиодов, подключенных к источнику тока, в любой момент показывают рабочее состояние никель-кадмиевого зарядного устройства. IC1 подает положительное напряжение, когда никель-кадмиевые элементы правильно подключены, загораясь светодиодом D8.

Если ячейки не подключены с соблюдением полярности, положительный потенциал на выводе 2 IC1 будет выше, чем на выводе 3, в результате чего выход компаратора операционного усилителя станет 0 В.

В этой ситуации источник тока останется выключенным и светодиод D8 не загорится. Идентичное состояние может возникнуть, если никакие элементы не подключены для зарядки. Это может произойти из-за того, что на контакте 2 будет повышенное напряжение по сравнению с контактом 3 из-за падения напряжения на D10.

Зарядное устройство активируется только при подключении элемента с напряжением не менее 1 В. Светодиод D9 показывает, что источник тока работает как источник тока.

Это может показаться довольно странным, однако входной ток, генерируемый IC1, просто недостаточен, уровень напряжения также должен быть достаточно большим, чтобы усилить ток.

Это означает, что напряжение питания всегда должно быть больше, чем напряжение на никель-кадмиевых элементах. Только в этом случае разности потенциалов будет достаточно для срабатывания токовой обратной связи T1, при этом загорится светодиод D9.

Дизайн печатной платы

Использование микросхемы IC 7805

На приведенной ниже принципиальной схеме показана идеальная схема зарядного устройства для никель-кадмиевого элемента.

В нем используется микросхема регулятора 7805 для подачи постоянного напряжения 5 В на резистор, что приводит к тому, что ток зависит от номинала резистора, а не от потенциала ячейки.

Номинал резистора следует отрегулировать в зависимости от типа, который используется для зарядки; любое значение от 10 Ом до 470 Ом может использоваться в зависимости от номинальной емкости ячейки (мАч). Из-за плавающей природы IC 7805 по отношению к потенциалу земли, эта конструкция может применяться для зарядки отдельных ячеек Nicad или серии из нескольких ячеек.

Использование 7805 и постоянного тока на основе светодиодов

Следующая схема зависит от регулятора напряжения 7805, который обрабатывает фиксированную нагрузку R1 и переменную нагрузку в виде двух никель-кадмиевых батарей.Результат весьма заметен: напряжение и нагрузка постоянны. Полное устройство, включая регулятор напряжения и нагрузку R1, может быть впоследствии подключено последовательно к переменной потенциальной нагрузке, которой в данном конкретном случае является наша никель-кадмиевая батарея, которая будет заряжаться, и у нас будет полностью постоянный ток. Эта ситуация, конечно, всегда предполагает, что входное напряжение достаточно высокое.

Схема включает в себя небольшую дополнительную особенность — светодиод, последовательно соединенный с заземляющим контактом регулятора lC.Этот светодиод настроен на работу как индикатор зарядки NiCd.

Предопределенный ток 8 мА +/- 1 мА, который определяется предпочтительным выходным током и который должен быть включен в этот выходной ток, проходит с помощью светодиода. При фиксировании номинала резистора R1 важно помнить о дополнительных 1,5 В, падающих на светодиод.

Как уже было сказано, этот источник тока используется как зарядный ток для никель-кадмиевых аккумуляторов. В отличие от свинцово-кислотных аккумуляторов, никель-кадмиевые аккумуляторы необходимо заряжать постоянным током.

Обычные никель-кадмиевые аккумуляторы необходимо заряжать током, который должен составлять 1/10 от его номинального значения мАч, и заряжать в течение приблизительно 14 часов.

Всегда рекомендуется следить за тем, чтобы никель-кадмиевый элемент всегда был полностью разряжен, а затем быстро подключался к зарядному устройству. Это продлит срок службы элемента и обеспечит большее количество циклов заряда / разряда.

Зарядка никель-кадмиевых элементов от источника питания 12 В

Основным принципом зарядного устройства для аккумуляторов является то, что его зарядное напряжение должно быть больше номинального напряжения аккумулятора.Например, аккумулятор на 12 В следует заряжать от источника 14 В.

В этой схеме никель-кадмиевого зарядного устройства 12 В используется удвоитель напряжения на основе популярной микросхемы 555. Поскольку выход 3 микросхемы поочередно подключен между напряжением питания +12 В и землей, микросхема колеблется.

C 3 заряжается через D 2 и D 3 почти до 12 В, когда на контакте 3 низкий логический уровень. Моментный вывод 3 имеет высокий логический уровень, напряжение перехода C 3 и D 3 повышается до 24 В из-за отрицательной клеммы C 3 , которая подключена к +12 В, а сам конденсатор держит заряд. такой же стоимости.Затем диод D 3 становится смещенным в обратном направлении, но провод D 4 достаточно для того, чтобы C 4 мог зарядиться более 20 В. Этого напряжения более чем достаточно для нашей схемы.

78L05 в позициях IC 2 действует как поставщик тока, который удерживает выходное напряжение U n от появления на R 3 при 5 В. Выходной ток I n может можно просто рассчитать по формуле:

Iη = Uη / R3 = 5/680 = 7.4 мА

Характеристики 78L05 включают потребление самого тока, поскольку центральный вывод (обычно заземленный) дает нам около 3 мА.

Общий ток нагрузки составляет около 10 мА, и это хорошее значение для постоянной зарядки никель-кадмиевых аккумуляторов. Чтобы показать, что зарядный ток течет, в цепь включен светодиод.

График зарядного тока

На рисунке 2 показаны характеристики зарядного тока в зависимости от напряжения аккумулятора. Совершенно очевидно, что схема не совсем идеальна, так как аккумулятор на 12 В будет заряжаться током всего около 5 мА.Для этого есть несколько причин:

  • Выходное напряжение схемы, кажется, падает с увеличением тока.
  • Падение напряжения на 78L05 составляет около 5 В. Но необходимо добавить еще 2,5 В для обеспечения точной работы ИС.
  • Скорее всего, на светодиодах падение напряжения 1,5 В.

Учитывая все вышесказанное, никель-кадмиевый аккумулятор на 12 В с номинальной емкостью 500 мАч может непрерывно заряжаться с использованием тока 5 мА. Всего это всего 1% от его емкости.

Схема зарядного устройства для никель-кадмиевых аккумуляторов

Ранее мы создали много типов схем зарядных устройств, в том числе солнечное мобильное зарядное устройство , Поплавковое зарядное устройство , Зарядное устройство 12 В , Схема блока питания и т. Д. Сегодня мы собираются построить схему зарядного устройства для зарядки Ni-Cd АКБ . Процесс зарядки никель-кадмиевых аккумуляторов может осуществляться двумя способами:

  1. Быстрая зарядка
  2. Медленная зарядка

Быстрая зарядка требует правильного отключения после полной зарядки.В отличие от свинцово-кислотных или литиевых аккумуляторов, никель-кадмиевые аккумуляторы не могут принимать постоянный заряд. Также непросто отключить зарядное устройство после полной зарядки. Это должно быть сделано на основе алгоритма, который определяет температуру батареи и постоянное снижение напряжения после завершения зарядки. Другая часть заключается в том, что перед быстрой зарядкой аккумулятор необходимо полностью разрядить.

Следовательно, здесь мы собираемся сделать простое медленное зарядное устройство , которое может заряжать никель-кадмиевые батареи при более низких и более безопасных токах.Этот процесс без автоматического отключения не повредит батарею так сильно, как быстрое зарядное устройство без автоматического отключения.

Медленные зарядные устройства могут использоваться для преодоления саморазряда . Никель-кадмиевый аккумулятор саморазряжается со скоростью 15-20% в месяц, что выше, чем у литиевой батареи 5-10% в месяц. Но он ниже по сравнению с Ni-MH аккумулятором, саморазряд которого составляет 20-30% в месяц.

Ni-Cd Зарядка аккумулятора:

Электрохимическое устройство, которое подает энергию во внешнюю цепь посредством внутренней химической реакции, называется ячейкой .Комбинация этих элементов, подключенных последовательно или параллельно, называется батареей .

Ниже приведена спецификация нескольких никель-кадмиевых батарей типоразмеров AA и AAA,

Разница между стандартной зарядкой и быстрой зарядкой зависит от зарядного напряжения, зарядного тока и метода или алгоритма отключения.

Для быстрой зарядки требуется точное отключение питания в конце заряда с учетом температуры элемента или отрицательного изменения напряжения.Различные типы, в которых можно заряжать Ni-Cd аккумулятор, указаны ниже:

.

Батарея, используемая здесь, имеет емкость 600 мАч, как показано ниже, и указывает, что мы должны заряжать элемент при 60 мА, что рекомендуется для медленной зарядки 0,1 ° C. Следовательно, мы сделали медленную зарядку постоянным током.

Необходимые компоненты:
  1. LM317 — 2 номера
  2. 1N4007 — 4 №
  3. Конденсатор, 100 мкФ (электролитический) — 1 шт.
  4. Держатель батареек AAA или AA — 1No
  5. ПОТ (100Ὠ) — 1
  6. Светодиод (Красный -1)
  7. Резисторы (1 кОм -1; 560 Ом -1; 100 Ом -2)
  8. Доска точечная перфорированная
  9. Соединительные провода

Ni-Cd схема медленного зарядного устройства и пояснения:

Вот как выглядит схема на Perf Board:

1. Понижающий трансформатор:

Здесь используется понижающий трансформатор переменного тока с номиналом от 230 В до 15 В, 1 А.Несмотря на то, что выходная токовая нагрузка трансформатора составляет 1 А, допустимый непрерывный ток составляет всего 0,4 А для безопасной работы. Можно использовать трансформатор на 230 В / 0-15 В или 230 В / 15-0-15 В.

2. Мостовой выпрямитель:

Двухполупериодный мостовой выпрямитель преобразует источник переменного тока в источник постоянного тока посредством процесса, называемого выпрямлением и. Выпрямитель, используемый здесь, выполнен с использованием четырех диодов в мостовой конфигурации.

3.Цепь регулятора напряжения:

Здесь LM317 используется для регулирования напряжения; это трехконтактный регулируемый регулятор

Таким образом, необходимое выходное напряжение составляет не более 1,45 В для зарядки аккумулятора.

В ВЫХ = 1,25 * {1+ (100/560 Ом)}

В ВЫХ = 1,47 В

Калькулятор напряжения LM317 можно использовать, если вы ищете какой-нибудь калькулятор для расчета резистора или для планирования выходного напряжения.

4. Цепь ограничителя тока:

Так как зарядный ток для аккумулятора 600мАч будет 60мА. Соответствующий резистор должен быть рассчитан,

I ВЫХ = 1,25 / R

Следовательно, R устанавливается на 21Ὠ, чтобы ограничить ток до 0,06A.

Работа цепи зарядного устройства Ni-Cd аккумулятора:

Напряжение холостого хода без батареи отображается как 1,5 В, что видно из рисунка ниже,

Как упоминалось ранее, выходное напряжение равно 1.49 В, а ток ограничен 60 мА, а красный светодиод указывает на состояние зарядки аккумулятора.

% PDF-1.2 % 45 0 объект > эндобдж xref 45 76 0000000016 00000 н. 0000001868 00000 н. 0000002247 00000 н. 0000002455 00000 н. 0000003005 00000 н. 0000003451 00000 н. 0000003808 00000 п. 0000006765 00000 н. 0000007078 00000 п. 0000007258 00000 н. 0000007439 00000 п. 0000007636 00000 н. 0000008027 00000 н. 0000008208 00000 н. 0000008318 00000 н. 0000008605 00000 н. 0000008682 00000 н. 0000008817 00000 н. 0000009092 00000 н. 0000009514 00000 п. 0000011413 00000 п. 0000011722 00000 п. 0000012093 00000 п. 0000012114 00000 п. 0000013016 00000 п. 0000013496 00000 п. 0000014218 00000 п. 0000014403 00000 п. 0000014582 00000 п. 0000019940 00000 п. 0000020334 00000 п. 0000020829 00000 п. 0000020850 00000 п. 0000021616 00000 п. 0000021835 00000 п. 0000025106 00000 п. 0000025465 00000 п. 0000025831 00000 п. 0000026418 00000 п. 0000026439 00000 н. 0000027219 00000 п. 0000027240 00000 п. 0000027883 00000 п. 0000027904 00000 н. 0000028353 00000 п. 0000028374 00000 п. 0000028816 00000 п. 0000028837 00000 п. 0000029260 00000 н. 0000029489 00000 н. 0000029697 00000 п. 0000029930 00000 н. 0000030138 00000 п. 0000030349 00000 п. 0000030560 00000 п. 0000030771 00000 п. 0000030986 00000 п. 0000031210 00000 п. 0000031462 00000 п. 0000031671 00000 п. 0000031886 00000 п. 0000032098 00000 п. 0000032310 00000 п. 0000032519 00000 п. 0000037275 00000 п. 0000037513 00000 п. 0000037768 00000 п. 0000037999 00000 н. 0000038217 00000 п. 0000038432 00000 п. 0000038666 00000 п. 0000038688 00000 п. 0000039098 00000 н. 0000039177 00000 п. 0000001941 00000 н. 0000002225 00000 н. трейлер ] >> startxref 0 %% EOF 46 0 объект > эндобдж 119 0 объект > ручей Hb«f«

BU-807: Как восстановить никелевые батареи

Узнайте, является ли воспоминание мифом или фактом, и как предотвратить и устранить его.

В никель-кадмиевые годы 1970-х и 1980-х годов в плохих батареях винили «память». Сегодня слово «память» все еще используется, чтобы рекламировать новые батареи как «свободные от памяти». Память происходит из «циклической памяти», что означает, что никель-кадмиевый аккумулятор может запоминать, сколько энергии потреблялось при предыдущих разрядах, и выдает такое же количество при повторных разрядах. Если бы потребовали большего, напряжение резко упало бы, как бы в знак протеста против навязанной сверхурочной работы.

Память возникает при хранении перезаряженной NiCd батареи. Эффект можно обратить вспять с помощью импульсного заряда, но более эффективно применить полный цикл разряда. На рис. 8-26 показан анод обычного NiCd, сформированная память и восстановленный анод.

Новый никель-кадмиевый элемент. Анод (отрицательный электрод) в свежем состоянии. Гексагональные кристаллы гидроксида кадмия имеют поперечное сечение около 1 микрона, что обеспечивает большую площадь поверхности для электролита для максимальной производительности.
Клетка с кристаллическим образованием. Кристаллы
выросли до 50-100 микрон в поперечном сечении, скрывая большие части активного материала от электролита. Неровные края и острые углы могут проткнуть сепаратор, что приведет к усилению саморазряда или короткому замыканию.
Восстановленная ячейка. После импульсного заряда кристаллы уменьшаются до 3–5 микрон: почти 100% восстановление.Если импульсный заряд не эффективен, необходимы упражнения или восстановление.

Рис. 1. Кристаллическое образование на никель-кадмиевом элементе. Кристаллообразование происходит в течение нескольких месяцев, если аккумулятор слишком заряжен и не поддерживается периодическими глубокими разрядами.


В современной никель-кадмиевой батарее больше нет циклической памяти, но она страдает от образования кристаллов . Активный кадмиевый материал наносится на отрицательную пластину, и со временем образуется кристаллическое образование, которое уменьшает площадь поверхности и снижает производительность батареи.На поздних стадиях острые края образующихся кристаллов могут проникать в сепаратор, вызывая сильный саморазряд, который может привести к короткому замыканию.


Когда в начале 1990-х годов никель-металл-гидридный никель-металл-гидрид (NiMH) был представлен как не имеющий памяти, это утверждение верно лишь отчасти. NiMH подвержен запоминанию, но в меньшей степени, чем NiCd. В то время как у NiMH есть только никелевая пластина, о которой нужно беспокоиться, NiCd также включает в себя кадмиевый отрицательный электрод с памятью. Это простое объяснение того, почему NiMH менее восприимчив к памяти, чем NiCd.

Кристаллообразование происходит, если никелевый аккумулятор остается в зарядном устройстве на несколько дней или повторно заряжается без периодической полной разрядки. Поскольку большинство приложений попадают в этот пользовательский шаблон, NiCd требует периодического разряда до 1 В на элемент для продления срока службы. Цикл разрядки / зарядки в рамках технического обслуживания, известный как , упражнение , следует проводить каждые 1–3 месяца. Избегайте чрезмерных физических нагрузок, так как это приведет к излишнему износу аккумулятора.

Если регулярные упражнения не выполняются в течение 6 месяцев или дольше, кристаллы врастают в себя, и полного восстановления с разрядом до 1 В на элемент может быть недостаточно.Восстановление часто возможно путем применения вторичного разряда, называемого , восстановление . Восстановление — это медленная разрядка, при которой батарея разряжается примерно до 0,4 В на элемент и ниже.

Испытания, проведенные армией США, показывают, что никель-кадмиевый элемент должен быть разряжен как минимум до 0,6 В, чтобы эффективно разрушать более устойчивые кристаллические образования. Во время этого корректирующего разряда ток должен поддерживаться низким, чтобы свести к минимуму реверсирование ячейки, поскольку NiCd может выдерживать только небольшое количество реверсирования ячейки. (См. BU-501: Основные сведения о разрядке).). На рисунке 2 показано напряжение батареи во время разряда до 1 В / элемент с последующим вторичным разрядом до 0,4 В / элемент.

Рисунок 2: Циклы проверки и восстановления анализатора батарей (Cadex).

Recondition восстанавливает никель-кадмиевые батареи с трудноизвлекаемой памятью. Восстановление — это медленный глубокий разряд до 0,4 В / элемент.

Предоставлено Cadex

Восстановление является наиболее эффективным средством восстановления неиспользованных аккумуляторов.Анализаторы аккумуляторов (Cadex) автоматически применяют цикл восстановления, если заданная пользователем целевая емкость не может быть достигнута при разряде только до 1 В / элемент. Хотя низкоэффективные батареи часто можно полностью восстановить, высокий саморазряд делает некоторых старожилов непригодными для обслуживания.

Большинство судовых аккумуляторов в больших самолетах — никель-кадмиевые. Эти аккумуляторы, похожие на крупногабаритную стартерную аккумуляторную батарею в автомобиле, обслуживаются путем полной разрядки и поддержания нулевого напряжения в каждой ячейке в течение 24 часов перед подзарядкой.Затем каждая ячейка проверяется на правильное напряжение, и проверка емкости проводится с полным циклом разрядки / зарядки перед их повторной установкой в ​​самолет. Авиационные аккумуляторы следует строгому графику технического обслуживания.

Сводка

Как специалист по уходу за батареями, у вас есть выбор, как продлить срок службы батареи. Каждая аккумуляторная система имеет уникальные потребности в отношении зарядки, глубины разряда и нагрузки, которые необходимо соблюдать. В следующих двух статьях резюмируется, что нравится и что не нравится батареям.

BU-415: Как заряжать и когда заряжать?
BU-706: Сводка правил, которые можно и нельзя

Батареи в портативном мире

Материал по Battery UIniversity основан на незаменимом новом 4-м издании « Batteries in a Portable World — A Handbook on Battery for Non-Engineers », которое доступно для заказа через Amazon.com.

Никель-кадмиевые батареи: основы теории и процедуры обслуживания


Базовая теория и процедуры обслуживания

Джо Эскобар

Никель-кадмиевые батареи, обычно называемые никель-кадмиевыми батареями, широко используются в авиационной промышленности.При надлежащем обслуживании они могут обеспечить годы безотказной работы. Давайте посмотрим на основную конструкцию этих батарей, а также на некоторые вопросы обслуживания, которые следует учитывать при работе с ними.

Конструкция

Элемент является основным элементом никель-кадмиевой батареи. Он состоит из положительных и отрицательные пластины, сепараторы, электролит, вентиляция ячейки и контейнер ячейки. Положительные пластины изготовлены из пористой пластины, на которую нанесен гидроксид никеля.Отрицательные пластины изготовлены из аналогичных пластин, на которые нанесен гидроксид кадмия. В обоих случаях пористый налет получают путем спекания никелевого порошка никелевого порошка с мелкоячеистой сеткой. Спекание — это процесс плавления чрезвычайно мелких гранул порошка при высокой температуре. После того, как активные положительные и отрицательные материалы нанесены на пластину, она формируется и разрезается на пластину нужного размера. Затем к углу каждой пластины приваривается никелевый язычок, и пластины собираются с язычками, приваренными к соответствующим клеммам.Пластины отделены друг от друга сплошной полосой из пористого пластика.

Электролит, используемый в никель-кадмиевых батареях, представляет собой 30-процентный раствор гидроксида калия (КОН) в дистиллированной воде. Удельный вес электролита составляет от 1,240 до 1,300 при комнатной температуре. Следует отметить, что никаких заметных изменений в электролите во время заряда или разряда не происходит. Из-за этого заряд аккумулятора определить невозможно. проверкой удельного веса электролита.Уровень электролита должен поддерживаться чуть выше верхушки пластин.

Зарядка никель-кадмиевых батарей

Когда к никель-кадмиевым батареям подается зарядный ток, отрицательные пластины теряют кислород и начинают образовывать металлический кадмий. Активный материал положительных пластин, гидроксид никеля, становится более окисленным. Этот процесс продолжается, пока подается зарядный ток или пока весь кислород не будет удален с отрицательных пластин, и останется только кадмий.

Ближе к концу цикла зарядки элементы выделяют газ. Это также произойдет, если ячейки будут перезаряжены. Этот газ возникает в результате разложения воды в электролите на водород на отрицательных пластинах и кислород на положительных пластинах. Напряжение, используемое во время зарядки, а также температура определяют, когда произойдет выделение газа. Чтобы полностью зарядить никель-кадмиевую батарею, должно иметь место выделение газа, пусть даже незначительное; таким образом будет использовано немного воды.

Разряд

Во время разряда химическое действие меняется на противоположное.Положительные пластины медленно выделяют кислород, который восстанавливается отрицательными пластинами. Этот процесс приводит к преобразованию химической энергии в электрическую. Во время разряда пластины поглощают некоторое количество электролита. При перезарядке уровень электролита повышается, а при полной зарядке уровень электролита будет максимальным. Поэтому воду следует добавлять только тогда, когда аккумулятор полностью заряжен.

Переход со свинцово-кислотных на никель-кадмиевые

Никель-кадмиевые аккумуляторы обычно взаимозаменяемы со свинцово-кислотными аккумуляторами.При замене свинцово-кислотного аккумулятора на никель-кадмиевый аккумуляторный отсек должен быть чистым, сухим и не содержать следов кислоты от старого аккумулятора. Отсек необходимо промыть и нейтрализовать раствором аммиака или борной кислоты, дать ему полностью высохнуть, а затем покрасить стойким к щелочам лаком.

Перед подключением вентиляционной системы аккумуляторной батареи прокладку поддона аккумуляторной батареи следует пропитать 3-процентным (по весу) раствором борной кислоты и воды.

Обслуживание никель-кадмиевых аккумуляторов

Существуют значительные различия в методах обслуживания, необходимых для никель-кадмиевых аккумуляторов и свинцово-кислотных аккумуляторов.Наиболее важные моменты, на которые следует обратить внимание, заключаются в следующем.

Для никель-кадмиевых аккумуляторов должна быть предусмотрена отдельная площадка для хранения и обслуживания. Электролит химически противоположен серной кислоте, используемой в свинцово-кислотных аккумуляторах. Пары свинцово-кислотной батареи могут загрязнить электролит в никель-кадмиевой батарее. Эта мера предосторожности должна включать такое оборудование, как ручные инструменты и шприцы, используемые со свинцово-кислотными батареями. В самом деле, необходимо принять все возможные меры предосторожности, чтобы все, что содержит кислоту, не попадало в магазины с никель-кадмиевыми батареями.

Электролит гидроксида калия, используемый в никель-кадмиевых батареях, чрезвычайно агрессивен. Защитное снаряжение, такое как очки, резиновые перчатки и резина. При обращении с аккумуляторными батареями и их обслуживании следует использовать фартуки. На случай попадания электролита на одежду или кожу необходимо предоставить подходящие средства для стирки. Любое такое воздействие электролита следует немедленно промыть водой или уксусом, лимонным соком или раствором борной кислоты. Помните, что когда гидроксид калия и дистиллированная вода смешиваются для получения электролита, гидроксид калия следует добавлять в воду медленно, а не наоборот.

Не используйте проволочную щетку для очистки аккумулятора. Использование металлической щетки может вызвать сильное искрение. Кроме того, вентиляционные пробки должны быть закрыты во время процесса очистки, а аккумулятор никогда не следует очищать кислотами, растворителями или какими-либо химическими растворами. Пролитый электролит может реагировать с диоксидом углерода с образованием кристаллов карбоната калия. Они не токсичны и не вызывают коррозии, их можно ослабить волоконной щеткой и протереть влажной тканью. Когда карбонат калия образуется на правильно обслуживаемой батарее, это может указывать на то, что батарея перезаряжается из-за того, что регулятор напряжения не отрегулирован.

Никогда не добавляйте дополнительную воду в аккумулятор раньше, чем через три или четыре часа после полной зарядки. Если вам нужно добавить воды, используйте только дистиллированную или деминерализованную воду. Кроме того, будьте осторожны, чтобы не залить аккумулятор водой. Если вы это сделаете и вам придется удалить часть жидкости, вы уменьшите концентрацию гидроксида калия в ячейке. Это повлияет на его работу.

Поскольку электролит не вступает в химическую реакцию с пластинами ячейки, его удельный вес существенно не изменяется.Таким образом, невозможно определить уровень заряда никель-кадмиевой батареи с помощью ареометра. Кроме того, заряд никель-кадмиевой батареи нельзя определить с помощью испытания напряжения, поскольку напряжение никель-кадмиевой батареи остается постоянным в течение 90 процентов цикла разряда.

Периодичность обслуживания

Никель-кадмиевые батареи следует регулярно обслуживать, исходя из опыта, поскольку расход воды зависит от температуры окружающей среды и методов работы. Через большие промежутки времени аккумулятор следует снимать с самолета и подвергать стендовой проверке в магазине.

Если аккумулятор полностью разряжен, некоторые элементы могут достичь нулевого потенциала и заряжаться в обратном направлении. Это может повлиять на него таким образом, что он не сможет удерживать полный заряд емкости. В этом случае аккумулятор следует разрядить и сбалансировать каждую ячейку перед подзарядкой аккумулятора. Это называется выравниванием.

Зарядка может выполняться как при постоянном напряжении, так и при постоянном токе. Для зарядки с постоянным потенциалом поддерживайте постоянное напряжение зарядки до тех пор, пока зарядный ток не упадет до 3 ампер или менее, убедившись, что температура аккумуляторных элементов не превышает 100 градусов по Фаренгейту и напряжение начинает снижаться.

Капельная зарядка

Капельная зарядка — это процесс поддержания аккумулятора в активном режиме ожидания путем непрерывной зарядки аккумулятора в состоянии перезарядки. Хотя некоторые производители не рекомендуют эту процедуру для зарядки, некоторые операторы выбрали этот метод для зарядки своих никель-кадмиевых аккумуляторов. Имейте в виду, что использование капельного зарядного устройства со временем приведет к расходу воды из-за эффекта газообразования, о котором говорилось ранее. Вы должны отрегулировать электролит выровняйте перед установкой аккумулятора на борт самолета.В противном случае существует риск аварии с аккумулятором, поскольку элементы могут высохнуть до нормального окончания интервала технического обслуживания.

Безопасное обращение

Никель-кадмиевые батареи, как правило, не опасны при нормальной работе и имеют достаточно прочную конструкцию, чтобы выдерживать проколы при типичных сценариях повреждения. Однако, если по какой-то причине они разорвутся, они могут быть довольно опасными. Гидроксид калия в никель-кадмиевых батареях представляет собой раствор щелочи, который опасен и сильно разъедает кожу.Эта жидкость может вылиться в случае повреждения аккумулятора. Попадание на кожу может вызвать ожоги. Попадание в глаза может привести к необратимому повреждению глаз. При проглатывании он токсичен. Избегайте вдыхания паров в закрытом помещении, так как это может вызвать раздражение во рту, горле и легких. Длительное воздействие паров гидроксида калия может вызвать заболевания печени и почек, и OSHA идентифицировало его как возможный канцероген.

Лица, работающие с никель-кадмиевыми батареями, должны избегать контакта с внутренними компонентами и тщательно мыть руки после работы.В случае разлива обязательно наденьте защитную одежду, включая перчатки из винила или ПВХ, очки и маску для лица. Конечно, никогда не пытайтесь ликвидировать разлив опасного материала, если вы не прошли надлежащую подготовку.

Отгрузка

Имейте в виду, что никель-кадмиевые батареи содержат опасные материалы и должны иметь маркировку и документацию в соответствии с действующими правилами IATA (UN2797 или UN2800, если применимо), регулирующими транспортировку вентилируемых никель-кадмиевых батарей.

В конце концов, вы можете помочь продлить срок службы ваших никель-кадмиевых батарей, применяя надлежащие методы обслуживания. Весь персонал, который их обслуживает или даже обслуживает, должен быть обучен надлежащим методам работы. Обязательно следуйте всем процедурам, рекомендованным производителем. Если возможно, воспользуйтесь любым обучением, проводимым производителем или его дистрибьюторами. В конце концов, знание правильных процедур может обеспечить долгую и безопасную жизнь вашей батареи.

Дополнительные ресурсы

Консультативный циркуляр FAA 00-33B
Никель-кадмиевые батареи, методы эксплуатации, технического обслуживания и капитального ремонта.

Аккумуляторы Marathon
P.O. Box 8233
Waco, TX 76714
(254) 776-0650
www.mptc.com

Saft
711 Industrial Boulevard
Valdosta, Georgia 31601
(229) 247-2331
www.saftbatteries.com

Обзор аккумуляторных батарей и Fa

Аннотация: В этой заметке по применению представлен обзор никель-кадмиевых (NiCd), никель-металл-гидридных (NiMH) и литий-ионных (Li-Ion, Li +) аккумуляторных батарей, обсуждаются их характеристики и объясняется, как безопасно быстро заряжать NiMH. и литий-ионные аккумуляторные батареи в автономной конфигурации без использования контролирующего микроконтроллера.

Введение

Перезаряжаемые батареи являются стандартным источником питания для современных продуктов, особенно для портативных устройств, таких как ноутбуки, мобильные телефоны и цифровые фотоаппараты. Даже когда уровни мощности падают, абсолютное количество энергии, потребляемой аккумуляторными батареями, растет. Причин тому несколько: постоянная интеграция функций (например, мобильный телефон с цифровой камерой), более высокая скорость вычислений в портативных компьютерах и удобство больших цветных дисплеев.Вследствие такого высокого уровня энергопотребления портативных устройств использование перезаряжаемой батареи стало более рентабельным, чем использование стандартной батареи. Еще более важны экологические преимущества аккумуляторных батарей. Использование аккумуляторных батарей значительно снижает количество опасных материалов, сбрасываемых в окружающую среду, потребление материалов и энергию, необходимую для производства эквивалента в неперезаряжаемых батареях.

В этом примечании по применению содержится обзор химического состава аккумуляторных батарей; в нем подробно описаны их типичные характеристики и важные соображения при выборе типа батареи.Затем в статье описывается, как безопасно и быстро заряжать никель-металлгидридные и литий-ионные аккумуляторные батареи в автономной конфигурации без использования микроконтроллера или сетевого адаптера с защитой от скачков напряжения.

Типы аккумуляторных батарей

В середине 1980-х годов портативные устройства, такие как телефоны DECT, кассетные плееры и электробритвы, питались в основном от никель-кадмиевых (NiCd) аккумуляторных батарей. Никель-металлогидридные (NiMH) и литий-ионные (Li-Ion) аккумуляторные батареи появились позже и появились на массовом рынке к концу девяностых годов.Никель-кадмиевые батареи

были особенно популярны в недорогих приложениях, потому что они были дешевле, чем никель-металлогидридные и литий-ионные батареи. Поскольку NiCd обеспечивает самый высокий уровень разрядного тока, они также использовались в приложениях, требующих высоких уровней мощности в течение коротких периодов времени.

С другой стороны, никель-кадмиевые батареи когда-то страдали от так называемого эффекта памяти (в современных никель-кадмиевых батареях это случается редко), что снижает емкость батареи. Если такую ​​никель-кадмиевую батарею перезаряжать до полной разрядки, часть активного материала (до 100 мкм на стороне кадмия анода) остается неиспользованной и начинает кристаллизоваться, тем самым устраняя себя от химического воздействия.(Кристаллы кадмия на аноде свежей батареи имеют толщину приблизительно один микрометр.)

В результате эффект памяти дает батарею с меньшей емкостью и более низким напряжением на клеммах, в результате чего NiCd батарея достигает минимального допустимого напряжения на клеммах (точка отключения) раньше, чем хотелось бы ( Рисунок 1 ). Еще одним недостатком никель-кадмиевых батарей является ядовитый кадмий (Cd) в их активном материале. Эти ранние типы никель-кадмиевых аккумуляторов оказались не только экономическим, но и экологическим бременем при утилизации дефектных аккумуляторов.Как следствие, Европейское постановление 2000/53 / EG запрещает продажу никель-кадмиевых аккумуляторных батарей с 31 декабря 2005 г.

Никель-металлогидридные батареи более экологически безопасны, чем никель-кадмиевые, но они также стоят дороже. Их токи разряда ниже, но они страдают от ленивого эффекта, который является более слабой версией эффекта памяти в никель-кадмиевых батареях. Ленивый эффект возникает из-за кристаллизации части никеля. Подобно эффекту памяти, ленивый эффект не позволяет полностью использовать емкость перезаряжаемой батареи; Однако обоих эффектов можно избежать, используя зарядные устройства с функцией разряда.


Рис. 1. Сравнение эффекта памяти в NiCd и ленивого эффекта в NiMH.

Литий-ионные аккумуляторные батареи более дорогие, но они имеют значительно более высокую плотность энергии и, следовательно, могут обеспечить более высокую производительность для данного размера. В свою очередь, эта возможность делает их подходящими для небольших портативных устройств.

Таблица 1 дает обзор основных характеристик каждого типа батарей.

Таблица 1.Обзор типов аккумуляторов

NiCd NiMH Литий-ионный
Плотность энергии Среднее значение Среднее значение Высокая
Эффект запоминания или ленивый эффект Эффект памяти Ленивый эффект Нет
Затраты дешевые Среднее значение Дорого
Саморазряд,% в месяц * ~ 25 ~ 25 ~ 8
Максимальный ток разряда> 5C <3C <2C
* при комнатной температуре
C = емкость аккумулятора

Автономные устройства быстрой зарядки для никель-металлгидридных аккумуляторов

Даже для тех, кто предпочитает литий-ионные аккумуляторы, никель-металлгидридные аккумуляторы популярны, потому что они значительно дешевле литий-ионных аккумуляторов и доступны в стандартных размерах AA и AAA, которые часто встречаются в оборудовании, таком как MP3-плееры, насадки для вспышки и велосипеды. лампы.

Температура и напряжение на клеммах никель-металлгидридной аккумуляторной батареи постоянно повышаются по мере заряда батареи, а затем резко меняются после ее полной зарядки (, рис. 2, ). Таким образом, основная задача зарядного устройства NiMH состоит в том, чтобы распознать эту точку перегиба и прервать зарядку, либо оно может переключиться с быстрой зарядки на непрерывную зарядку. Кроме того, постоянный независимый (вторичный) мониторинг температуры и напряжения повышает безопасность во время процесса зарядки.


Рисунок 2.Эти кривые показывают типичные временные изменения напряжения (вверху) и температуры (внизу) при зарядке NiMH аккумуляторной батареи.

Зарядные устройства семейства DS2711 / DS2712 имеют эти функции. Кроме того, они работают независимо и поэтому не нуждаются в контроле со стороны микроконтроллера или микропроцессора. Они предназначены для зарядки одной стандартной аккумуляторной батареи AA или AAA или пары батарей в последовательной или параллельной конфигурации. DS2711 работает как линейный контроллер, а DS2712 как переключающий контроллер.Чтобы максимально продлить срок службы и сэкономить батареи, эти зарядные устройства имеют четыре режима зарядки: предварительная зарядка, быстрая зарядка, дозаправка и поддерживающая (непрерывная) зарядка. В режиме пополнения, например, скорость зарядки переключается на более низкую скорость (до 25% для DS2711) вскоре после полной зарядки аккумулятора.

В дополнение к уже упомянутым функциям мониторинга зарядные устройства DS2711 / DS2712 имеют внутренний таймер, который позволяет установить максимальное время зарядки (например, от 0,5 до 10 часов в режиме быстрой зарядки) путем подключения внешнего резистора к TMR. приколоть.Таким образом, время дополнительной зарядки (от 0,25 до 5 часов) составляет половину установленного максимального времени зарядки. Номинал резистора с точки зрения приблизительного желаемого времени зарядки (T APPROX ) составляет

R = 1000T APPROX / 1,5 (уравнение 1)

Если максимальное время зарядки превышено в режиме быстрой зарядки, зарядное устройство переключается с быстрой зарядки на дозаправку и сбрасывает таймер. Затем таймер отсчитывает время полной зарядки.Если это значение превышено, зарядное устройство переключается из режима пополнения в режим обслуживания (непрерывный заряд) (, рис. 3, ).


Рис. 3. В этой стандартной прикладной схеме микросхема зарядного устройства DS2711 последовательно заряжает две никель-металлгидридные аккумуляторные батареи.

Разъемы VP1 и VP2 контролируют напряжение; а THM1 и THM2 (с помощью термисторов) контролируют температуру зарядки каждой аккумуляторной батареи. Клеммы TMR (таймер) и R SNS (резистор датчика) используются для установки времени зарядки и тока зарядки.Еще одна функция зарядных устройств DS2711 / DS2712 определяет, неисправна ли заряжаемая батарея или вы случайно установили в зарядное устройство первичную щелочную батарею вместо перезаряжаемых батарей. В этом случае зарядное устройство отключается. Это важная особенность, поскольку зарядка щелочной батареи может привести к протечке батареи и образованию опасных жидкостей и / или газов. Газы токсичны, а жидкости вступают в реакцию с окружающей средой, часто повреждая схемы и / или корпуса оборудования.

Как определяются щелочные батареи?

Типичное внутреннее сопротивление для новых NiMH аккумуляторных батарей AA большой емкости составляет от 30 мОм до 100 мОм, а для щелочной батареи оно обычно составляет от 200 мОм до 300 мОм (но может достигать 700 мОм, в зависимости от состояния заряда). Неисправные аккумуляторные батареи имеют гораздо более высокое внутреннее сопротивление. Таким образом, зарядные устройства DS2711 / DS2712 рассчитывают внутреннее сопротивление заряжаемых аккумуляторов, используя измеренные напряжения аккумуляторов (VP1 и VP2) и установленный зарядный ток.

Вывод CTST (для проверки ячеек, установка порога) управляет измерением импеданса ячейки. V CTST — это разница между напряжением элемента во время заряда за вычетом напряжения холостого хода (OCV) элемента без тока заряда. Это значение равно произведению зарядного тока на импеданс ячейки. Если измерительные контакты (VP1, VP2 и VN1) не подключены к батарее по Кельвину, контактное сопротивление также измеряется и должно учитываться при настройке V CTST .Формула для расчета значения внешнего резистора R CTST :

R CTST = 8000 [В² / A] / V CTST , где V CTST = I CHARGE × R ЯЧЕЙКА (уравнение 2)

Например, при зарядке никель-металлгидридного элемента емкостью 2200 мАч со скоростью C / 2 (1,1 А) и выборе R CELL = 150 мОм в качестве порогового значения сопротивления отклонению ячейки V CTST будет:

В CTST = I ЗАРЯД × R ЯЧЕЙКА = 1.1 А × 150 мОм = 0,165 В

Или:

R CTST = 8000 [В² / А] / 0,165 В = 48 485 Ом
(ближайшее стандартное значение 1% составляет 48,7 кОм)

Если уровень V CTST (в данном случае> 0,165 В), что указывает на то, что внутреннее сопротивление батареи плюс контактное сопротивление превышает 150 мОм, ИС выдает логическое или оптическое сообщение об ошибке (LED1, LED2) и останавливает процедуру зарядки (, рис. 4, ).


Рисунок 4. Эта блок-схема иллюстрирует процедуру зарядки, реализованную IC на рисунке 3.

Автономное быстрое зарядное устройство для литий-ионных аккумуляторов

Зарядка литий-ионных аккумуляторов проще, чем зарядка никель-металлгидридных аккумуляторов, поскольку нет необходимости контролировать скорость изменения напряжения (dV / dt). Кроме того, поскольку литий-ионные аккумуляторные батареи чувствительно реагируют на избыточное напряжение, для процесса зарядки требуется точный источник питания 4,2 В ± 50 мВ с постоянным зарядным током. Для никель-металлгидридных аккумуляторов зарядное устройство должно иметь вторичные функции контроля (температура, таймер), а также функцию контроля первичного напряжения.

MAX8601, автономное зарядное устройство для литий-ионных аккумуляторных батарей, имеет источник напряжения с внутренним управлением под названием V BATT , который измеряет 4,2 В ± 0,021 В при + 25 ° C или 4,2 В ± 0,034 В в диапазоне 40 ° C BATT (, рис. 5, ). Внешний резистор (на выводе SETI) и внешний конденсатор (на выводе CT) устанавливают ток зарядки и внутренний таймер.В зарядном устройстве также используется резистор NTC для контроля температуры аккумуляторной батареи.


Рис. 5. Стандартная прикладная схема автономного зарядного устройства MAX8601 для литий-ионных аккумуляторов.

Основным преимуществом зарядного устройства MAX8601 является его способность заряжать аккумулятор через внешний сетевой адаптер (вывод постоянного тока) или порт USB (, рис. 6, ). Порт USB обеспечивает зарядный ток 100 мА или 500 мА (типичный выходной ток USB), в зависимости от настройки контакта USEL.Чип автоматически выбирает внешний источник (сетевой адаптер или USB), и, если доступны оба источника, заряжает аккумулятор через сетевой адаптер. Каждый источник должен иметь минимальное напряжение 4,5 В. Возможность зарядки через порт USB экономит стоимость внешнего блока питания. Силовые блоки часто бывают громоздкими и энергоэффективными.

MAX8601 оптимизирует зарядку литий-ионных элементов с помощью алгоритма управления, который включает предварительную зарядку при низком уровне заряда батареи, быструю зарядку с ограничением по напряжению и току и дозаправку.Он также имеет функцию сброса при включении и непрерывно контролирует аккумулятор на предмет перенапряжения, перегрева / пониженной температуры и времени зарядки. Повышенное напряжение, перегрев или пониженная температура во время зарядки могут необратимо повредить аккумулятор, что приведет к снижению емкости и срока службы аккумулятора и даже к разрядке аккумулятора. В наихудших условиях может произойти протекание или взрыв батарейного отсека. MAX8601 гарантирует отсутствие повреждений во время зарядки, тем самым продлевая срок службы батареи и исключая потенциально опасные условия.


Рисунок 6. Эта блок-схема иллюстрирует процедуру зарядки, реализованную IC на рисунке 5.

Сводка

DS2711 / DS2712 и MAX8601 — это автономные зарядные устройства, чьи многочисленные функции мониторинга (напряжение, мощность, температура и таймер) не требуют ни микроконтроллера, ни сетевого адаптера с защитой от скачков напряжения. Оба устройства обеспечивают четкое и простое внешнее переключение.

Общие вопросы и ответы

  1. Можно ли заряжать никель-кадмиевые батареи с помощью зарядного устройства для никель-металлгидридных аккумуляторов?
    Ответ: С умеренным успехом, потому что аккумуляторные батареи имеют разные характеристики отключения.Никель-кадмиевые батареи должны быть отключены, когда dV / dt = 0, и никель-металлгидридные батареи должны быть отключены, когда dV / dt <0.
  2. Можно ли установить перезаряжаемые батареи разной емкости или установить смесь старых и новых батарей в приборе?
    Ответ: Это можно сделать, но не рекомендуется, потому что производительность устройства определяется самой слабой батареей.
  3. Когда нельзя использовать аккумуляторные батареи?
    Ответ: Не используйте их в таких приложениях, как дистанционное управление и дымовая сигнализация, для которых потребляемая мощность низка и устройство не используется постоянно.Перезаряжаемые батареи, как правило, имеют более высокую скорость саморазряда, чем обычные батареи. Например, никель-металлгидридные батареи теряют 1% своей емкости каждый день. Таким образом, время их работы значительно меньше.
  4. Можно ли заряжать неперезаряжаемую батарею, например щелочную?
    Ответ: Не заряжайте щелочные батареи. Их химия и конструкция несовместимы с зарядкой. Энергия, направляемая в щелочную батарею, генерирует тепло, и при повышении внутренней температуры корпус батареи обычно начинает протекать и иногда может взорваться.Материал внутри ядовит и опасен для большинства сред.
  5. Почему важно следить за температурой аккумуляторной батареи?
    Ответ: Несмотря на то, что химический состав и конструкция аккумуляторной батареи совместимы для зарядки, существуют ограничения на количество энергии и уровень энергии, с которым аккумулятор может справиться. Слишком большое количество энергии слишком быстро увеличивает внутреннюю температуру, и, как и в щелочной батарее, корпус батареи может протечь или даже взорваться. Когда аккумулятор полностью заряжен, любой дополнительный заряд, нагнетаемый в аккумулятор, вызывает нагрев.Если температура не контролируется и скорость заряда соответственно уменьшается или останавливается, могут возникнуть такие же экологически вредные результаты. Вот почему DS2711 / DS2712 / MAX8601 отслеживают так много параметров во время зарядки. Они обеспечивают максимально продолжительное время автономной работы и максимально безопасные условия зарядки.

Дополнительные ресурсы
Maxim Integrated
VARTA
Duracell®
Battery University
Stiftung Gemeinsames und Rücknahmesystem Batterien [Немецкая общая система сбора отработанных батарей]

Аналогичная статья появилась в мартовском выпуске журнала Design and Elektronik за 2006 г. .

Как сохранить заряд аккумулятора телефона

Телефон в твоем кармане — современное чудо. То же самое с ноутбуком на столе, планшетом в рюкзаке, может быть, даже с часами на запястье. И независимо от того, на что каждая из них способна, у всех них есть один краеугольный компонент, за который следует благодарить, тот, о котором вы, вероятно, должны знать, как заботиться: батарея.

Первый шаг к определению уровня заряда аккумулятора вашего устройства — это сузить диапазон. Первый тип, о котором вы можете подумать (и тот, с которым вы, вероятно, выросли) — это никель-металлогидридные или никель-металлгидридные батареи.Как правило, это те, которые выглядят как обычные одноразовые батареи, за исключением того, что вы можете подключить их к настенному зарядному устройству, чтобы получить дополнительный заряд, когда ваш пульт от телевизора умирает.

Батареи в ваших современных гаджетах — от iPhone и ноутбуков до наушников Bluetooth и планшетов — совсем другое дело. Это литий-ионные (также известные как литий-ионные) батареи, и они имеют довольно значительные преимущества перед никель-металлгидридными и другими аккумуляторными батареями, которые были раньше. Литий-ионные батареи также полностью отличаются от обычных литиевых батарей, которые нельзя перезаряжать.

Та старая пила о том, что всегда нужно заряжать аккумулятор полностью и использовать его, пока он не разрядится? Эффект памяти, как его называют, влияет на NiMH аккумуляторы, но не относится к вашему телефону. На самом деле, когда вы это делаете, вы ненавидите аккумулятор телефона. Точно так же литий-ионные батареи не нуждаются в «калибровке» с полной зарядкой и полной разрядкой, когда они новые.

Литий-ионные аккумуляторы

могут вместить большую мощность в небольшой размер, и они не теряют слишком много энергии из-за утечки, когда они не используются.Комбинация этих факторов делает их отличными для ваших портативных гаджетов.

Как работает литий-ионный аккумулятор?

Все батареи работают с двумя электродами — анодом и катодом — между которыми находится связка материала, называемого электролитом. Когда вы подключаете батарею к замкнутой цепи, на аноде начинается химическая реакция, и там начинают накапливаться электроны. Эти электроны хотят добраться до катода, где меньше людей, но электролит между этими двумя частями не дает электронам пройти туда короткий путь.Единственный выход — это цепь, в которую втиснута батарея, и эти электроны питают ваше устройство в процессе. Между тем, положительно заряженные ионы лития, которые оставляют электроны, проходят через электролит и встречаются с электронами на катодной стороне.

Как только все электроны совершат путешествие, ваша батарея разряжена. Кроме! Если вы используете перезаряжаемый аккумулятор, например литий-ионный, вы можете полностью изменить процесс. Если вы сбрасываете энергию в цепь с помощью зарядного устройства, вы можете заставить реакцию пойти в другом направлении и снова заставить эту сторону электронов на аноде снова скопиться.Как только ваша батарея будет перезаряжена, она будет оставаться такой до тех пор, пока не появится что-то для питания снова, хотя все батареи со временем теряют заряд.

Емкость батареи — то, как долго она может питать ваши вещи — зависит от количества ионов лития, которые могут застрять в крошечных пористых кратерах анода или катода. Со временем при повторной зарядке анод и катод разрушаются и не могут вместить столько ионов, сколько раньше. При этом аккумулятор перестает держать заряд так же хорошо, как когда-то.

Этот контент импортирован с YouTube. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Как заряжается литий-ионный аккумулятор?

Легко представить себе зарядку аккумулятора, как будто вы наполняете ванну «энергией». Просто подсоедините шланг до полного заполнения! Снаружи это работает именно так, но внутри все более тонко.

Литий-ионный аккумулятор обычно заряжается в два этапа.Сначала идет процесс, называемый зарядкой постоянным током. Это действительно довольно простая часть. Зарядное устройство для вашего телефона или планшета будет подавать постоянный электрический ток на аккумулятор, чтобы вернуть все эти электроны обратно на анод. На этом этапе зарядное устройство просто определяет, сколько энергии выходит из пожарного шланга, и начинает распыление. Чем выше этот постоянный ток, тем быстрее может заряжаться аккумулятор. Высоковольтные устройства быстрой зарядки, такие как те, которые начинают поставляться с большим количеством новых телефонов, используют преимущества этого первого этапа, чтобы как можно быстрее втиснуть заряд (за счет небольшой дополнительной нагрузки на аккумулятор) .

Когда аккумулятор заряжен на 70 процентов, процедура меняется и переключается на зарядку с постоянным напряжением. Во время этого второго этапа зарядное устройство следит за тем, чтобы напряжение, то есть разница в токе между батареей и зарядным устройством, оставалось неизменным, вместо того, чтобы поддерживать постоянным ток. Фактически это означает, что по мере того, как батарея приближается к полной, ток, который зарядное устройство посылает в нее, уменьшается. По мере того, как аккумулятор полностью заряжается, скорость его зарядки снижается. Как только вы достигнете 100 процентов, заряд просто начнет поступать, ровно настолько, чтобы учесть крошечный, крошечный заряд, который ваша батарея естественным образом теряет с течением времени.

Так что насчет перезарядки? Вам нужно об этом беспокоиться? Нет. Я поговорил с Эндрю Голдбергом, техническим писателем iFixit, и он объяснил почему.

Все современные литий-ионные аккумуляторные устройства имеют своего рода ИС управления питанием, предназначенную для предотвращения перезарядки аккумулятора. Они будут поддерживать аккумулятор вашего телефона полностью заряженным и готовым к работе в течение всей ночи с минимальной подзарядкой.

Зарядное устройство Lightning для iPhone

Петри Остхёйзен / EyeEmGetty Images


Тысяча способов умереть

Независимо от того, сколько раз вы возвращали его к жизни, ваша батарея когда-нибудь умрет или, по крайней мере, превратится в тень своего прежнего состояния.Это неизбежно. Большинство литий-ионных аккумуляторов имеют номинальный срок службы от 500 до 1500 циклов зарядки.

Один цикл — это всего лишь один цикл разряда, но сколько энергии вы разряжаете за один раз — показатель, называемый глубиной разряда (DoD) — имеет большое значение. Литий-ионные аккумуляторы ненавидят большую глубину разряда. Согласно Battery University, ошеломляюще исчерпывающему ресурсу по этой теме, литий-ионный аккумулятор, который проходит через 100% DoD (пользователь полностью доводит его до нуля перед подзарядкой), может упасть до 70% от своей исходной емкости за 300-500 лет. циклы.При DoD 25 процентов, когда пользователь подключает его, как только остается 75 процентов, та же самая батарея может быть заряжена до 2500 раз, прежде чем она начнет серьезно разряжаться.

Что гораздо опаснее для здоровья аккумулятора, так это тепло. Литий-ионные батареи ненавидят тепло. Литий-ионный аккумулятор, который в течение года подвергался воздействию температур около 100 градусов по Фаренгейту, потеряет около 40 процентов своей общей емкости заряда. При 75 градусах он потеряет всего около 20 процентов.

Зарядка не является проблемой. Вопреки тому, что вы могли подумать (или вам сказали), оставлять телефон или ноутбук постоянно включенным в розетку — неплохо для его аккумулятора. Это потому, что ваши гаджеты, батареи в них и зарядные устройства, к которым вы их подключаете, на самом деле довольно умны в том, как они работают. Мелкий заряд — то, что получает ваша батарея, когда она подключена и полностью заряжена, — гораздо менее вредно для здоровья батареи, чем большая разрядка.

, оставляя телефон или ноутбук все время подключенным к розетке, неплохо для его аккумулятора

Между тем существует опасность, о которой вы можете не подозревать, — это полная разрядка.Когда аккумулятор перестает питать телефон, это не значит, что он на самом деле разряжен. Это не! Литий-ионные аккумуляторы разряжаются только большую часть времени, главным образом потому, что, когда они полностью разряжаются, они могут стать очень нестабильными. Если батарея приближается к этой опасной зоне, схема защиты в батарее сработает и уничтожит батарею навсегда и по-настоящему, функционально разрушив батарею, прежде чем она сможет разрядиться до уровня, при котором существует опасность взрыва.

Как мне ухаживать за моей драгоценной литий-ионной батареей?

1.Аккумулятор 300mAh для Nokia Lumia 620

TechStage

Теперь, когда вы знаете основы небольшого количества энергии, которое поддерживает работу вашего телефона, вот несколько простых практических советов, которые помогут сохранить его работоспособность, не сводя себя с ума.

1. Да, вы можете оставить телефон включенным на ночь.

Это не конец света, если вы не отключите телефон от электросети, как только он зарядится. Это зарядное устройство умнее, чем вы думаете. Оставить телефон на зарядном устройстве на всю ночь (или весь день) намного лучше для аккумулятора, чем разрядить его и зарядить.

2. По возможности немного подзаряжайте.

Литий-ионные батареи

плохо реагируют на полную зарядку, а затем на полную разрядку. Они гораздо лучше переносят небольшие заряды здесь и там.

3. Да, вы можете постоянно оставлять ноутбук подключенным к сети.

Не беспокойтесь о перезарядке аккумуляторов в ваших гаджетах, и особенно о перезарядке ноутбука. То, что мы только что сказали о телефонах, применимо и здесь.И вдобавок ко всему, многие ноутбуки (на самом деле большинство) достаточно умны, чтобы полностью исключить аккумулятор из уравнения зарядки после его полной зарядки. Батарея просто терпеливо сидит там, пока она вам не понадобится, или пока ей не понадобится еще один небольшой разряд, чтобы зарядить ее.

MacBook Air зарядка

Трэвис Айзекс

4. Но, может быть, вытащите аккумулятор ноутбука, пока он находится в зарядном устройстве, если сможете.

Самая большая опасность для аккумулятора вашего ноутбука — а также аккумулятора телефона и планшета — не перезаряд, а нагрев.Имея это в виду, было бы разумно вытащить аккумулятор ноутбука, когда вы подключены к стене, если можете. Как объясняет Эндрю из iFixit:

Если вы используете свой ноутбук в качестве настольного компьютера и выделяете много тепла, определенно стоит вынуть съемную батарею, чтобы предотвратить ее перегрев и износ. Я видел заметное уменьшение емкости аккумулятора в моем ноутбуке за последний год, что я приписываю фотошопам на моем столе.

Загвоздка в том, что, если вы используете компьютер без батареи, вы рискуете завершить работу в случае отключения электроэнергии или неуклюжести с адаптером питания.Взвесьте свои приоритеты.

Если вы не можете или не хотите извлекать аккумулятор из ноутбука, по крайней мере, убедитесь, что у вас хороший воздушный поток. Не закрывайте вентиляционные отверстия. Может даже вентилятор с подставкой подобрать.

5. Держите батареи в прохладном месте.

Говоря о температуре, не оставляйте телефон на весь день в горячей машине. Или поместите его на игровой компьютер. Или использовать в сауне. По возможности старайтесь избегать беспроводной зарядки, потому что тепло, выделяемое этими зарядными устройствами, также сжигает вашу батарею.Также остерегайтесь устройств быстрой зарядки. Хотя ваш телефон и зарядное устройство, как правило, достаточно умны, чтобы свести к минимуму ущерб от высоковольтных зарядных устройств, большая сверхбыстрая энергия может привести к дополнительному нагреву. А если вам нужно какое-то время хранить гаджет или его аккумулятор, делайте это в сухом прохладном месте.

6. Храните аккумуляторы немного заряженными.

Если вы храните батареи, вы сначала дадите им половину заряда. Они будут медленно терять свой заряд с течением времени, и если он упадет в зону истинного нуля, ваша батарея автоматически отключит свою цепь безопасности и по-настоящему убьет себя, прежде чем она станет нестабильной.

7. Может быть, замените, если сможете.

Если вы на грани безумия относительно времени автономной работы, подумайте о выборе гаджетов со съемными батареями, когда это возможно. Во-первых, нет более быстрого способа «зарядить» гаджет, чем заменить полностью заряженный аккумулятор. И если вы не можете избежать этих плохих методов работы с батареями, по крайней мере, вы можете начать все сначала, купив новую батарею.

Как отмечает Эндрю из iFixit:

Для устройств с недоступным аккумулятором, который ставит определенный срок полезного использования устройства.Для чего-то, что длится около 500 циклов зарядки и заряжается каждый день, вы ожидаете менее чем 2 года, прежде чем вы начнете видеть заметное сокращение срока службы батареи.

8. Не позволяйте батарее управлять вашей жизнью.

Мартин Абегглен

Если вы будете следовать самым основным практическим правилам — не переходите от полного к пустому, если вы можете этого избежать и минимизировать воздействие тепла, насколько это возможно, — все будет в порядке.Легко зациклиться на уходе за батареями, чтобы предрассудки о зарядке превратились в навязчивый ритуал. Но запомните две вещи:

1. Ваши гаджеты и аккумуляторы созданы таким образом, чтобы вы не испортили их. Литий-ионные батареи сегодня лучше, умнее и устойчивее, чем никель-металлогидриды прошлых лет.

2. Ваши батареи скоро разрядятся. Никакая навязчивая забота не избавит вас от необходимости иметь дело с менее производительной батареей через несколько лет.

Мы все неизбежно обречены на раздражающий финал, который наступает, когда батарея разряжается, и вы либо привязаны к зарядному устройству, либо покупаете новую батарею, либо покупаете новый гаджет. Мы все были там раньше, и мы будем там снова. Пока вы следуете самым элементарным рекомендациям, вы можете максимально увеличить расстояние от одного до другого.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *