Схемы контроллеров заряда-разряда Li-ion аккумуляторов и микросхемы модулей защиты литиевых батарей
Содержание статьи:
Для начала нужно определиться с терминологией.
Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.
При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.
Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.
Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:
И вот тоже они:
Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).
Контроллеры заряда-разряда
Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).
DW01-Plus
Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.
Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.
Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.
Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.
Вся схема выглядит примерно вот так:
Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.
S-8241 Series
Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.
Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.
AAT8660 Series
Решение от Advanced Analog Technology — AAT8660 Series.
Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).
FS326 Series
Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.
В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.
LV51140T
Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.
Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.
R5421N Series
Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).
Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:
Обозначение | Порог отключения по перезаряду, В | Гистерезис порога перезаряда, мВ | Порог отключения по переразряду, В | Порог включения перегрузки по току, мВ |
---|---|---|---|---|
R5421N111C | 4.250±0.025 | 200 | 2.50±0.013 | 200±30 |
R5421N112C | 4.350±0.025 | |||
R5421N151F | 4.250±0.025 | |||
R5421N152F | 4.350±0.025 |
SA57608
Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.
Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:
Обозначение | Порог отключения по перезаряду, В | Гистерезис порога перезаряда, мВ | Порог отключения по переразряду, В | Порог включения перегрузки по току, мВ |
---|---|---|---|---|
SA57608Y | 4.350±0.050 | 180 | 2.30±0.070 | 150±30 |
SA57608B | 4.280±0.025 | 180 | 2.30±0.058 | 75±30 |
SA57608C | 4.295±0.025 | 150 | 2.30±0.058 | 200±30 |
SA57608D | 4.350±0.050 | 180 | 2.30±0.070 | 200±30 |
SA57608E | 4.275±0.025 | 200 | 2.30±0.058 | 100±30 |
SA57608G | 4.280±0.025 | 200 | 2.30±0.058 | 100±30 |
SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).
LC05111CMT
Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.
Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.
Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).
Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.
Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.
Контроллеры заряда и схемы защиты — в чем разница?
Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.
Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.
По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.
Схемы правильных зарядок для литиевых аккумуляторов приведены в этой статье.Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.
Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.
Схема подключения контроллера и литиевого аккумулятора ма. Контроллер заряда Li-ion аккумулятора. Как правильно заряжать литий-ионные аккумуляторы
Покупался лот из десяти штук, для переделки питания кое-каких устройств на li-ion аккумуляторы (сейчас в них используется 3АА аккумулятора ), но в обзоре я покажу другой вариант применения этой платы, который, хоть и не задействует все её возможности. Просто из этих десяти штук нужны только будут только шесть, а покупать поштучно 6 с защитой и пару без защиты получается менее выгодно.
Основанная на TP4056 плата заряда с защитой для Li-Ion аккумуляторов c током до 1A предназначена для полноценной зарядки и защиты аккумуляторов (к примеру, популярных 18650 ) с возможностью подключения нагрузки. Т.е. данную плату можно легко встроить в различные устройства, такие как фонарики, светильники, радиоприемники и т.д.,с питанием от встроенного литиевого аккумулятора, и заряжать его не вынимая из устройства любой USB-зарядкой через microUSB разъем. Ещё эта плата отлично подойдет для ремонта сгоревших зарядок Li-Ion аккумуляторов.
И так, кучка плат, каждая в индивидуальном пакетике (тут уже конечно меньше чем покупалось )
Выглядит платка вот так:
Можно рассмотреть поближе установленные элементы
Слева microUSB вход питания, питание также продублировано площадками + и — под пайку.
В центре контроллер заряда, Tpower TP4056, над ним пара светодиодов, отображающих либо процесс заряда (красный) либо окончание заряда (синий), под ним резистор R3, изменяя номинал которого можно изменить ток заряда аккумулятора. TP4056 заряжает аккмуляторы по алгоритму CC/CV и автоматически завершает процесс зарядки, если ток заряда снижается до 1/10 от установленного.
Табличка номиналов сопротивления и зарядного тока, согласно спецификации контроллера.
- R (кОм) — I (mA)
- 1.2 — 1000
- 1.33 — 900
- 1.5 — 780
- 1.66 — 690
- 2 — 580
- 3 — 400
- 4 — 300
- 5 — 250
- 10 — 130
С обратной стороны платы нет ничего, так что её можно, например, приклеить.
А теперь вариант применения платы заряда и защиты li-ion аккумуляторов.
Ныне почти во всех видеокамерах любительского формата в качестве источников питания используются li-ion аккумуляторы напряжением 3,7В, т.е. 1S. Вот один из дополнительно купленных аккумуляторов для моей видеокамеры
У меня их несколько, производства (или маркировки ) DSTE модель VW-VBK360 емкостью по 4500мАч (не считая оригинального, на 1790мАч )
Зачем мне столько? Да, конечно, моя камера заряжается от БП с номиналами 5В 2А, и купив отдельно штекер USB и подходящий разъем, я теперь могу её заряжать и от повербанков (и это одна из причин зачем мне, и не только мне, их столько ), да вот только снимать на камеру, к которой ещё и тянется провод — неудобно. Значит надо как-то заряжать аккумуляторы вне камеры.
Я уже показывал в вот такую зарядку
Да-да, это она, с поворачивающейся вилкой американского стандарта
Вот так она легко разделяется
И вот так, в неё вживляется плата заряда и защиты литиевых аккумуляторов
И конечно же, я вывел пару светодиодов, красный — процесс заряда, зеленый — окончание заряда аккумулятора
Вторая плата была установлена аналогично, в зарядку от видеокамеры Sony. Да, конечно, новые модели видеокамер Sony заряжаются от USB, у них даже есть не отсоединяющийся USB-хвостик (глупое на мой взгляд решение ). Но опять же, в полевых условиях, снимать на камеру, к которой тянется кабель от повербанка менее удобно чем без него. Да и кабель должен быть достаточно длинным, а чем длиннее кабель, тем больше его сопротивление и тем больше на нем потери, а уменьшать сопротивление кабеля увеличивая толщину жил, кабель становится более толстым и менее гибким, что не добавляет удобства.
Так что из таких плат для заряда и защиты li-ion аккумуляторов до1А на TP4056 легко можно сделать простое зарядное устройство для аккумулятора своими руками, переделать зарядное устройство на питание от USB, например для зарядки аккумуляторов от повербанка, сделать ремонт зарядного устройства при необходимости.
Все написанное в этом обзоре можно увидеть в видеоверсии:
Для начала нужно определиться с терминологией.
Как таковых контроллеров разряда-заряда не существует . Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют .
При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого .
Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.
Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:
И вот тоже они:
Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).
Контроллеры заряда-разряда
Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).
DW01-Plus
Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.
Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.
Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.
Вся схема выглядит примерно вот так:
Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.
S-8241 Series
Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241 .
Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.
AAT8660 Series
LV51140T
Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T .
Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.
R5421N Series
Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).
Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:
SA57608
Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608 .
Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:
SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).
LC05111CMT
Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT .
Решение интересно тем, что ключевые MOSFET»ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.
Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).
Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.
Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.
Контроллеры заряда и схемы защиты — в чем разница?
Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.
Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.
По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.
Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.
Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.
Прогресс идет вперед, и на смену традиционно используемым NiCd (никель-кадмиевым) и NiMh (никель-металлогидридным) всё чаще приходят литиевые аккумуляторы.
При сравнимом весе одного элемента, литий имеет большую ёмкость, кроме того, напряжение элемента у них в три раза выше — 3,6 V на элемент, вместо 1,2 V.
Стоимость литиевых аккумуляторов стала приближаться к обычным щелочным батареям, вес и размер намного меньше, да к тому же их можно и нужно заряжать. Производитель говорит, 300-600 циклов выдерживают.
Размеры есть разные и подобрать нужный не составляет труда.
Саморазряд настолько низкий, что лежат годами и остаются заряженными, т.е. устройство остается рабочим когда оно нужно.
«С» значит Capacity
Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2 × емкость аккумулятора)/h или (0.1 × емкость аккумулятора)/h соответственно.
Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5 × 720mAh/h = 360 мА, это относится и к разряду.
А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.
Схема простого зарядного устройства на LM317
Рис. 5.
Схема с применением обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2.
Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).
Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.
Надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.
Схема простого зарядного устройства на LTC4054
Рис. 6.
Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).
Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»
Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
Ток заряда до 800 мА.
Оптимальное напряжение питания от 4,3 до 6 Вольт.
Индикация заряда.
Защита от КЗ на выходе.
Защита от перегрева (снижение тока заряда при температуре больше 120°).
Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.
Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле
I=1000/R,
где I — ток заряда в Амперах, R — сопротивление резистора в Омах.
Индикатор разрядки литиевого аккумулятора
Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.
Рис. 8.
Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.
Нюанс долговечности
Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более.Эксплуатация и меры предосторожности
Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности.1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку.
2. Не доспускается короткое замыкание аккумулятора.
3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку.
5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора.
7. Вредно хранение в разряженном состоянии.
Невыполнение первых трех пунктов приводит к пожару, остальных — к полной или частичной потере ёмкости.
Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и аккумулятор начинает работать меньше по времени при больших токах потребления — создаётся впечатление, что ёмкость упала.
По этому я обычно ставлю ёмкость побольше, какую позволяют габариты устройства, и даже старые банки, которым лет по десять, работают вполне прилично.
Для не очень больших токов подходят старые аккумуляторы от сотовых.
Из старой ноутбучной батареи можно вытащить много вполне рабочих аккумуляторов формата 18650.
Где я применяю литиевые батареи
Давно переделал шуруповерт и электроотвертку на литий. Пользуюсь этими инструментами нерегулярно. Теперь даже через год неиспользования они работают без подзарядки!Маленькие батареи ставлю в детские игрушки, часы и т.д., где с завода стояли 2-3 «таблеточных» элемента. Там где нужно ровно 3V добавляю один диод последовательно и получается как раз.
Ставлю в светодиодные фонарики.
В тестер вместо дорогой и малоёмкой «Кроны 9V» установил 2 банки и забыл все проблемы и лишние затраты.
Вообще ставлю везде, где получается, вместо батареек.
Где я покупаю литий и полезности по теме
Продаются . По этой же ссылке найдёте модули зарядок и пр. полезности для самодельщиков.На счёт ёмкости китайцы обычно врут и она меньше написанной.
Честные Sanyo 18650
И снова устройство для самоделкиных.
Модуль позволяет заряжать Li-Ion аккумуляторы (как защищённые так и незащищённые) от порта USB посредством кабеля miniUSB.
Печатная плата — двусторонний стеклотекстолит с металлизацией, монтаж аккуратный.
Собрана зарядка на базе специализированного контроллера заряда TP4056.
Реальная схема.
Со стороны аккумулятора, устройство ничего не потребляет и его можно оставлять постоянно подключенным к аккумулятору. Защита от КЗ на выходе — есть (с ограничением тока 110мА). Защита от переполюсовки аккумулятора отсутствует.
Питание miniUSB продублировано пятаками на плате.
Работает устройство так:
При подключении питания без аккумулятора, загорается красный светодиод, а синий периодически помаргивает.
При подключении разряженного аккумулятора, красный светодиод гаснет и загорается синий — начинается процесс заряда. Пока напряжение на аккумуляторе меньше 2,9V, ток заряда ограничен величиной 90-100мА. С повышением напряжения выше 2.9V, ток заряда резко возрастает до 800мА с дальнейшим плавным повышением до номинала 1000мА.
При достижении напряжения 4,1V, ток заряда начинает плавно снижаться, в дальнейшем происходит стабилизация напряжения на уровне 4,2V и после уменьшения зарядного тока до 105мА светодиоды начинают периодически переключаться, показывая окончание заряда, при этом заряд всё равно продолжается с переключением на синий светодиод. Переключение идёт в соответствии с гистерезисом контроля напряжения аккумулятора.
Номинальный ток заряда задаётся резистором 1,2кОм. При необходимости, ток можно уменьшить увеличивая номинал резистора согласно спецификации контроллера.
R (кОм) — I (mA)
10 — 130
5 — 250
4 — 300
3 — 400
2 — 580
1.66 — 690
1.5 — 780
1.33 — 900
1.2 — 1000
Конечное напряжение заряда жёстко задано на уровне 4,2V — т.е. не всякий аккумулятор будет заряжен на 100%
Спецификация контроллера.
Вывод: устройство простое и полезное для выполнения конкретной задачи.
Планирую купить +167 Добавить в избранное Обзор понравился +96 +202Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить. Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.
У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены. В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора. Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 ():
На фото мы видим: 1 — контроллер защиты (сердце всей схемы), 2 — сборка из двух полевых транзисторов (о них напишу ниже), 3 — резистор задающий ток срабатывания защиты (например при КЗ), 4 — конденсатор по питанию, 5 — резистор (на питание микросхемы-контроллера), 6 — терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).
Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A ():
Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров — ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора ().
И тут, откуда не возьмись, явилось чудо — сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.
Контроллер зарядки литий─ионного аккумулятора — Аккумуляторы WESTA
- Магазины Китая
- TOMTOP.COM
- Радиотовары
- Хобби
- Пункт №18
Речь пойдет про очень удобную плату с контроллером заряда на основе TP4056. На плате дополнительно установлена защита для аккумуляторов li-ion 3.7V. Подходят для переделок игрушек и бытовой техники с батареек на аккумуляторы. Это дешевый и эффективный молуль (зарядный ток до 1А). Хоть про модули на чипе TP4056 написано уже много, добавлю немного от себя.
Совсем недавно узнал про платы зарядки на TP4056, которые стоят чуть дороже, по размерам чуть больше, но дополнительно имеют в своем составе BMS модуль (Battery Monitoring System) для контроля и защиты аккумулятора от переразряда и перезаряда на основе S-8205A и DW01, которые отключают батарею при превышении напряжения на ней.
Платы предназначены для работы с элементами 18650 (в основном из-за зарядного тока 1А), но при некоторой переделке (перепайка резистора — уменьшение зарядного тока) подойдут для любые аккумуляторов на 3.7В. Разводка платы удобная — присутствуют контактные площадки под пайку на вход, на выход и для аккумулятора. Штатно питать модули можно от Micro USB. Статус зарядки отображается встроенным светодиодом. Размеры примерно 27 на 17 мм, толщина небольшая, самое «толстое» место — это MicroUSB коннекторSpecifications: Type: Charger module Input Voltage: 5V Recommended Charge Cut-off Voltage: 4.2V (±)1% Maximum Charging Current: 1000mA Battery Over-discharge Protection Voltage: 2.5V Battery Over-current Protection Current: 3A Board Size: Approx. 27 * 17mm Status LED: Red: Charging; Green: Complete Charging Package Weight: 9g По ссылке в заголовке продается лот из пяти штук, то есть цена одной платы около $0.6. Это чуть дороже, чем одна плата зарядки на TP4056, но без защиты — эти продаются пачками за полтора доллара. Но для нормальной работы нужно покупать отдельно BMS.
Коротко о подстройке зарядного тока для TP4056
Модуль контроллера заряда TP4056 + защита для аккумуляторов S-8205A/B Series BATTERY PROTECTION IC Производит защиту от перезарядки, переразрядки, тройная защита от перегрузки и короткого замыкания. Максимальный зарядный ток: 1 А Максимальный постоянный ток разряда: 1 А (пик 1.5А) Ограничение напряжения зарядки: 4.275 В ±0. 025 В Ограничение (отсечка) разрядки: 2.75 В ±0. 1 В Защита аккумулятора, чип: DW01. B+ соединяется с положительным контактом аккумулятора B- соединяется с отрицательным контактом аккумулятора P- подключается к отрицательному контакту точки подключения нагрузки и зарядки. На плате присутствует R3 (маркировка 122 — 1.2кОм), для выбора нужного тока зарядки элемента выбираем резистор согласно таблице и перепаиваем. На всякий случай типовое включение TP4056 из спецификации. Лот модулей TP4056+BMS берется уже не первый раз, уж оказался очень удобен для беспроблемных переделок бытовой техники и игрушек на аккумуляторы. Размеры модулей небольшие, По ширине как раз меньше двух АА батареек, плоские — замечательно подходят с установкой старых аккумуляторов от сотовых телефонов. Для зарядки используется стандартный источник на 5В от USB, вход — MicroUSB. Если платы используются каскадом — можно припаять к первой в параллель, на фото видно контакты минуса и плюса по сторонам от MicroUSB разъема. С обратной стороны ничего нет — это может помочь при креплении на клей или скотч. Используются разъемы MicroUSB для питания. У старых плат на TP4056 встречался MiniUSB. Можно спаять платы вместе по входу и только одну подключать к USB — таким образом можно заряжать 18650 каскадами, например, для шуруповертов. Выходы — крайние контактные площадки для подключения нагрузки (OUT +/–), в середине BAT +/– для подключения ячейки аккумулятора. Плата небольшая и удобная. В отличие от просто модулей на TP4056 — здесь присутствует защита ячейки аккумуляторов. Для соединения каскадом нужно соединить выходы под нагрузку (OUT +/–) последовательно, а входы по питанию параллельно. Модуль идеально подходит для установки в различные бытовые приборы и игрушки, которые предусматривают питание от 2-3-4-5 элементов АА или ААА. Это во-первых, приносит некоторую экономию, особенно при частой замене батареек (в игрушках), а, во-вторых, удобство и универсальность. Использовать для питания можно элементы, взятые из старых аккумуляторов от ноутбуков, сотовых телефонов, одноразовых электронных сигарет и так далее. В случае, если есть три элемента, четыре, шесть и так далее, нужно использовать StepUp модуль для повышения напряжения от 3.7V до 4.5V/6.0V и т.д. В зависимости от нагрузки, конечно. Также удобен вариант на двух ячейках аккумуляторов (2S, две платы последовательно, 7.4V) со StepDown платой. Как правило, StepDown имеют регулировку, и можно подстроить любое напряжение в пределах напряжения питания. Это лишний объем для размещения вместо батареек АА/ААА, но тогда можно не переживать за электронику игрушки. Конкретно, одна из плат была предназначена для старого икеевского миксера. Уж очень часто приходилось заменять батарейки в нем, а на аккумуляторах он работал плохо (в NiMH 1.2В вместо 1.5В). Моторчику все равно, будет ли его питать 3В или 3.7В, так что я обошелся без StepDown. Даже слегка бодрее крутить стал. Аккумулятор 08570 от электронной сигареты практически идеальный вариант для любых переделок (емкость около 280мАч, а цена — бесплатно). Но в данном случае несколько длинноват. Длина АА батарейки 50 мм, а этого аккумулятора 57 мм, не влез. Можно, конечно, сделать «надстройку», например, из пластика полиморфа, но… В итоге взял мелкий модельный аккумулятор с такой же емкостью. Очень желательно снизить ток зарядки (до 250…300 мА) увеличением резистора R3 на плате. Можно штатный нагреть, отогнуть один конец, и припаять любой имеющийся на 2-3 кОм. Слева привел картинку по старому модулю. На новом модуле размещение компонентов другое, но все те же самые элементы присутствуют. Подключаем аккумулятор (Припаиваем) в клеммам в середине BAT +/–, отпаиваем контакты моторчика от пластин-контактор для АА батареек (их вообще убираем), припаиваем нагрузку-моторчик к выходу платы (OUT +/–). В крышке дремелем можно прорезать отверстие под USB. Я сделал новую крышку — старую совсем выкинул. В новой продуманы пазы для размещения платы и отверстие под MicroUSB. Гифка работы миксера от аккумулятора — крутит бодро. Емкости 280мАч хватает на несколько минут работы, заряжать приходится в 3-6 дней, смотря как часто использовать (я пользуюсь редко, можно и за один раз посадить, если увлечься.). Из-за снижения тока зарядки заряжает долго, чуть меньше часа. Зато любой зарядкой от смартфона. Если использовать StepDown контроллер для р/у машинок, то лучше взять два 18650 и две платы и соединить их последовательно (а входы для заряжания — параллельно), как на картинке. Где общий OUT ставится любой понижающий модуль и регулируется до нужного напряжения (например, 4.5V/6.0V) В этом случае машинка не будет медленно ездить, когда «сядут» батарейки. В случае разряда модуль просто резко отключится. Модуль на TP4056 со встроенной защитой BMS – очень практичный и универсальный. Модуль рассчитан на зарядный ток 1А. Если соединяете каскадом — учитывайте суммарный ток при зарядке, например, 4 каскада для питания аккумуляторов шуруповерта «попросят» 4А на зарядку, а это з/у от сотового телефона не выдержит. Модуль удобен для переделки игрушек — машинок на радиоуправлении, роботов, различных светильников, пультов… — всех возможных игрушек и техники, где приходится часто менять батарейки.
Сейчас комплект из пяти модулей на TP4056 со встроенной защитой BMS можно приобрести за $2.99 с купоном MICR.
Спецификация контроллера заряда TP4056.
Спецификация на защиту для аккумуляторов S-8205A/B Series BATTERY PROTECTION IC Update: если минус сквозной, то с запаралелливанием сложнее все. См комментарии.
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
Планирую купить +61 Добавить в избранное Обзор понравился +29 +62
Схема контроллера литий-ионного аккумулятора
Радиоэлектроника для начинающих
Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC.
Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.
Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки («банки») на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.
На фото показана плата контроллера заряда от аккумулятора на 3,7V.
Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути «мозг» контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 — ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 — это MOSFET-транзисторы.
Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.
Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.
Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.
Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.
Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку.
А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство).
Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.
Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.
Защита от перезаряда (Overcharge Protection)
Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.
Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection Voltage — VOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора.
Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release Voltage – VOCR) из-за саморазряда.
Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.
Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.
Защита от переразряда (Overdischarge Protection)
Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection Voltage — VODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.
Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).
Тут есть весьма интересное условие.
Пока напряжение на ячейке аккумулятора не превысит 2,9 – 3,1V (Overdischarge Release Voltage — VODR), нагрузка будет полностью отключена.
На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за «смерть» аккумулятора. Вот лишь маленький пример.
Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер — G2NK (серия S-8261), сборка полевых транзисторов — KC3J1.
Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.
При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.
Чтобы контроллер вновь подключил аккумулятор к «внешнему миру», то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).
Тут возникает весьма резонный вопрос.
По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить «банку» аккумулятора, чтобы контроллер опять включил транзистор разряда — FET1?
Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.
Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P, G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда — Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.
Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время — несколько часов.
Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, я уже рассказывал здесь.
Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов! Вот столько может длиться «восстановительная» зарядка.
Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания.
Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки.
При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Защита литий-ионных аккумуляторов (контроллер защиты Li-ion)
Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В.
Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить.
Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.
У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены.
В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора.
Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 (даташит тут):
- На фото мы видим: 1 — контроллер защиты (сердце всей схемы), 2 — сборка из двух полевых транзисторов (о них напишу ниже), 3 — резистор задающий ток срабатывания защиты (например при КЗ), 4 — конденсатор по питанию, 5 — резистор (на питание микросхемы-контроллера), 6 – терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).
- Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A (даташит тут):
Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров – ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора (даташит тут).
И тут, откуда не возьмись, явилось чудо — сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.
© Zlodey, г.Вельск, Октябрь 2013 г.
Li-ion и Li-polymer аккумуляторы в наших конструкциях
Прогресс идет вперед, и на смену традиционно используемым NiCd (никель-кадмиевым) и NiMh (никель-металлогидридным) всё чаще приходят литиевые аккумуляторы. При сравнимом весе одного элемента, литий имеет большую ёмкость, кроме того, напряжение элемента у них в три раза выше — 3,6 V на элемент, вместо 1,2 V.Стоимость литиевых аккумуляторов стала приближаться к обычным щелочным батареям, вес и размер намного меньше, да к тому же их можно и нужно заряжать. Производитель говорит, 300-600 циклов выдерживают.Размеры есть разные и подобрать нужный не составляет труда.Саморазряд настолько низкий, что лежат годами и остаются заряженными, т.е. устройство остается рабочим когда оно нужно.
Рассмотрим далее характеристики, зарядные устройства и схемы защиты для литиевых аккумуляторов.
/ Contents
Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).Когда говорят о зарядке током 2С, или 0.
1С, обычно имеют в виду, что ток должен составлять (2 × емкость аккумулятора)/h или (0.1 × емкость аккумулятора)/h соответственно.
Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.
5 × 720mAh/h = 360 мА, это относится и к разряду.
Есть два основных типа литиевых аккумуляторов: Li-ion и Li-polymer.Li-ion — литий-ионная батарея, Li-polymer — литий-полимерная батарея.Отличие их в технологии изготовления. Li-ion имеют жидкий или гелевый электролит, а Li-polymer — твердый. Это отличие повлияло на диапазон рабочих температур, немного на напряжение и на форму корпуса, которую можно придать готовому изделию. Ещё — на внутреннее сопротивление, но тут много зависит от качества изготовления.Li-ion: -20 … +60°C; 3,6 VLI-polymer: 0 .. +50°С; 3,7 VДля начала надо разобраться, что это за вольты такие.Производитель пишет нам 3,6 V, но это среднее напряжение. Обычно в даташитах пишут диапазон рабочих напряжений 2,5 V … 4,2 V. Когда я первый раз столкнулся с литиевыми аккумуляторами, то долго изучал даташиты.Ниже представлены их графики разряда при разных условиях.Рис. 1. При температуре +20°C
Рис. 2. При разных температурах эксплуатацииИз графиков становится понятно, что рабочее напряжение при разряде 0,2С и температуре +20°C составляет 3,7 V … 4,2 V. Безусловно, батареи можно соединить последовательно и получить нужное нам напряжение.
На мой взгляд очень удобный диапазон напряжений, который подходит под многие конструкции, где используется 4,5V — они прекрасно работают. Да и соединив их 2 шт. получим 8,4 V, а это почти 9 V. Я их ставлю во все конструкции, где идёт батарейное питание и уже забыл, когда последний раз покупал батарейки.
Есть у литиевых аккумуляторов нюанс: их нельзя заряжать выше 4,2 V и разряжать ниже 2,5 V. Если разрядить ниже 2,5 V, восстановить не всегда удается, а выкидывать жалко. Значит, нужна защита от сверхразряда. Во многих батареях она уже встроена в виде мелкой платы, и её просто не видно в корпусе.
Бывает, попадаются аккумуляторы без защиты, тогда приходится собирать самому. Сложности это не представляет. Во-первых есть ассортимент специализированных микросхем. Во-вторых, кажется есть собранные модули у китайцев.
А в-третьих, мы рассмотрим, что можно собрать по теме из подножных материалов.
Ведь не у всех есть в наличии современные чипы или привычка отовариваться на АлиЭкспресс.
Я пользуюсь вот такой суперпростой схемой многие годы и ни разу аккумулятор не вышел из строя! Рис. 3. Конденсатор можно не ставить, если нагрузка не импульсная и стабильно потребляющая. Диоды любые маломощные, их количество надо подобрать по напряжению отключения транзистора.Транзисторы я применяю разные, в зависимости от наличия и тока потребления устройства, главное чтоб напряжение отсечки было ниже 2,5 V, т.е. чтоб он открылся от напряжения аккумулятора.Настраивать схему лучше на монтажке. Берём транзистор и подавая на затвор напряжение через резистор сопротивлением 100 Ом … 10 К, проверяем напряжение отсечки. Если оно не более 2,5 V, то экземпляр годен, далее подбираем диоды (количество и иногда тип), чтобы транзистор начинал закрываться при напряжении примерно 3 V.Теперь подаем напряжение от БП и проверяем чтобы схема срабатывала при напряжении примерно 2,8 — 3 V. Иными словами, если напряжение на аккумуляторе опустится ниже порогового, которые мы установили, то транзистор закроется и отключит нагрузку от питания, предотвратив тем самым вредный глубокий разряд.Что ж, наш аккумулятор разрядился, теперь пора его безопасно зарядить.
Как и с разрядкой, с зарядкой тоже не всё так просто. Максимальное напряжение на банке должно быть не более 4,2 V ±0.05 V! При превышении этого значения литий переходит в металлическое состояние и может произойти перегрев, возгорание и даже взрыв аккумулятора.
Заряд аккумуляторов осуществляется по достаточно простому алгоритму: заряд от источника постоянного напряжения 4.20 Вольт на элемент, с ограничением тока в 1С.Заряд считается завершенным, когда ток упадет до 0.1-0.2С. После перехода в режим стабилизации напряжения при токе в 1С, аккумулятор набирает примерно 70-80% емкости.
Для полной зарядки необходимо время около 2-х часов. К зарядному устройству предъявляются достаточно жесткие требования по точности поддержания напряжения в конце заряда, не хуже ±0.01 Вольт на банку.Обычно схема ЗУ имеет обратную связь — автоматически подбирается такое напряжение, чтобы ток, проходящий через аккумулятор, был равен необходимому.
Как только это напряжение становится равно 4.2 Вольтам (для описываемого аккумулятора), больше поддерживать ток в 1С нельзя — далее напряжение на аккумуляторе возрастёт слишком быстро и сильно.В этот момент аккумулятор заряжен обычно на 60%-80%, и для зарядки остальных 40%-20% без взрывов ток требуется снизить.
Проще всего это сделать, поддерживая постоянное напряжение на аккумуляторе, и он сам возьмет такой ток, который ему необходим. При снижении этого тока до 30-10 мА аккумулятор считается заряженным.Для иллюстрации всего вышеописанного привожу график заряда, снятый с подопытного аккумулятора: Рис. 4. В левой части графика, подсвеченной синим, мы видим постоянный ток 0.7 А, в то время как напряжение постепенно поднимается с 3.8 В до 4.2 В. Также видно, что за первую половину заряда аккумулятор достигает 70% своей емкости, в то время как за оставшееся время — всего 30%.
У китайцев можно заказать по почте с бесплатной доставкой модули зарядных устройств. Модули контроллера зарядки TP4056 с гнездом мини-USB и защитой можно взять очень недорого.
А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.Рис. 5. Схема с применением LM317 обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2. Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.
LM317 надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.Рис. 6. Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности. Ток заряда до 800 мА. Оптимальное напряжение питания от 4,3 до 6 Вольт. Индикация заряда. Защита от КЗ на выходе. Защита от перегрева (снижение тока заряда при температуре больше 120°). Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле
I=1000/R,где I — ток заряда в Амперах, R — сопротивление резистора в Омах.
Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.Рис. 8. Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более. Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности. 1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку. 2. Не доспускается короткое замыкание аккумулятора. 3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку. 5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора. 7. Вредно хранение в разряженном состоянии.
Невыполнение первых трех пунктов приводит к пожару, остальных — к полной или частичной потере ёмкости.
Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и аккумулятор начинает работать меньше по времени при больших токах потребления — создаётся впечатление, что ёмкость упала.
По этому я обычно ставлю ёмкость побольше, какую позволяют габариты устройства, и даже старые банки, которым лет по десять, работают вполне прилично.Для не очень больших токов подходят старые аккумуляторы от сотовых. Из старой ноутбучной батареи можно вытащить много вполне рабочих аккумуляторов формата 18650.Давно переделал шуруповерт и электроотвертку на литий. Пользуюсь этими инструментами нерегулярно. Теперь даже через год неиспользования они работают без подзарядки! Маленькие батареи ставлю в детские игрушки, часы и т.д., где с завода стояли 2-3 «таблеточных» элемента. Там где нужно ровно 3V добавляю один диод последовательно и получается как раз.Ставлю в светодиодные фонарики.В тестер вместо дорогой и малоёмкой «Кроны 9V» установил 2 банки и забыл все проблемы и лишние затраты.Вообще ставлю везде, где получается, вместо батареек.
Продаются батареи всех видов, ёмкостей и форм-факторов в Китае. По этой же ссылке найдёте модули зарядок и пр. полезности для самодельщиков.
На счёт ёмкости китайцы обычно врут и она меньше написанной. Честные Sanyo 18650А вот аккумуляторы Sanyo 18650 подороже, зато и ёмкость честная и качество на высоте — менял в ноутбуке.Контроллеры заряда на TP4056 с USB-разъёмом настолько малы, что можно встраивать их непосредственно в устройство и заряжать от USB ПК или от USB-зарядки для телефона.
А есть отдельно чипы-контроллеры TP4056 SO-8 для встраивания на свою плату.Малогабаритные литий-полимерные аккумуляторы, разной ёмкости и размеров. Выводы сделаны проводами, что для нас очень удобно. Обычно есть защита. В архиве даташиты на некоторые аккумуляторы и чип LTC4054.
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.
Спасибо за внимание!
Евгений (EVA)
МО, г. Долгопрудный
Инженер-электроник, практика в электронике c 1986г.Предпочитаю аналоговую технику, цифровую не люблю, но работаю с ней, ибо сейчас везде цифра.Рисую платы только вручную в графических редакторах потому что не всегда использую стандартные компоненты и их стандартную установку.
Предпочитаю рок музыку, а также классическую.
Умный контроллер заряда литиевых аккумуляторов — модуль на tp4056
Для долгой и счастливой жизни литиевого аккумулятора очень важно правильно его заряжать. Не менее важно контролировать так же и разряд. На наше спасение, уже давно придумали контроллер заряда литиевых аккумуляторов в виде готового модуля. Но можно ли ему доверять, сейчас мы это и проверим.
Как заряжать литиевые аккумуляторыВся фишка зарядки литиевых аккумуляторов кроется в том, что ни ток заряда ни напряжение не должен быть постоянными. Процесс заряда должен проходить по определенным фазам:
- При полной разрядке аккумулятора (около 3 вольт) ток заряда должен быть максимальным. Обычно он не должен превышать значения емкости аккумулятора (С).
- По мере накопления заряда аккумулятором, т.е. увеличения напряжения на клеммах аккумулятора, ток заряда должен уменьшаться.
- При достижении 90% от полного заряда, ток заряда должен снизиться до уровня порядка 0,1С. Как только напряжение на аккумуляторе достигнет 4.1-4.15 вольта, процесс заряда должен прекратиться.
Соблюдение этих правил заряда литиевого аккумулятора обеспечит ему продолжительный срок службы. Разрядка литиевого аккумулятора ниже 3 вольт, а так же его регулярная перезарядка даже на 0.1 вольта значительно сокращает емкость аккумулятора.
Готовые микросхемыСегодня существуют микросхемы, представляющие из себя готовый контроллер заряда li ion аккумуляторов. Одной из таких микросхем является TP4056 (скачать даташит). Схема контроллера заряда литиевых аккумуляторов на TP4056 выглядит следующим образом:
Однако, если вам вздумалось ее реализовать, то спешу вас огорчить. Потраченные усилия, время и деньги во много много раз превысят покупку готового модуля, построенного по точно такой же схеме.
Модуль контроля заряда Li-ion аккумулятораСпециально для этой статьи я сотворил ролик, в котором показал, как пользоваться подобными модулями, а так же как собрать мощное зарядное устройство на этих модулях.
Это мой первый «шедевр» для Ютуба, поэтому буду очень рад просмотру. А еще больше буду рад любому Вашему фидбэку 🙂
Если Вы посмотрели ролик, то уже знаете, что готовый модуль контроля заряда литиевого аккумулятора можно прикупить всего за 30 центов.А так же то, что такие модули существуют как с контролем разряда аккумулятора так и без него.
Картинка демонстрирует все четыре варианта подобных модулей. Два левых модуля полностью аналогичны двум правым модулям, разница заключается только в установленном разъеме. А вот между собой, два левых модуля, как и два правых отличаются возможностью контроля разряда аккумулятора.
Если на модуле помимо контактов для аккумулятора В+ и В- также присутствуют контакты OUT+и OUT- то это значит, что модуль умеет контролировать разряд аккумулятора, а подключение нагрузки к аккумулятору происходит через модуль.
Контроллер заряда — максимальный ток
В исходном состоянии модуль может выдать максимальный ток заряда до 1 Ампера. Если нужно больше, то смотрите видосик (чуть выше).
Если же емкость аккумулятора меньше 1000мА*ч, то максимальный ток заряда лучше снизить до значения, равного емкости аккумулятора или еще ниже. Для этого стоит заменить резистор RPROG на подходящий номинал.
А теперь самое интересное — будем меритьМерить мы будем следующее:
- Процесс зарядки — посмотрим, как меняется ток заряда от напряжения на аккумуляторе.
- Разрядку, а точнее умение модуля продолжительно отдавать ток в нагрузку, а так же умение отрубать аккумулятор по достижении порога разряда.
Для этих целей нам понадобится вольтметр и амперметр. Но я рожа ленивая, да и мерить вручную в наш век — мартышкин труд. Поэтому на помощь был позван микроконтроллер PIC18F4550. Он умеет общаться с компом по USB и обладает 10-битным АЦП на борту.
Амперметр и вольтметр далее изображены условно. И вольтметр и амперметр реализованы на дифференциальных усилителях. Для измерения тока использован низкоомный резистор, разность напряжений с выводов которого и снимается дифференциальным усилителем. Такому методу измерения тока недавно была посвящена отдельная статья.
С выходов диф. усилителей сигнал поступает на АЦП микроконтроллера. Шаг АЦП по напряжению составляет около 5 мВ, чего для таких измерений более чем достаточно. Но для большей точности было дополнительно реализовано усреднение данных приходящих за каждые 10 секунд ( каждые 200 приходящих значений).
Все пытки проводились с участием аккумулятора Sony VTC6 типоразмера 18650. Этот аккумулятор обладает емкостью 3000 мА*ч. Максимальный выходной ток аккумулятора может достигать 30 А.
Измерения заряда аккумулятораДля изучения процесса заряда аккумулятора была реализована следующая измерительная схема:
Полученный с ее помощью график, представлен на следующей картинке. Для удобства синим обозначена зависимость тока, а красным — зависимость напряжения от времени. При этом время указанно в секундах.
6000 секунд соответствуют 100 минутам или же в более привычном виде это 1 час 40 минут. Соответственно полная зарядка аккумулятора заняла около 6 часов. При емкости аккумулятора в 3000 мАч, средний ток заряда можно считать равным 500мА.
На графике отлично видны все три описанные выше фазы зарядки. Схемка отрабатывает все как и положено. Между разными экземплярами модулей присутствует небольшой разброс конечного напряжения, но он не критичен.
Стоит отметить, что любое измерение физической величины это лишь попытка приближения к истинному значению. Не стоит обращать внимание на мелкие зубчики, их природа может быть вызвана как неравномерностью АЦП так и нелинейностью модуля.
В любом случае получившаяся зависимость отлично удовлетворяет всем правилам заряда аккумулятора.
Умный модуль бережет аккумуляторЯ не зря назвал этот модуль умным. Если внимательно присмотреться к моменту подачи питания на модуль, то можно увидеть небольшую ступеньку на зависимости тока. Вот так она выглядит крупным планом:
Речь идет о ступеньке между 500 и 600 секундами на уровне 100 мА.
Модуль бережно относится к аккумулятору. Сначала он доводит напряжение на аккумуляторе примерное до 3 вольт током в 100 мА. А уже затем начинает кочегарить через аккумулятор 1 ампер. Ну или ток, который был установлен резистором RPROG.
Контроль разряда аккумулятораДля изучения выходных характеристик модуля схема была несколько изменена. В качестве нагрузки был установлен переменный резистор, включенный последовательно с амперметром к выходным контактам модуля.
Сопротивление нагрузочного резистора было установлено так, что начальный ток разряда составлял около 1.15 А. Т.к. нагрузка была постоянной, соответственно ток в выходной цепи падал с падением напряжения на аккумуляторе.
Как видно из графика, модуль благополучно отрубил нагрузку от аккумулятора в районе 5000 сек. А это значит, что модуль отдавал ток порядка 1 ампера в течении полутора часов и не загнулся. Отличный результат)
Рост напряжения на аккумуляторе, после отключения нагрузки, вызван химическим восстановлением аккумулятора после столь длительной отдачи приличного тока.
Включение модуля произойдет, при подключении зарядного устройства, как только напряжение на аккумуляторе достигнет уровня в 2.9 — 3 вольта.
НагревВ процессе зарядки, когда ток составляет 1 ампер, модуль прилично греется. Стоит учитывать этот факт при использовании модуля в закрытом устройстве. Так, на открытом воздухе температура модуля достигала значений более 70 градусов (по термопаре).
В случае установки модуля в закрытый корпус желательно снизить максимальный ток заряда до 500-700 мА. Но на терма-клей все же не стоит крепить.
У самого же модуля предусмотрена защита от перегрева. Так при перегреве модуль начинает ограничивать выходной ток. Так что от перегрева он скорее всего не сдохнет — но не факт)
Где взять?Я не могу ручаться за все подобные модули, ибо их производством не брезгует каждый уважающий себя житель поднебесной. Показанные модули заказывались уже не первый раз у конкретного продавца.
Покупать такие модули поштучно не выгодно — продавцы начинают накручивать стоимость доставки. Удобнее закупать сразу по 5 или 10 штук даже если требуется 1-2. Очень удобно, когда где-то в шкафу лежит кучка таких модулей и при необходимости можно быстро сообразить из них зарядку. Вот ссылки на разные лоты проверенного магазина:
1.65$ за 5 штук, и тем более 2.75$ за 10 штук — это копейки. Во многих магазинах радиодеталей с вас попросят аналогичную сумму за каждый такой модуль.
Да, ссылки реферальные, но покупая по ним Вы абсолютно ничего не теряете. Зато этим Вы говорите мне спасибо за проделанную работу и помогаете копеечкой моему проекту. Так что спасибо и Вам.
ЗаключениеЧестно говоря я и сам не ожидал таких результатов, но модули зарядки литиевых аккумуляторов отлично себя показали. И я однозначно рекомендую к покупке такой контроллер заряда. На таких модулях можно мастерить много интересных штук. В скором времени я покажу как с их помощью соорудить блок бесперебойного питания для камер Canon.
Схемы контроллеров заряда-разряда Li-ion аккумуляторов и микросхемы модулей защиты литиевых батарей
Для начала нужно определиться с терминологией.
Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.
При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.
Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.
Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).
Контроллеры заряда-разряда
Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).
DW01-Plus
Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.
Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.
Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта.
Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току.
Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.
Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.
Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.
S-8241 Series
Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда.
Для защиты одной банки применяются интегральные схемы серии S-8241.
Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.
AAT8660 Series
Решение от Advanced Analog Technology — AAT8660 Series.
Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).
FS326 Series
В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.
LV51140T
Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.
Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.
R5421N Series
Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:
R5421N111C | 4.250±0.025 | 200 |
Контроллер заряда для одного литий-ионного аккумулятора (1S)
Как известно, литий-ионные аккумуляторы требуют специального контроллера для управления процессом заряда-разряда. Попытка зарядить такой аккумулятор с нарушением режима чревата занимательными пиротехническими эффектами. Модуль контроллера заряда TP4056, как раз предназначен для того, что бы избежать подобных «неприятностей». Модуль был приобретен на Aliexpress.
Модуль ЗУ представляет собой печатную плату размером 29 х 17 х 4 мм, масса 1,7 г.
По заверениям продавца, блок предназначен для работы с аккумулятором типоразмера 18650, ток потребляемый модулем может составлять до 1 А. Зарядка полностью прекращается при напряжении на аккумуляторе около 4,2 В. Также модуль оснащен защитой от переразряда батареи, которая срабатывает при напряжении 2,5 В, и защитой перегрузки по току батареи, которая срабатывает при токе 3A.
Для подключения к источнику тока используется разъем micro USB. На плате модуля имеются два светодиода, красный – индикатор процесса зарядки аккумулятора и синий, обозначает конец зарядки аккумулятора.
На фотографиях хорошо видно, что почти заряженный аккумулятор дозаряжается током около 80 мА, при напряжении на аккумуляторе около 4 В.
В таком режиме автоматика модуля уже может принять решение о том, что зарядка завершена, при этом загорается синий светодиод, а ток, потребляемый устройством падает до 10 мА.
Синий светодиод светится, когда зарядится до 4,2 В и ток заряда снизится до 90 мА. Красный светодиод светится в процессе заряда. Есть защита от переразярда аккумулятора, при разряде до 2,4 В отключает аккумулятор. Если аккумулятор ёмкостью менее 2000 mAh, то ток заряда лучше уменьшить, чтобы не давать на него 1 A и не сокращать срок службы (менять резистором R3). Можно при желании подключать модули в параллель и увеличивать этим ток заряда.
Кроме клемм для подключения батареи на модуле имеются клеммы для подключения полезной нагрузки. В качестве такой нагрузки на фото выступает резистор ПЭВ-10 20 Ом.
Хорошо видно, что напряжение на нагрузке заметно меньше напряжения на аккумуляторе. При том этот эффект возникает не всегда, а от случая к случаю. В любом случае крайне желательно поставить DC-DC преобразователь.
На следующих фотографиях представлена работа модуля при одновременной зарядке аккумулятора и питании нагрузки.
Хорошо видно, что напряжение на нагрузке просело еще сильнее, хотя напряжение на аккумуляторе почти не изменилось.
К недостаткам, можно отнести то, что плата не имеет крепежных отверстий, а ведь к ней будут регулярно подключать кабель зарядного устройства, то есть прилагать механическую нагрузку, а потому для платы контроллера заряда внутри корпуса прибора надо предусмотреть надежное крепление. Особенно проблематично, что при отсоединении зарядного кабеля плата норовит «выскользнуть» из корпуса.
Если нужно изменить ток заряда — просто поменяйте резистор Rprog на другой, согласно таблице ниже. К примеру, при его номинале 20 кОм, получится задать зарядный ток всего 50 мА, что подойдёт для совсем маленьких литиевых АКБ.
В целом, TP4056 – это полезный модуль, который легко позволяет применить литий-ионные аккумуляторы в самодельном устройстве. Обзор подготовил Denev.
Простой контроллер заряда Li-Ion аккумуляторов
Этот простейший контроллер заряда я применил в самодельной Bluetooth колонке для заряда батареи из двух Li-Ion аккумуляторов типа 18650. Зарядное устройство выполнено на распространенном регулируемом стабилизаторе напряжения LM317. Достоинства этого зарядного устройства это простота настройки, дешевизна и применение самых распространенных электронных компонентов. Также среди достоинств следует отметить отсутствие высокочастотных помех и наводок, поэтому можно заряжать блютуз колонку, в которой я применил этот контроллер заряда во время воспроизведения музыки. Никаких импульсных помех зарядное устройство не даёт. Недостатком является сравнительно низкий КПД, присущий линейным стабилизаторам напряжения и тока и необходимость установки микросхемы LM317 на радиаторе. По этой причине не рекомендуется устанавливать зарядный ток более 500 — 800 мА. В моей колонке зарядный ток равен 500 мА. В качестве источника питания я применил импульсный сетевой адаптер от старого сетевого хаба на 12В 1А.
Принципиальная схема контроллера заряда для двух Li-Ion аккумуляторовОписане принципиальной схемы
U1 — микросхема LM317 в корпусе TO220
Q1 — транзистор BC546 (BC547, BC549)
D1 — диод Шоттки на ток 1A и максимальное напряжение 30 — 40 вольт.
С1, С2 — керамический конденсатор на 1 мкф 50В
R1 — Постоянный резистор 1 Ом 0.5 Вт
R3 — Постоянный резистор 470 Ом 0.125 Вт
R4 — Постоянный резистор 2.2 k 0.125 Вт
R2 — Подстроечный резистор 1К
Зарядное устройство основано на регулируемом интегральном стабилизаторе напряжения LM317. На транзисторе Q1 собран узел ограничения тока заряда. С транзистором BC546 и резистором на 1 ом максимальный зарядный ток у меня составляет около 500мА. Нужно помнить, что через этот резистор течет зарядный ток аккумулятора, поэтому если вы планируете заряжать батарею током более 500 мА стоит применить резистор мощностью 1 Вт. максимальный зарядный ток устанавливается подбором этого резистора. Чем меньше сопротивление тем больше зарядный ток и наоборот.
Подстроечным резистором R2 устанавливаем выходное напряжение устройства. То есть то максимальное напряжение, до которого будет заряжена аккумуляторная батарея. Для двух литий ионных аккумуляторов максимальное напряжение равно 8.4 В. Но для большей безопасности и продления срока службы аккумуляторов я бы посоветовал установить это напряжение в районе 8.2 — 8.3 В. Установку этого напряжения нужно производить не подключая аккумулятор. Вместо аккумулятора подключаем к клемам Out+ и Out- резистор сопротивлением 100 ом и вращением движка R2 устанавливаем напряжение 8.2- 8.3 В. Убираем резистор и подключаем к устройству аккумуляторы. Проверяем ток, который течет через батарею и оставляем батарею заряжаться, периодически измеряя на ней напряжение. Зарядный ток будет уменьшаться по мере приближения напряжения на батарее к установленному уровню. Убедитесь что напряжение на каждом из аккумуляторов в конце заряда не превышает 4.2 вольта. Если даже на одном из аккумуляторов напряжение больше, то придется уменьшить напряжение заряда поворотом движка R2. На этом настройку устройства можно считать законченной
ВНИМАНИЕ! Микросхема LM317 нагревается в процессе заряда аккумуляторов, поэтому ее необходимо устанавливать на небольшом радиаторе.
Печатная плата зарядного устройства была разработана под выводные компоненты в программе DipTrace. Все файлы проекта печатной платы вы можете скачать по ссылке в конце статьи. Плата была изготовлена на моем станке CNC1610 методом гравировки. Как это происходит вы можете посмотреть в видео ролике про самодельную Bluetooth колонку.
Печатная плата зарядного устройстваСкачать проект печатной платы в формате DipTrace
Защита от переразряда li ion схема
Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора
Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC.
Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.
Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки («банки») на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.
На фото показана плата контроллера заряда от аккумулятора на 3,7V.
Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути «мозг» контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 – ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 – это MOSFET-транзисторы.
Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.
Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.
Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.
Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.
Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.
Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.
Защита от перезаряда (Overcharge Protection).
Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.
Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection Voltage – VOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release Voltage – VOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.
Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.
Защита от переразряда (Overdischarge Protection).
Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection Voltage – VODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.
Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).
Тут есть весьма интересное условие . Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V (Overdischarge Release Voltage – VODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за «смерть» аккумулятора. Вот лишь маленький пример.
Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер – G2NK (серия S-8261), сборка полевых транзисторов – KC3J1.
Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.
При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.
Чтобы контроллер вновь подключил аккумулятор к «внешнему миру», то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).
Тут возникает весьма резонный вопрос.
По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить «банку» аккумулятора, чтобы контроллер опять включил транзистор разряда – FET1?
Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.
Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P, G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда – Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.
Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время – несколько часов.
Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, я уже рассказывал здесь.
Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов ! Вот столько может длиться «восстановительная» зарядка.
Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.
Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора
Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC.
Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.
Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки («банки») на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.
На фото показана плата контроллера заряда от аккумулятора на 3,7V.
Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути «мозг» контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 – ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 – это MOSFET-транзисторы.
Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.
Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.
Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.
Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.
Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.
Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.
Защита от перезаряда (Overcharge Protection).
Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.
Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection Voltage – VOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release Voltage – VOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.
Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.
Защита от переразряда (Overdischarge Protection).
Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection Voltage – VODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.
Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).
Тут есть весьма интересное условие . Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V (Overdischarge Release Voltage – VODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за «смерть» аккумулятора. Вот лишь маленький пример.
Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер – G2NK (серия S-8261), сборка полевых транзисторов – KC3J1.
Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.
При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.
Чтобы контроллер вновь подключил аккумулятор к «внешнему миру», то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).
Тут возникает весьма резонный вопрос.
По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить «банку» аккумулятора, чтобы контроллер опять включил транзистор разряда – FET1?
Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.
Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P, G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда – Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.
Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время – несколько часов.
Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, я уже рассказывал здесь.
Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов ! Вот столько может длиться «восстановительная» зарядка.
Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.
Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить. Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.
У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены. В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора. Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 (даташит тут):
На фото мы видим: 1 – контроллер защиты (сердце всей схемы), 2 – сборка из двух полевых транзисторов (о них напишу ниже), 3 – резистор задающий ток срабатывания защиты (например при КЗ), 4 – конденсатор по питанию, 5 – резистор (на питание микросхемы-контроллера), 6 – терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).
Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A (даташит тут):
Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров – ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора (даташит тут).
И тут, откуда не возьмись, явилось чудо – сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.
Особенности контроллеров зарядки Li-ion аккумуляторов
В статье рассмотрены некоторые особенности контроллеров зарядки литиево-ионных (Li-Ion) аккумуляторов, созданных на базе линейных и импульсных стабилизаторов.
Введение
Состязание разработчиков и производителей портативных гаджетов по внедрению во вновь создаваемые (и при этом все меньшего размера) устройства аппаратных модулей с расширенными функциональными возможностями вряд ли можно остановить. Большие яркие дисплеи с сенсорными панелями, Wi-Fi, WiMAX, Bluetooth, GSM, GPS, видеокамеры с большим форматом матрицы видеосенсора, аудио- и видеоплееры — всего лишь неполный перечень встроенных модулей и возможностей, предоставляемых современными мобильными устройствами. И, по сути, на пути миниатюризации гаджетов всегда возникают две неразрывно связанные проблемы: отвод рассеиваемой мощности и малые габариты, в которые необходимо все это упаковать. Мобильное устройство должно не только привлекать потребителей своими интеллектуальными возможностями, но и не вызывать при этом ожогов (в прямом смысле этого слова) у пользователя. Минимизация уровня тепловыделения — один из важных приоритетов при разработке. Одним из источников тепла является контроллер зарядного устройства, встроенного в мобильный прибор аккумулятора.
Проблемы
Одним из обязательных компонентов современных портативных устройств является мало в чем изменившийся за последние годы литиево-ионный аккумулятор, отличающийся наилучшими показателями среди ряда других химических источников электроэнергии, предназначенных для использования в портативных приложениях. Бесспорно, емкость его выросла, существенно улучшены и другие характеристики, что позволило расширить функциональные возможности портативных устройств, однако базовый принцип его работы и алгоритм зарядки мало в чем изменились [1–7].
В среднем для полной зарядки литиево-ионного аккумулятора емкостью 1 А·ч при токе зарядки 1 А требуется один час. Часто используемые сегодня USB-адаптеры не могут обеспечить ток более 500 мА, и поэтому время зарядки может растянуться до 2–4 или более часов. Одна из проблем, возникающих при зарядке большим током, — тепловыделение. Поскольку выходное напряжение повсеместно используемых сетевых и USB-адаптеров составляет 5 В, а рабочее напряжение аккумулятора: 3,7…4,2 В, то среднее значение КПД контроллера зарядки, построенного на базе линейного регулятора, не может быть лучше, чем 74% (3,7/5,0), а максимальное — 84% (4,2/5,0). На рисунке 1 приведена зона возможных потерь мощности в контроллере в процессе зарядки аккумулятора. Таким образом, при зарядке аккумулятора током 1 А максимальные потери составят примерно 1,3 Вт. Необходимо отметить, что это не то неизбежное выделение тепла, связанное с накоплением энергии в аккумуляторе для последующего ее использования, а тепловыделение, вызванное нагревом кристалла ИС контроллера зарядки. Чтобы уменьшить нежелательный нагрев кристалла в процессе зарядки аккумулятора, необходимо повышать КПД контроллера, что достигается при использовании контроллеров с импульсным регулированием. Кроме того, их применение позволяет потенциально ускорить продолжительность зарядки.
Рис. 1. Распределение потерь мощности в процессе зарядки аккумулятора |
В контроллерах зарядки, созданных на базе линейных регуляторов с разделением путей протекания токов нагрузки и зарядки (PowerPath Technology), в случае небольшого тока нагрузки напряжение VOUT равно почти 5 В (VIN), а напряжение на аккумуляторе
VBAT = 3,7 В. При этом линейный регулятор контроллера зарядки используется неэффективно. При большом токе через нагрузку к ней дополнительно подключается аккумулятор и при VIN = 5 В, VOUT = VBAT = 3,7 В (см. рис. 2). В этом случае неэффективно используется проходной транзистор контроллера зарядки. И в первом, и во втором случаях сохраняется величина падения напряжения на элементах регулирования VIN – VOUT = 1,3 В или VOUT – VBAT = 1,3 В, что и приводит к нежелательной потере мощности. Особенность приведенной на рисунке 2 структурной схемы состоит в том, что для подключения аккумулятора к нагрузке используется устройство, выполняющее функции «идеального» (далее — идеального, прим. ред.) диода.
Рис. 2. Упрощенная структурная схема устройства зарядки с разделением путей протекания токов нагрузки и зарядки |
Варианты решения
Что же подразумевается под предложенным специалистами компании Linear Technology термином «идеальный» диод? [3, 7]. Широко применяемые диоды Шоттки отличаются по сравнению с другими полупроводниковыми диодами малым прямым падением напряжения и высокой скоростью переключения. При использовании этого диода в качестве полупроводникового ключа, например, в схемах автоматического подключения к нагрузке аккумулятора или сетевого адаптера, как правило, применяется простая схема монтажного ИЛИ, основной недостаток которой — сравнительно большое падение напряжения на диоде. При повышении тока нагрузки растут и потери мощности на нем. Решить эту проблему можно с использованием в качестве диода МОП-транзистора. Идея не нова, однако специалисты компании Linear Technology при замене диода на МОП-транзистор предложили также способ определения момента переключения идеального диода в закрытое и открытое состояния. Для этого осуществляется мониторинг падения напряжения между истоком (анодом) и стоком (катодом) транзистора. В рассматриваемом случае — это МОП-транзистор с каналом N-типа. В момент подключения входного напряжения, конечно, если входное напряжение больше выходного, ток через защитный диод транзистора течет в нагрузку. Транзистор открывается, и падение напряжения на нем равно ILOAD∙RDS, где RDS — сопротивление перехода сток-исток. Как правило, это напряжение примерно в десять раз ниже, чем падение напряжения на диоде Шоттки. Если напряжение на аноде ниже, чем на катоде, транзистор закрывается.
Для мониторинга падения напряжения на транзисторе используется специальный усилитель. Проблема заключается в том, как выбрать значение напряжения порога переключения и величину гистерезиса компаратора. Например, если открывать транзистор при падении напряжения 25 мВ, а закрывать при 5 мВ, это может привести к тому, что при малых токах нагрузки ключ просто закроется. Установка порога на уровне –5 мВ приведет к тому, что ток потечет от нагрузки ко входу. Чтобы исключить эти проблемы, падение напряжения между стоком и истоком открытого транзистора поддерживается с помощью специального следящего усилителя на уровне 25 мВ. При росте тока нагрузки повышается также и управляющее напряжение на затворе транзистора, и соответственно, снижается сопротивление открытого канала. Таким способом падение напряжения на транзисторе поддерживается почти постоянным на уровне 25 мВ.
На определенном этапе при увеличении тока падение напряжения на транзисторе начинает расти пропорционально току (ILOAD∙RDSON). На рисунке 3 приведены вольт-амперные характеристики диода Шоттки (B530C) и идеального диода [3, 7]. Предложенный метод управления МОП-транзистором позволяет реализовать плавное переключение транзистора и даже при небольших токах нагрузки получить минимальную разницу напряжения между стоком и истоком.
Рис. 3. Вольт-амперные характеристики идеального диода и диода Шоттки |
В микросхеме LTC4358 (Linear Technology) материализована идея создания идеального диода на базе встроенного на кристалл МОП-транзистора с каналом N-типа, имеющего сопротивление (RDSON) открытого канала 0,02 Ом. Напряжение питания ИС составляет 9,0…26,5 В; максимальный ток: 5 А; время отключения транзистора при превышении тока ограничения — 0,5 мкс. Микросхема LTC4358 предназначена для замены диодов в схемах переключения источников питания, к которым подключается нагрузка, построенных на основе схемы монтажного ИЛИ. Графики зависимости мощности, рассеиваемой на идеальном диоде (LTC4358) и на диоде Шоттки типа B530C показаны на рисунке 4. Микросхема LTC4358 изготавливается в корпусе 14-DFN и имеет размеры 4×3 мм.
Кроме того, компания Linear Technology предлагает и другие ИС, например, LTC4352/55/57, LTC4411/13/ 16. Микросхемы LTC4352/55/57 и LTC4416, по сути, являются контроллерами идеального диода, и для этой цели используется внешний МОП-транзистор, в микросхемах LTC4411/13 — встроенный. Миниатюрная ИС LTC4411 предназначена для автоматического переключения нагрузки между сетевым адаптером и аккумулятором в схемах, построенных на основе монтажного ИЛИ. Напряжение входного источника 2,6…5,5 В, ток потребления в статическом режиме не более 40 мкА (при токе нагрузки до 100 мА). Максимальное сопротивление открытого канала встроенного МОП-транзистора с каналом P-типа составляет 0,14 Ом, максимальный прямой ток — 2,6 А, ток утечки — менее 1 мкА. В микросхеме предусмотрена защита от перегрева корпуса. Для подключения ИС LTC4411 не требуются дополнительные внешние компоненты. Микросхема LTC4411 изготавливается в корпусе SOT-23-5.
В контроллерах зарядки LTC4066, LTC4085, построенных на основе линейного регулятора, также реализован идеальный диод. Напряжение питания ИС 4,35…5,50 В. Сопротивление идеального диода, используемого для подключения аккумулятора к нагрузке, при токе 3 А составляет всего 50 мОм. В контроллерах предусмотрена возможность ограничения входного тока на уровне 100 или 500 мА. Микросхемы LTC4066 изготавливаются в корпусе 24-QFN (4×4 мм).
а) | б) |
Рис. 4. Графики зависимости мощности, рассеиваемой на ИС LTC4358 и диоде B530C, от протекающего через них тока (а) и схема включения LTC4358 (б) |
Микросхемы LTC4088/LTC4098 — контроллеры зарядки литиево-ионных аккумуляторов, обеспечивающие за счет применения в них импульсного регулятора не только высокий КПД, но и реализацию технологии разделения путей протекания токов нагрузки и зарядки, получившую название Switching PowerPath. ИС LTC4088/98 содержат импульсный понижающий напряжение регулятор и линейный регулятор тока зарядки аккумулятора. В конфигурации, приведенной на рисунке 5, разница напряжения VIN – VOUT хотя и сохраняется почти прежней (см. рис. 2), однако потери мощности существенно меньше, т.к. КПД регулятора достаточно высок (примерно, 92% при выходном токе 300 мА). Напряжение VOUT лишь на несколько сотен милливольт выше VBAT. Принятые в этих микросхемах меры обеспечивают незначительные потери мощности.
Рис. 5. Упрощенная структурная схема LTC4088 |
Микросхема LTC4088 — высокоэффективный контроллер зарядки литиево-ионных аккумуляторов, обеспечивающий максимальный ток зарядки 1,5 А. В качестве внешнего источника питания можно использовать как сетевой адаптер, так и USB-порт. Напряжение питания LTC4088 — 4,25…5,50 В. Допускаются выбросы входного напряжения амплитудой до 7 В. Ток ограничения: 100, 500 или 1000 мА. Частота преобразования понижающего напряжение импульсного стабилизатора составляет 2,25 МГц. Подключение аккумулятора к нагрузке осуществляется с использованием встроенного аналога идеального диода с сопротивлением в открытом состоянии 0,18 Ом. Предусмотрена также возможность подключения дополнительного внешнего МОП-транзистора с каналом P-типа параллельно встроенному идеальному диоду, что позволяет существенно снизить суммарное сопротивление комбинированного ключа (см. рис. 6). Кроме того, в микросхеме LTC4088 реализован автономный стабилизатор напряжения с выходным напряжением 3,3 В, обеспечивающий ток нагрузки до 25 мА.
Рис. 6. Графики зависимости сопротивлений идеального диода (LTC4088) и комбинированного ключа от напряжения на аккумуляторе |
Микросхема LTC4088 изготавливается в корпусе 14-DFN и имеет размеры 4×3 мм. Максимальная температура корпуса 125°C, тепловое сопротивление 37°C/Вт. ИС LTC4098 — в корпусе 20-DFN с размерами 4×3 мм, ее тепловое сопротивление 43°C/Вт. Диапазон рабочих температур: –40…85°C.
Микросхемы bq2410x (Texas Instruments) обеспечивают максимальный ток зарядки аккумулятора до 2 А. Частота преобразования понижающего напряжение импульсного регулятора составляет 1,1 МГц. Микросхемы bq2410x содержат встроенные ключи, выполненные на базе МОП-транзисторов, используемые для подключения к нагрузке сетевого адаптера или аккумулятора. Максимальный КПД — 93%.
Микросхемы bq2410х изготавливаются в корпусе 20-QFN (3,5×4,5 мм). Допустимая мощность рассеивания до температуры кристалла 40°C составляет 1,81 Вт, тепловое сопротивление — 46,87°C/Вт. Диапазон рабочих температур: –40…85 °C.
Как и для ИС, созданных на базе линейных регуляторов (к примеру, MAX1811, LTC4065/69/95, MCP73831/2, MCP73811, bq2402x/3х/6х, bq2057, bq24085), так и в случае использования импульсных преобразователей, есть два варианта подключения нагрузки и аккумулятора: непосредственное подключение (в одну точку) и подключение с возможностью выбора путей протекания зарядного тока и тока нагрузки.
Существует два варианта непосредственного подключения нагрузки к аккумулятору. В первом случае нагрузка подключается после измерительного резистора RSNS (см. рис. 7а), а во втором — до него (см. рис. 7б). В первом варианте входное напряжение VIN преобразуется в напряжение VOUT с высоким КПД. При подключенном сетевом адаптере обеспечивается энергопитание нагрузки и одновременно зарядка аккумулятора, в случае отключения адаптера питание нагрузки осуществляется от аккумулятора.
a) | б) |
Рис. 7. Структурные схемы подключения нагрузки до (а) и после (б) измерительного резистора |
Преимущества первого варианта топологии:
– при отключенном адаптере энергопитание нагрузки осуществляется непосредственно от аккумулятора с минимальными потерями мощности;
– возможно использование технологии динамического управления током зарядки аккумулятора (Dynamic Power Management — DPM), что позволяет за счет динамического снижения тока зарядки предотвратить потенциальную вероятность перегрузки ИС по току зарядки и перегрева ее корпуса при пиковых нагрузках, а, кроме того, сохраняется возможность ограничения суммарного входного тока;
– малы изменения напряжения на нагрузке;
– достаточно просто на программном уровне реализуется режим токового мягкого старта.
При выборе топологии подключения аккумулятора к нагрузке следует принимать во внимание некоторые особенности. Если средний ток нагрузки длительное время достаточно велик, то процесс зарядки затягивается, и возникает ситуация, при которой аккумулятор непрерывно находится в процессе зарядки, что сокращает его срок службы. Поскольку предел ограничения суммарного тока фиксирован на аппаратном уровне, то при достаточно большом токе через нагрузку ток зарядки аккумулятора также снижается, что приводит к чрезмерному увеличению времени зарядки аккумулятора до его полной емкости, и поэтому вполне вероятна ситуация, при которой будет просто невозможно полностью его зарядить.
Если при заряженном аккумуляторе ток нагрузки увеличится, то вследствие падения напряжения на внутреннем сопротивлении аккумулятора выходное напряжение может снизиться до порога, при котором будет инициироваться очередной цикл зарядки, который, в свою очередь, быстро завершится. Таким образом, возможна ситуации, при которой процесс зарядки будет стартовать циклически. При небольшом токе нагрузки интервал времени от момента уменьшения выходного напряжения (за счет падения напряжения на аккумуляторе) до необходимого порога для старта очередного процесса зарядки существенно увеличивается.
В фазе предварительной зарядки (при напряжении на аккумуляторе ниже 3,0 В) ток зарядки составляет примерно 10% номинальной емкости аккумулятора, чего зачастую слишком мало для энергоснабжения продолжающего работать устройства, которое в этом случае вынуждено подпитываться от аккумулятора, а последний соответственно продолжает разряжаться. Кроме того, поскольку для предварительной фазы зарядки отводится определенный задаваемый специальным таймером интервал времени, в течение которого напряжение на аккумуляторе должно достичь порога 3,2 В, то создается ситуация, при которой напряжение на аккумуляторе не возрастает, а таймер начинает сигнализировать, что аккумулятор неисправен.
Не следует забывать, что основной недостаток непосредственного подключения аккумулятора к нагрузке заключается в том, что при полностью или глубоко разряженном аккумуляторе напряжение на нагрузке (даже при условии подключения сетевого адаптера) равно напряжению на аккумуляторе, чего бывает явно недостаточно для работы устройства, и, конечно, во многих случаях это просто недопустимо.
Во втором варианте (см. рис. 7б) нагрузка подключена до измерительного резистора (RSNS). Эта топология, по сравнению с той, в которой нагрузка подключена после резистора, имеет ряд преимуществ. Основным является то, что в ней контролируется ток, протекающий только через аккумулятор, и поэтому все три режима зарядки (предварительный, режим собственно зарядки с током, равным величине емкости аккумулятора и режим завершения) работают без каких-либо проблем, связанных с протеканием тока через нагрузку.
Глубоко разряженный аккумулятор можно без риска подключать к контроллеру зарядки, не опасаясь завершения работы таймера, определяющего безопасную продолжительность предварительной фазы зарядки, еще до окончания этого этапа. Следует также принимать во внимание, что суммарный ток через контроллер зарядки ограничен на уровне максимально допустимого тока через кристалл, а также работой системы защиты от перегрева ИС. Ток зарядки не уменьшается при росте тока нагрузки, поэтому эта топология не используется при больших токах нагрузки.
При больших токах нагрузки и зарядки обеспечить низкий уровень тепловыделения крайне сложно даже при использовании импульсных регуляторов со встроенными транзисторными ключами. Поэтому при больших токах мощные ключи, как правило, не интегрируются на кристалле микросхемы, а размещаются вне ее корпуса.
Примером таких ИС могут служить bq24702/3/5 и bq246хх (Texas Instruments), обеспечивающие ток зарядки до 10 А (bq24610/17). В отличие от bq2410x устройства зарядки, созданные на базе ИС bq246хх, содержат внешние ключи. Частота преобразования импульсного стабилизатора ИС bq24610/17 составляет 600 кГц. Кроме того, в контроллерах bq24610/17 реализована технология динамического управления током зарядки аккумулятора DPM, основанная на мониторинге величины входного тока. Для независимого измерения суммарного (входного) тока и тока зарядки аккумулятора в контроллере bq24610 реализованы два прецизионных усилителя. Для подключения нагрузки к адаптеру, а также аккумулятора к нагрузке используются ключи на мощных внешних МОП-транзисторах.
Микросхемы bq24610/17 изготавливаются в корпусе 24-QFN (4×4 мм). Допустимая мощность, рассеиваемая при температуре 25°C, составляет 2,3 Вт; тепловое сопротивление — 43°C/Вт.
Заключение
В заключение в таблицах 1, 2 приведены параметры некоторых контроллеров зарядки, построенных на основе как линейных, так и импульсных регуляторов.
Таблица 1. Параметры контроллеров зарядки, созданных на базе линейных регуляторов
Наименование | MAX1811 | MCP73831 | bq24020 | bq24085 | LTC4065 | LTC4095 | bq24030 |
Входное напряжение, В | 4,35…6,5 | 3,75…6,0 | 4,35…6,5 | 3,75…5,5 | 4,3…5,5 | 4,35…16,0 | |
Максимальный ток зарядки, А | 0,5 | 0,5 | 1,0 | 0,75 | 0,75 | 0,95 | 2,0 |
Напряжение аккумулятора, В | 4,2 | ||||||
Диапазон рабочих температур, °C | –40…85 | –40…125 | –40…155 | –40…85 | –40…125 | ||
Тип корпуса (размеры, мм) | 8-SO | 8-DFN (2×3), SOT-23-5 | 10-SON (3×3) | 6-DFN (2×2) | 8-DFN (2×2) | 20-QFN (3,5×4,5) |
Таблица 2. Параметры контроллеров зарядки, созданных на базе импульсных регуляторов
Наименование | LTC4088 | LTC4098 | bq24100 | bq24702 | bq24610 |
Входное напряжение, В | 4,35…5,5 | 4,35…16 | 4,5…28 | 5…28 | |
Максимальный ток зарядки, А | 1,5 | 2,0 | 2,0 | 10 | |
Частота преобразователя, МГц | 2,25 | 1,1 | 0,3 | 0,6 | |
Напряжение аккумулятора, В | 4,2 | Программируется | |||
Диапазон рабочих температур, °C | –40…85 | ||||
Тип корпуса (размеры, мм) | 14-DFN (4×4) | 20-QFN (3×4) | 20-QFN (3,5×4,5) | 24-TSSOP | 24-QFN (4×4) |
Схема непосредственного подключения аккумулятора к нагрузке и контроллеру зарядки, созданному на основе линейного регулятора, отличается простотой, а устройства, выполненные на базе этой архитектуры, — более низкой стоимостью. Однако при больших токах нагрузки вряд ли можно рекомендовать использование этой топологии из-за большой вероятности перегрева кристалла ИС. При непосредственном подключении аккумулятора к нагрузке можно достичь минимального изменения уровня напряжения на нагрузке.
Проблема потери мощности сохраняется также и в контроллерах зарядки, созданных на основе непрерывного регулирования, с разделением путей протекания токов нагрузи и зарядки. Более высокого КПД можно достичь за счет применения импульсного регулятора, что позволяет создавать на его базе контроллеры с током зарядки аккумулятора более 10 А. Кроме того, в этих контроллерах зачастую используется технология разделения путей протекания токов нагрузки и зарядки, основным преимуществом которой является высокая надежность.
Более полную информацию о микросхемах зарядки аккумуляторов можно найти в [2–6].
Литература
1. Steven Martin. Speed up Li-ion battery charging and reduce heat with a switching power-path manager. — Linear Technology (www.linear.com).2. LTC4088. High efficiency battery charger/USB power manager. — Linear Technology (www.linear.com).
3. Meilissa Lum. Ideal diode betters a Schottky by a factor of four in power and space consumption.
4. bq24030, bq24031, bq24032A, bq24035, bq24038. Single-chip charge and system power-path management IC (bqTINY™). — Texas Instruments, 2009 (www.ti.com).
5. Implementations of battery charger and power-path management system using bq2410x/11x/12x (bqSWITCHER™). — Texas Instruments, 2006 (www.ti.com).
6. bq24610, bq24617. Stand-alone synchronous switch-mode Li-ion or Li-polymer battery charger with system power selector and low Iq. — Texas Instruments, 2009 (www.ti.com).
7. Pinkesh Sachdev. 0V to 18V ideal diode controller saves Watts and space over Schottky. — Linear Technology (www.linear.com).
4 простых схемы зарядного устройства для литий-ионных аккумуляторов — использование LM317, NE555, LM324
В следующем сообщении объясняются четыре простых, но безопасных способа зарядки литий-ионного аккумулятора с использованием обычных микросхем, таких как LM317 и NE555, которые можно легко собрать дома любым новым любителем.
Хотя литий-ионные аккумуляторы являются уязвимыми устройствами, их можно заряжать с помощью более простых схем, если скорость зарядки не вызывает значительного нагревания аккумулятора, и если пользователь не возражает против небольшой задержки в периоде зарядки элемента.
Пользователи, которым требуется быстрая зарядка аккумулятора, не должны использовать описанные ниже концепции, вместо этого они могут использовать один из этих профессиональных интеллектуальных устройств.
Основные сведения о зарядке литий-ионных аккумуляторов
Прежде чем изучать процедуры изготовления зарядных устройств для литий-ионных аккумуляторов, нам важно знать основные параметры, связанные с зарядкой литий-ионных аккумуляторов.
В отличие от свинцово-кислотных аккумуляторов, литий-ионные аккумуляторы можно заряжать при очень высоких начальных токах, которые могут достигать номинальной емкости аккумулятора в ампер-часах.Это называется зарядкой со скоростью 1С, где С — значение емкости аккумулятора в ампер-часах.
При этом никогда не рекомендуется использовать такую экстремальную скорость, так как это будет означать зарядку аккумулятора в очень напряженных условиях из-за повышения его температуры. Поэтому скорость 0,5C считается стандартным рекомендуемым значением.
0,5C означает, что зарядный ток составляет 50% от значения Ач батареи. В условиях тропического лета даже такая скорость может превратиться в неблагоприятную для батареи из-за существующей высокой температуры окружающей среды.
Требует ли зарядка литий-ионного аккумулятора сложных факторов?
Абсолютно нет. На самом деле это чрезвычайно удобная форма батареи, и ее можно заряжать с минимальными усилиями, хотя эти минимальные соображения важны и должны соблюдаться в обязательном порядке.
Несколько важных, но легко реализуемых соображений: автоматическое отключение при полном уровне заряда, постоянное напряжение и постоянный входной ток.
Следующее объяснение поможет лучше понять это.
На следующем графике показана идеальная процедура зарядки стандартного литий-ионного элемента 3,7 В, рассчитанного на 4,2 В в качестве полного уровня заряда.
Этап № 1 : На начальном этапе № 1 мы видим, что напряжение батареи повышается с уровня 0,25 В до 4,0 В примерно за один час при скорости зарядки постоянным током 1 А. На это указывает СИНЯЯ линия. 0,25 В используется только для ориентировочных целей, фактический элемент 3,7 В никогда не должен разряжаться ниже 3 В.
Этап № 2: На этапе № 2 зарядка переходит в состояние заряда насыщения , где напряжение достигает максимального уровня заряда 4.2 В, и потребление тока начинает падать. Это падение текущей ставки продолжится в течение следующих нескольких часов. Зарядный ток обозначен КРАСНОЙ пунктирной линией.
Этап № 3 : По мере того, как ток падает, он достигает самого низкого уровня, который ниже 3% от номинального значения Ач ячейки.
Как только это произойдет, питание на входе отключается, и ячейке дают возможность успокоиться еще на 1 час.
Через час напряжение ячейки показывает реальное состояние заряда или SoC ячейки.SoC элемента или аккумулятора — это оптимальный уровень заряда, которого он достиг после курса полной зарядки, и этот уровень показывает фактический уровень, который можно использовать для данного приложения.
В этом состоянии мы можем сказать, что состояние ячейки готово к использованию.
Этап № 4 : В ситуациях, когда ячейка не используется в течение длительных периодов, время от времени применяется дополнительная зарядка, при этом ток, потребляемый ячейкой, ниже 3% от ее значения Ач.
Помните, хотя график показывает, что ячейка заряжается даже после того, как она достигла 4.2 В, , то есть категорически не рекомендуется при практической зарядке литий-ионного элемента . Электропитание должно автоматически отключаться, как только в ячейке достигается уровень 4,2 В.
Итак, что в основном предлагает график?
- Используйте входной источник питания с фиксированным током и фиксированным выходным напряжением, как описано выше. (Обычно это может быть = Напряжение на 14% выше указанного значения, Ток на 50% от значения Ач, меньший ток, чем это, также будет хорошо работать, хотя время зарядки будет пропорционально увеличиваться)
- Зарядное устройство должно иметь автоматическое отключение при рекомендуемый уровень полной зарядки.
- Управление температурой или контроль для батареи может не потребоваться, если входной ток ограничен значением, которое не вызывает нагревания батареи
Если у вас нет автоматического отключения, просто ограничьте постоянное напряжение входное напряжение 4,1 В.
1) Простейшее литий-ионное зарядное устройство с использованием одного полевого МОП-транзистора
Если вы ищете самую дешевую и простую схему литий-ионного зарядного устройства, то лучшего варианта не может быть.
ПРИМЕЧАНИЕ. В данной конструкции отсутствует регулирование температуры, поэтому рекомендуется более низкий входной ток.Один полевой МОП-транзистор, предустановка или подстроечный резистор и резистор на 470 Ом 1/4 Вт — это все, что вам нужно для создания простой и безопасной схемы зарядного устройства.
Перед подключением выхода к литий-ионному аккумулятору убедитесь в нескольких вещах.
1) Поскольку вышеуказанная конструкция не включает регулирование температуры, входной ток должен быть ограничен до уровня, который не вызывает значительного нагрева элемента.
2) Отрегулируйте предустановку, чтобы получить ровно 4,1 В на клеммах зарядки, к которым предполагается подключить элемент.Отличный способ исправить это — подключить точный стабилитрон вместо предустановленного и заменить 470 Ом резистором 1 кОм.
Для тока, как правило, будет подходящим постоянный входной ток около 0,5 ° C, то есть 50% от значения мАч ячейки.
Добавление контроллера тока
Если входной источник не управляется током, в этом случае мы можем быстро модернизировать вышеуказанную схему с помощью простого каскада управления током BJT, как показано ниже:
RX = 07 / Max Charging CurrentAdvantage литий-ионных аккумуляторов
Основным преимуществом литий-ионных элементов является их способность быстро и эффективно принимать заряд.Однако литий-ионные элементы имеют плохую репутацию из-за того, что они слишком чувствительны к неблагоприятным воздействиям, таким как высокое напряжение, большой ток и, что наиболее важно, чрезмерная зарядка.
При зарядке в любом из вышеперечисленных условий аккумулятор может стать слишком теплым, и, если условия сохранятся, это может привести к утечке жидкости элемента или даже к взрыву, что в конечном итоге приведет к необратимому повреждению элемента.
При любых неблагоприятных условиях зарядки первое, что происходит с аккумулятором, — это повышение его температуры, и в предлагаемой концепции схемы мы используем эту характеристику устройства для выполнения требуемых операций безопасности, при которых аккумулятор никогда не может достигнуть высокого уровня. температуры, сохраняющие параметры в пределах требуемых характеристик ячейки.
2) Использование LM317 в качестве контроллера IC
В этом блоге мы встретили множество схем зарядного устройства с использованием IC LM317 и LM338, которые являются наиболее универсальными и наиболее подходящими устройствами для обсуждаемых операций.
Здесь мы также используем микросхему LM317, хотя это устройство используется только для генерации необходимого регулируемого напряжения и тока для подключенного литий-ионного элемента.
Фактическая функция считывания выполняется парой NPN-транзисторов, которые расположены таким образом, что они входят в физический контакт с заряженным элементом.
Глядя на данную принципиальную схему, мы получаем три типа защиты одновременно:
Когда питание подается на установку, IC 317 ограничивает и генерирует выходной сигнал, равный 3,9 В, для подключенной литий-ионной батареи. .
- Резистор на 640 Ом гарантирует, что это напряжение никогда не превысит предел полного заряда.
- Два транзистора NPN, подключенные в стандартном режиме Дарлингтона к выводу ADJ IC, контролируют температуру ячейки.
- Эти транзисторы также работают как ограничители тока, предотвращая перегрузки по току в литий-ионном элементе.
Мы знаем, что если вывод ADJ микросхемы 317 заземлен, ситуация полностью отключает выходное напряжение с него.
Это означает, что если проводящие транзисторы вызовут короткое замыкание контакта ADJ на землю, что приведет к отключению выхода на батарею.
Используя вышеупомянутую функцию, пара Darlingtom выполняет несколько интересных функций безопасности.
Резистор 0,8, подключенный между его базой и землей, ограничивает максимальный ток примерно до 500 мА, если ток имеет тенденцию превышать этот предел, напряжение на 0.Резистора 8 Ом становится достаточно для активации транзисторов, которые «заглушают» выход ИС и препятствуют дальнейшему увеличению тока. Это, в свою очередь, помогает предохранить аккумулятор от нежелательного тока.
Использование определения температуры в качестве параметра
Однако основная функция безопасности, выполняемая транзисторами, — это определение повышения температуры литий-ионной батареи.
Транзисторы, как и все полупроводниковые устройства, имеют тенденцию проводить ток более пропорционально с увеличением температуры окружающей среды или их тела.
Как уже говорилось, эти транзисторы должны быть расположены в непосредственном физическом контакте с батареей.
Теперь предположим, что в случае, если температура элемента начнет повышаться, транзисторы отреагируют на это и начнут проводить, проводимость немедленно приведет к тому, что контакт ADJ IC будет больше подвержен воздействию потенциала земли, что приведет к снижению выходного напряжения.
При уменьшении зарядного напряжения также будет уменьшаться повышение температуры подключенного литий-ионного аккумулятора.Результатом является контролируемая зарядка ячейки, гарантирующая, что ячейка никогда не перестанет убегать, и поддерживает безопасный профиль зарядки.
Вышеупомянутая схема работает по принципу температурной компенсации, но не включает функцию автоматического отключения избыточного заряда, и поэтому максимальное напряжение зарядки фиксируется на уровне 4,1 В.
Без температурной компенсации
Если вы хотите избежать Из-за проблем с контролем температуры вы можете просто проигнорировать пару Дарлингтона BC547 и использовать вместо нее один BC547.
Теперь он будет работать только как источник питания с регулируемым током / напряжением для литий-ионного элемента. Вот необходимый модифицированный дизайн. Трансформатор
может быть трансформатором 0-6 / 9 / 12В.Поскольку здесь не используется регулирование температуры, убедитесь, что значение Rc правильно выбрано для скорости 0,5 C. Для этого вы можете использовать следующую формулу:
Rc = 0,7 / 50% от значения Ач
Предположим, что значение Ач напечатано как 2800 мАч. Тогда указанная выше формула может быть решена как:
Rc = 0.7/1400 мА = 0,7 / 1,4 = 0,5 Ом
Мощность будет 0,7 x 1,4 = 0,98, или просто 1 ватт.
Аналогичным образом убедитесь, что предустановка 4k7 настроена на точное значение 4,1 В на выходных клеммах.
После выполнения вышеуказанных настроек вы можете безопасно зарядить предполагаемую литий-ионную батарею, не беспокоясь о любых нежелательных ситуациях.
Так как при 4,1 В мы не можем считать аккумулятор полностью заряженным.
Чтобы противостоять вышеуказанному недостатку, автоматическое отключение становится более предпочтительным, чем описанная выше концепция.
В этом блоге я обсуждал много схем автоматического зарядного устройства операционных усилителей, любая из них может быть применена для предлагаемой конструкции, но, поскольку мы заинтересованы в том, чтобы конструкция оставалась дешевой и простой, можно попробовать альтернативную идею, которая показана ниже. .
Использование SCR для отсечки
Если вас интересует только автоматическое отключение без контроля температуры, вы можете попробовать описанную ниже конструкцию на основе SCR. SCR используется через ADJ и землю IC для операции фиксации.Затвор оснащен выходом таким образом, что, когда потенциал достигает примерно 4,2 В, SCR срабатывает и фиксируется, отключая питание батареи навсегда.
Пороговое значение можно отрегулировать следующим образом:
Изначально оставьте предустановку 1K настроенной на уровень земли (крайний правый), подайте внешний источник напряжения 4,3 В на выходные клеммы.
Теперь медленно отрегулируйте предустановку, пока SCR не сработает (загорится светодиод).
Устанавливает схему для автоматического отключения.
Как настроить вышеуказанную схему
Изначально удерживайте центральный рычаг ползунка предустановки касанием шины заземления схемы.
Теперь, не подключая выключатель батареи к источнику питания, проверьте выходное напряжение, которое, естественно, покажет полный уровень заряда, установленный резистором 700 Ом.
Затем очень умело и аккуратно отрегулируйте предустановку до тех пор, пока SCR не сработает, отключив выходное напряжение до нуля.
Вот и все, теперь вы можете считать, что схема полностью настроена.
Подключите разряженную батарею, включите питание и проверьте реакцию, предположительно, SCR не сработает, пока не будет достигнут установленный порог, и отключится, как только батарея достигнет установленного порога полной зарядки.
3) Схема зарядного устройства литий-ионной батареи с использованием IC 555
Вторая простая конструкция объясняет простую, но точную схему автоматического зарядного устройства литий-ионной батареи с использованием широко распространенной микросхемы IC 555.
Зарядка литий-ионной батареи может быть критической
A Литий-ионный аккумулятор, как мы все знаем, необходимо заряжать в контролируемых условиях, если он заряжается обычными средствами, это может привести к повреждению или даже взрыву аккумулятора.
В основном литий-ионные аккумуляторы не любят перезаряжать свои элементы. Как только элементы достигают верхнего порога, напряжение зарядки должно быть отключено.
Следующая схема зарядного устройства для литий-ионных аккумуляторов очень эффективно соответствует указанным выше условиям, так что подключенному аккумулятору никогда не разрешается превышать предел избыточного заряда.
Когда IC 555 используется в качестве компаратора, его контакты №2 и №6 становятся эффективными входами измерения для определения нижнего и верхнего пределов порогового напряжения в зависимости от настройки соответствующих предварительных настроек.
Контакт № 2 контролирует пороговый уровень низкого напряжения и переключает выход на высокий логический уровень в случае, если уровень падает ниже установленного предела.
И наоборот, контакт № 6 контролирует верхний порог напряжения и переключает выход на низкий при обнаружении уровня напряжения, превышающего установленный верхний предел обнаружения.
Обычно верхнее отключение и нижнее включение должны быть установлены с помощью соответствующих предустановок, удовлетворяющих стандартным спецификациям IC, а также подключенной батареи.
Предустановка, касающаяся вывода №2, должна быть установлена так, чтобы нижний предел соответствовал 1/3 от Vcc, и аналогичная предустановка, связанная с выводом №6, должна быть установлена так, чтобы верхний предел отсечки соответствовал 2/3 от Vcc. , в соответствии со стандартными правилами IC 555.
Как это работает
Полное функционирование предлагаемой схемы зарядного устройства Li-Ion с использованием IC 555 происходит, как поясняется в следующем обсуждении:
Предположим, что батарея полностью разряжена. ионный аккумулятор (около 3.4В) подключается к выходу схемы, показанной ниже.
Предполагая, что нижний порог установлен где-то выше уровня 3,4 В, контакт №2 немедленно определяет ситуацию низкого напряжения и подтягивает выходной сигнал к высокому уровню на контакте №3.
Высокий уровень на контакте № 3 активирует транзистор, который включает входное питание подключенной батареи.
Теперь аккумулятор начинает постепенно заряжаться.
Как только аккумулятор достигнет полной зарядки (при 4,2 В), предполагается, что верхний порог отключения на контакте № 6 будет установлен на уровне 4.2v, уровень измеряется на выводе №6, который немедленно переключает выход на низкий уровень.
Низкий выходной сигнал мгновенно отключает транзистор, что означает, что вход для зарядки теперь заблокирован или отключен от батареи.
Наличие транзисторного каскада также обеспечивает возможность зарядки литий-ионных аккумуляторов более высокого тока.
Трансформатор должен быть выбран с напряжением, не превышающим 6 В, и номинальным током, составляющим 1/5 от номинала батареи AH.
Принципиальная схема
Если вы чувствуете, что вышеприведенная схема очень сложна, вы можете попробовать следующую схему, которая выглядит намного проще:
Как настроить схему
Подключите полностью заряженную батарею в показанных точках и отрегулируйте предустановка, при которой реле просто деактивируется из положения N / C в положение N / O…. делайте это без подключения к цепи зарядного входа постоянного тока.
Как только это будет сделано, вы можете предположить, что цепь настроена и может использоваться для автоматического отключения питания от батареи при полной зарядке.
Во время фактической зарядки убедитесь, что входной ток зарядки всегда ниже, чем номинал батареи AH, то есть, если предположить, что батарея AH составляет 900 мАч, входной ток не должен превышать 500 мА.
Батарею следует вынуть, как только реле выключится, чтобы предотвратить саморазряд батареи через предустановку 1K.
IC1 = IC555
Все резисторы 1/4 Вт CFR
Распиновка IC 555
Заключение
Хотя конструкции, представленные выше, все технически правильны и будут выполнять задачи в соответствии с предложенными спецификациями, они фактически выглядят как перебор.
Простой, но эффективный и безопасный способ зарядки литий-ионного элемента описан в этом посте , и эта схема может быть применима ко всем формам батарей, поскольку она отлично заботится о двух важнейших параметрах: постоянном токе и полном заряде. автоматическое отключение заряда.Предполагается, что от источника заряда поступает постоянное напряжение.
4) Зарядка многих литий-ионных аккумуляторов
В статье объясняется простая схема, которую можно использовать для быстрой параллельной зарядки не менее 25 литий-ионных элементов от одного источника напряжения, такого как аккумулятор 12 В или Солнечная панель 12В.
Идея была предложена одним из ярых последователей этого блога, давайте послушаем ее:
Зарядка нескольких литий-ионных аккумуляторов вместе
Можете ли вы помочь мне разработать схему для зарядки 25 литий-ионных аккумуляторов (3.7в-800мА каждый) одновременно. Мой источник питания от батареи 12v- 50AH. Также дайте мне знать, сколько ампер 12-вольтовой батареи будет потребляться с этой настройкой в час … заранее спасибо.
Конструкция
Что касается зарядки, литий-ионные элементы требуют более строгих параметров по сравнению со свинцово-кислотными аккумуляторами.
Это становится особенно важным, потому что литий-ионные элементы имеют тенденцию выделять значительное количество тепла в процессе зарядки, и если это тепловыделение выходит за рамки контроля, это может привести к серьезному повреждению элемента или даже к возможному взрыву.
Однако в литий-ионных элементах есть одна хорошая особенность: их можно заряжать с полной скоростью 1С на начальном этапе, в отличие от свинцово-кислотных аккумуляторов, которые не позволяют заряжать более чем С / 5.
Вышеупомянутое преимущество позволяет литий-ионным элементам заряжаться в 10 раз быстрее, чем свинцово-кислотный счетчик.
Как обсуждалось выше, поскольку управление теплом становится решающей проблемой, при надлежащем управлении этим параметром все остальное становится довольно простым.
Это означает, что мы можем заряжать литий-ионные элементы с полной скоростью 1С, не беспокоясь ни о чем, если у нас есть что-то, что контролирует тепловыделение от этих элементов и инициирует необходимые корректирующие меры.
Я попытался реализовать это, подключив отдельную цепь датчика тепла, которая контролирует тепло от ячеек и регулирует ток заряда в случае, если тепло начинает отклоняться от безопасного уровня.
Контроль температуры со скоростью 1 ° C имеет решающее значение.
На первой схеме ниже показана точная схема датчика температуры с использованием микросхемы LM324. Здесь были задействованы три ее операционных усилителя.
Диод D1 представляет собой 1N4148, который эффективно действует как датчик температуры.Напряжение на этом диоде падает на 2 мВ с повышением температуры на каждый градус.
Это изменение напряжения на D1 побуждает A2 изменить свою выходную логику, что, в свою очередь, заставляет A3 постепенно увеличивать свое выходное напряжение соответственно.
Выход A3 подключен к светодиоду оптрона. Согласно настройке P1, выходной сигнал A4 имеет тенденцию увеличиваться в ответ на тепло от элемента, пока, в конце концов, не загорится подключенный светодиод, а внутренний транзистор оптического сигнала не станет проводящим.
Когда это происходит, оптранзистор подает напряжение 12 В на схему LM338 для инициирования необходимых корректирующих действий.
На второй схеме показан простой регулируемый источник питания на микросхеме LM338. Поток 2k2 настроен на подачу точно 4,5 В на подключенные литий-ионные элементы.
Предыдущая схема IC741 представляет собой схему отключения при избыточном заряде, которая контролирует заряд по элементам и отключает питание, когда оно достигает значения выше 4,2 В.
BC547 слева рядом с ICLM338 вводится для применения соответствующих корректирующих действий, когда ячейки начинают нагреваться.
В случае, если элементы становятся слишком горячими, питание от оптопары датчика температуры попадает на транзистор LM338 (BC547), транзистор проводит ток и мгновенно отключает выход LM338, пока температура не упадет до нормального уровня, этот процесс продолжается. пока элементы не будут полностью заряжены, когда IC 741 активируется и навсегда отключит элементы от источника.
Все 25 ячеек могут быть подключены к этой цепи параллельно, каждая положительная линия должна включать отдельный диод и резистор 5 Ом 1 Вт для равномерного распределения заряда.
Весь пакет ячеек должен быть закреплен на общей алюминиевой платформе, чтобы тепло равномерно рассеивалось по алюминиевой пластине.
D1 следует надлежащим образом приклеить к этой алюминиевой пластине, чтобы рассеиваемое тепло оптимально воспринималось датчиком D1.
Цепь автоматического зарядного устройства и контроллера литий-ионных аккумуляторов.
Заключение
- Основными критериями, которые необходимо соблюдать для любого аккумулятора, являются: зарядка при удобных температурах и отключение источника питания, как только он достигнет полной зарядки.Это основная вещь, которой вам нужно следовать, независимо от типа батареи. Вы можете контролировать это вручную или сделать это автоматически, в обоих случаях ваша батарея будет заряжаться безопасно и иметь более длительный срок службы.
- Ток зарядки / разрядки отвечает за температуру батареи, если она слишком высока по сравнению с температурой окружающей среды, ваша батарея сильно пострадает в долгосрочной перспективе.
- Второй важный фактор — никогда не позволять аккумулятору сильно разряжаться. Продолжайте восстанавливать полный уровень заряда или увеличивайте его, когда это возможно.Это гарантирует, что аккумулятор никогда не достигнет нижнего уровня разряда.
- Если вам трудно контролировать это вручную, вы можете выбрать автоматический контур, как описано на этой странице.
Есть еще сомнения? Пожалуйста, дайте им возможность заполнить поле для комментариев ниже 🙂
Зарядка литий-ионных аккумуляторов требует точного определения напряжения
Литий-ионные (литий-ионные) аккумуляторы набирают популярность в портативных системах из-за их повышенной емкости при тех же размерах и весе, что и более старый состав NiCad и NiMH.Например, портативный компьютер с литий-ионным аккумулятором может работать дольше, чем аналогичный компьютер с никель-металлгидридным аккумулятором. Однако проектирование системы для литий-ионных аккумуляторов требует особого внимания к схеме зарядки, чтобы обеспечить быструю, безопасную и полную зарядку аккумулятора.
Новая микросхема для зарядки аккумуляторов, ADP3810, разработана специально для управления зарядом литий-ионных аккумуляторов с 1-4 элементами. Четыре высокоточных фиксированных варианта конечного напряжения батареи (4.2 В, 8,4 В, 12,6 В и 16,8 В); они гарантируют конечное напряжение батареи ± 1%, что так важно при зарядке литий-ионных батарей. Сопутствующее устройство, ADP3811, похоже на ADP3810, но его конечное напряжение батареи программируется пользователем для работы с другими типами батарей. Обе микросхемы точно контролируют зарядный ток, чтобы обеспечить быструю зарядку при токах 1 ампер и более. Кроме того, оба они имеют прецизионный источник опорного напряжения 2,0 В и прямой выход привода оптопары для изолированных приложений.
Литий-ионная зарядка: литий-ионные батареи обычно требуют алгоритма зарядки с постоянным током и постоянным напряжением (CCCV). Другими словами, литий-ионный аккумулятор следует заряжать при заданном уровне тока (обычно от 1 до 1,5 ампер), пока он не достигнет своего конечного напряжения. На этом этапе схема зарядного устройства должна переключиться в режим постоянного напряжения и обеспечивать ток, необходимый для удержания батареи при этом конечном напряжении (обычно 4,2 В на элемент). Таким образом, зарядное устройство должно обеспечивать стабильные контуры управления для поддержания постоянное значение тока или напряжения, в зависимости от состояния батареи.
Основная задача при зарядке литий-ионного аккумулятора — реализовать полную емкость аккумулятора без его перезарядки, что может привести к катастрофическому отказу. Возможна небольшая погрешность, всего ± 1%. Избыточная зарядка более чем на 1% может привести к выходу батареи из строя, а недостаточная зарядка более чем на 1% приводит к снижению емкости. Например, недозаряд литий-ионного аккумулятора всего на 100 мВ (-2,4% для литий-ионного элемента на 4,2 В) приводит к потере емкости примерно на 10%. Поскольку возможность ошибки настолько мала, требуется высокая точность схемы управления зарядкой.Для достижения такой точности контроллер должен иметь прецизионный источник опорного напряжения, усилитель обратной связи с высоким коэффициентом усиления и малым смещением, а также точно согласованный резистивный делитель. Суммарные погрешности всех этих компонентов должны приводить к общей погрешности менее ± 1%. ADP3810, сочетающий эти элементы, гарантирует общую точность ± 1%, что делает его отличным выбором для зарядки литий-ионных аккумуляторов.
ADP3810 и ADP3811: На рисунке 1 показана функциональная схема ADP3810 / 3811 в упрощенной схеме зарядного устройства CCCV.Два усилителя « г м » (вход напряжения, выход тока) являются ключевыми для производительности ИС. GM1 определяет и управляет зарядным током через шунтирующее сопротивление, R CS и GM2 измеряет и управляет конечным напряжением батареи . Их выходы соединены в аналоговой конфигурации «ИЛИ», и оба спроектированы таким образом, что их выходы может только подтянуть общий узел COMP. Таким образом, либо усилитель тока, либо усилитель напряжения контролируют контур зарядки в любой момент времени.Узел COMP буферизирован выходным каскадом « g m » (GM3), выходной ток которого напрямую управляет входом управления преобразователем постоянного тока (через оптопару в изолированных приложениях).
Рис. 1. Блок-схема ADP3810 / 3811 в упрощенной схеме зарядки аккумулятора.ADP3810 включает прецизионные тонкопленочные резисторы для точного деления напряжения батареи и сравнения его с внутренним опорным напряжением 2,0 В. ADP3811 не включает эти резисторы, поэтому разработчик может запрограммировать любое конечное напряжение батареи с помощью пары внешних резисторов в соответствии с приведенной ниже формулой.Буферный усилитель обеспечивает вход с высоким импедансом для программирования зарядного тока с использованием входа VCTRL, а схема блокировки при пониженном напряжении (UVLO) обеспечивает плавный запуск.
Чтобы понять конфигурацию «ИЛИ», предположим, что полностью разряженный аккумулятор вставлен в зарядное устройство. Напряжение аккумулятора значительно ниже конечного напряжения заряда, поэтому на входе VSENSE GM2 (подключенном к аккумулятору) положительный вход GM2 значительно ниже внутреннего опорного напряжения 2,0 В. В этом случае GM2 хочет вывести узел COMP на низкий уровень, но он может только подтянуть, поэтому он не оказывает никакого влияния на узел COMP.Поскольку батарея разряжена, зарядное устройство начинает увеличивать ток заряда, и токовая петля берет на себя управление. Ток заряда создает отрицательное напряжение на резисторе токового шунта (RCS) с сопротивлением 0,25 Ом. Это напряжение измеряется GM1 через резистор 20 кОм (R3). В состоянии равновесия ( I CHARGE R CS ) / R 3 = -V CTRL /80 кОм. Таким образом, ток заряда поддерживается на уровне
.Если ток заряда имеет тенденцию превышать запрограммированный уровень, вход V CS GM1 принудительно становится отрицательным, что приводит к высокому уровню на выходе GM1.Это, в свою очередь, подтягивает узел COMP, увеличивая ток от выходного каскада, уменьшая мощность блока преобразователя постоянного / постоянного тока (который может быть реализован с различными топологиями, такими как обратный ход, понижающий или линейный каскад), и, наконец, уменьшение зарядного тока. Эта отрицательная обратная связь завершает контур управления зарядным током.
Когда батарея приближается к своему конечному напряжению, входы GM2 приходят в равновесие. Теперь GM2 подтягивает узел COMP к высокому уровню, и выходной ток увеличивается, в результате чего ток заряда уменьшается, поддерживая равные значения V SENSE и V REF .Управление зарядным контуром изменено с GM1 на GM2. Поскольку усиление двух усилителей очень велико, переходная область от регулирования тока к напряжению очень резкая, как показано на Рисунке 2. Эти данные были измерены на 10-вольтовой версии автономного зарядного устройства, показанном на Рисунке 3.
Рис. 2. Изменение тока / напряжения зарядного устройства ADP3810 CCCVПолное автономное литий-ионное зарядное устройство: На рис. 3 показана полная система зарядки с использованием ADP3810 / 3811. В этом автономном зарядном устройстве используется классическая архитектура с обратным ходом для создания компактной и недорогой конструкции.Три основные части этой схемы — это контроллер первичной стороны, силовой полевой транзистор и трансформатор обратного хода, а также контроллер вторичной стороны. В этой конструкции используется ADP3810, напрямую подключенный к батарее, для зарядки двухэлементной литий-ионной батареи. до 8,4 В при программируемом токе заряда от 0,1 до 1 А. Входной диапазон от 70 до 220 В переменного тока — для универсальной работы. Используемый здесь широтно-импульсный модулятор первичной стороны — промышленный стандарт 3845, но могут использоваться и другие компоненты ШИМ. . Фактические выходные характеристики зарядного устройства контролируются ADP3810 / 3811, что гарантирует конечное напряжение в пределах ± 1%.
Рисунок 3. Полное автономное зарядное устройство для литий-ионных аккумуляторовТоковый привод управляющего выхода ADP3810 / 3811 напрямую подключается к фотодиоду оптопары без дополнительных схем. Его выходной ток 4 мА может управлять различными оптопарами — здесь используется MOC8103. Ток фототранзистора протекает через R F , устанавливая напряжение на выводе COMP 3845 и, таким образом, управляя рабочим циклом ШИМ. Контролируемый импульсный стабилизатор спроектирован таким образом, что повышенный ток светодиода от оптопары снижает рабочий цикл преобразователя.
В то время как сигнал от ADP3810 / 3811 управляет средним зарядным током , первичная сторона должна иметь циклическое ограничение тока переключения. Этот предел тока должен быть спроектирован таким образом, чтобы при отказе или неисправности вторичной цепи или оптопары или во время запуска компоненты первичной силовой цепи (полевой транзистор и трансформатор) не подвергались перенапряжению. Когда вторичная сторона V CC поднимается выше 2,7 В, ADP3810 / 3811 берет на себя управление и контролирует средний ток.Предел тока первичной стороны устанавливается резистором считывания тока 1,6 Ом, подключенным между силовым транзистором NMOS, IRFBC30 и землей.
ADP3810 / 3811, ядро вторичной стороны, устанавливает общую точность зарядного устройства. Для выпрямления требуется только один диод (MURD320), и никакой катушки индуктивности фильтра не требуется. Диод также предотвращает обратный запуск зарядного устройства при отключении входного питания. Конденсатор емкостью 1000 мкФ (CF1) поддерживает стабильность при отсутствии батареи .RCS определяет средний ток (см. Выше), и ADP3810 подключается напрямую (или ADP3811 через делитель) к батарее, чтобы определять и контролировать ее напряжение.
В этой схеме реализовано полностью автономное зарядное устройство для литий-ионных аккумуляторов. Топология обратного хода объединяет преобразователь переменного тока в постоянный со схемой зарядного устройства, что дает компактный и недорогой дизайн. Точность этой системы зависит от контроллера вторичной стороны, ADP3810 / 3811. Архитектура устройства также хорошо работает в других схемах зарядки аккумуляторов.Например, стандартное зарядное устройство постоянного тока понижающего типа может быть легко сконструировано путем объединения ADP3810 и ADP1148. Простое линейное зарядное устройство также может быть разработано с использованием только ADP3810 и внешнего транзистора. Во всех случаях присущая ADP3810 точность контролирует зарядное устройство и гарантирует конечное напряжение батареи ± 1%, необходимое для зарядки литий-ионных аккумуляторов.
Как собрать модуль зарядного устройства и бустера для литиевых аккумуляторов 18650
В этом руководстве мы собираемся построить модуль зарядного устройства и усилителя литиевых аккумуляторов, объединив микросхему зарядного устройства для литиевых аккумуляторов TP4056 и повышающий преобразователь IC FP6291 для одного -элементная литиевая батарея.Такой батарейный модуль будет очень полезен при питании наших электронных проектов литиевыми батареями. Модуль может безопасно заряжать литиевую батарею и повышать ее выходное напряжение до регулируемых 5 В, которые можно использовать для питания большинства наших плат для разработки, таких как Arduino, NodeMcu и т. Д. Зарядный ток нашего модуля установлен на 1 А, а выходной ток также установлен на 1 А при 5 В, однако его также можно легко изменить, чтобы обеспечить до 2,5 А, если это необходимо и поддерживается батареей.
На протяжении всего руководства мы обсудим принципиальную схему, как я спроектировал печатную плату, как я ее заказал, и какие проблемы возникли при пайке компонентов и тестировании схемы.Если вы совершенно не знакомы с литиевыми батареями и схемами зарядного устройства, ознакомьтесь с введением в литиевые батареи и схему зарядного устройства для литиевых батарей, чтобы получить представление, прежде чем приступать к этой схеме.
Здесь мы использовали PCBWay, чтобы предоставить печатные платы для этого проекта. В следующих разделах статьи мы подробно рассмотрели полную процедуру проектирования, заказа и сборки печатных плат для этой схемы зарядного устройства литиевой батареи.
Необходимые компоненты- TP4056 Зарядное устройство для литий-ионных аккумуляторов IC
- FP6291 Повышающий преобразователь IC
- USB-разъем типа A, розетка
- Микро-USB 2.0 B тип 5-контактный разъем
- 5 × резистор (2 × 1 кОм, 1,2 кОм, 12 кОм, 88 кОм)
- 6 × конденсатор (2 × 0,1 мкФ, 2 × 10 мкФ, 2 × 20 мкФ)
- 2 × светодиода
- 1 × индуктор (4,7 мкГн)
- 1 × диод (1N5388BRLG)
- 18650 Литиевый элемент
Принципиальная схема зарядного и бустерного модуля литиевых батарей 18650 приведена выше. Эта схема состоит из двух основных частей: одна — это цепь зарядки аккумулятора , и вторая — это часть повышающего преобразователя постоянного тока в постоянный ток .Бустерная часть используется для повышения напряжения батареи с 3,7 В до 4,5-6 В. Здесь, в этой схеме, мы использовали гнездовой разъем USB типа A на стороне усилителя и 5-контактный разъем Micro USB 2.0 B типа на стороне зарядного устройства. Полную работу схемы также можно увидеть на видео внизу этой страницы.
Схема зарядного устройства разработана на основе специального зарядного устройства для литий-ионных аккумуляторов TP4056 IC. TP4056 — это полное линейное зарядное устройство постоянного тока / постоянного напряжения для одноэлементных литий-ионных батарей.Благодаря корпусу SOP и небольшому количеству внешних компонентов TP4056 идеально подходит для портативных приложений. Эта микросхема выполняет операцию зарядки аккумулятора, обрабатывая входное напряжение 5 В постоянного тока, поступающее через разъем Micro USB. Подключенные к нему светодиоды показывают состояние зарядки.
Схема повышающего преобразователя постоянного тока разработана с использованием микросхемы повышающего преобразователя постоянного тока FP6291. Эта повышающая повышающая ИС DC-DC с частотой 1 МГц может использоваться в приложении, например, для получения стабильного напряжения 5 В от батареи 3 В.Схема повышающего преобразователя получает входное питание через клеммы аккумулятора (+ и -), обрабатывается микросхемой FP6291, чтобы обеспечить стабильное питание 5 В постоянного тока через стандартный разъем USB на выходе.
Изготовление печатной платы 18650 Зарядное устройство и модуль бустера для литиевых батарейТеперь, когда мы понимаем, как работают схемы, мы можем приступить к созданию печатной платы для нашего проекта. Вы можете спроектировать печатную плату с помощью любого программного обеспечения для печатных плат по нашему выбору. Наша печатная плата после завершения выглядит так, как показано ниже.
Макет печатной платы для указанной выше схемы также доступен для загрузки как Gerber по ссылке:
Теперь, когда наш дизайн готов, пришло время изготовить их с помощью файла Gerber. Сделать печатную плату довольно просто, просто выполните следующие действия:
Заказ печатной платы в PCBWayШаг 1: Зайдите на https://www.pcbway.com/, зарегистрируйтесь, если это ваш первый раз. Затем на вкладке PCB Prototype введите размеры вашей печатной платы, количество слоев и количество требуемых печатных плат.
Шаг 2 : Продолжите, нажав кнопку «Цитировать сейчас». Вы попадете на страницу, где при необходимости установите несколько дополнительных параметров, таких как используемый материал, расстояние между дорожками и т. Д. Но в большинстве случаев значения по умолчанию будут работать нормально.
Шаг 3: Последний шаг — загрузить файл Gerber и продолжить оплату. Чтобы убедиться, что процесс проходит гладко, PCBWAY проверяет, действителен ли ваш файл Gerber, прежде чем продолжить оплату.Таким образом, вы можете быть уверены, что ваша печатная плата удобна для изготовления и будет доставлена вам по мере необходимости.
Сборка и проверка зарядных устройств 18650 и бустерного модуляЧерез несколько дней мы получили нашу печатную плату в аккуратной упаковке, качество печатной платы как всегда было хорошим. Верхний и нижний слои платы показаны ниже.
После сборки всех компонентов припаял красный и черный провод к контактам B + и B- для подключения к нашим ячейкам 18650.Поскольку у него не было с собой точечного сварочного аппарата, я использовал магниты для защиты моего соединения с ячейками 18650. Собранный модуль вместе с литиевой батареей показан ниже.
Зеленый и желтый светодиоды на плате показывают состояние зарядки модуля. Зеленый светодиод будет светиться, когда аккумулятор заряжается, а желтый светодиод будет светиться, когда заряд завершен или модуль ожидает зарядки аккумулятора. Порт micro USB можно использовать для зарядки аккумулятора, если зарядное устройство не подключено, при этом ни зеленый, ни желтый светодиоды не светятся.Мы можем использовать любое зарядное устройство на 5 В с этим модулем, просто убедитесь, что выходной ток зарядного устройства составляет 1 А или более. На изображении ниже показан модуль, заряжающий нашу литиевую батарею, обратите внимание, что горит зеленый светодиод.
Выходной USB-порт рассчитан на 5В и 1А. Напряжение аккумулятора 18650 повышено до 5 В для питания электронных проектов. На изображении ниже показано, как модуль можно использовать для питания платы Arduino nano.
Обратите внимание, что максимальный выходной ток модуля может быть настроен как 2.Теоретически 5А, но практически я не смог получить больше 1,5А, даже когда резистор был установлен на 2,5А. Это может быть из-за моей батареи или самой микросхемы наддува. Однако, если ток нагрузки меньше 1 А, этой недорогой схемы повышения будет вполне достаточно.
Надеюсь, вам понравилась статья и вы узнали что-то полезное. Если у вас есть какие-либо вопросы, вы можете оставить их в разделе комментариев ниже или использовать наш форум для других технических вопросов.
A Руководство разработчика по зарядке литий-ионных (литий-ионных) аккумуляторов
Преимущества литий-ионных (Li-ion) батарейукрепили их позицию в качестве основного источника питания для портативной электроники, несмотря на один недостаток, когда разработчикам приходится ограничивать скорость зарядки, чтобы избежать повреждения элемента и создания опасности.К счастью, современные литий-ионные аккумуляторы более надежны и их можно заряжать гораздо быстрее, используя методы «быстрой зарядки».
В этой статье более подробно рассматриваются разработки литий-ионных аккумуляторов, оптимальный цикл зарядки в электрохимии и некоторые схемы быстрой зарядки. В статье также будут объяснены недостатки ускоренной зарядки, что позволит инженерам сделать осознанный выбор в отношении своей следующей конструкции зарядного устройства.
Концепция литий-ионных (Li-ion) аккумуляторов проста, но все же потребовалось четыре десятилетия усилий и много долларов на исследования, чтобы разработать технологию, которая теперь надежно питает большинство современных портативных устройств.
Самые ранние элементы были хрупкими и склонными к перегреву во время зарядки, но разработка позволила преодолеть эти недостатки. Тем не менее, зарядка по-прежнему должна осуществляться в точном режиме, который ограничивает токи заряда, чтобы обеспечить достижение полной емкости без перезарядки и связанного с ней риска необратимого повреждения. Хорошая новость заключается в том, что последние достижения в области материаловедения и электрохимии увеличили подвижность ионов клетки. Большая мобильность позволяет использовать более высокие зарядные токи и ускоряет «постоянный ток» части цикла зарядки.
Эти разработки позволяют заряжать смартфоны, оснащенные литий-ионными аккумуляторами последнего поколения, примерно с 20% до 70% емкости за 20–30 минут. Кратковременное обновление батареи до трех четвертей емкости привлекает потребителей с ограниченным временем жизни, открывая сектор рынка зарядных устройств, которые могут безопасно поддерживать быструю зарядку. В ответ поставщики микросхем предложили разработчикам ИС, которые обеспечивают различную скорость зарядки, чтобы ускорить пополнение заряда литий-ионных элементов. В результате получается более быстрая зарядка, но, как всегда, приходится идти на компромисс.
Портативные устройства повышения мощности
Литий-ионные элементыоснованы на интеркаляционных соединениях. Эти соединения представляют собой материалы со слоистой кристаллической структурой, которые позволяют ионам лития мигрировать из слоев или находиться между ними. Во время разряда литий-ионной батареи ионы перемещаются от отрицательного электрода через электролит к положительному электроду, заставляя электроны двигаться в противоположном направлении по цепи для питания нагрузки. Когда ионы в отрицательном электроде израсходованы, ток перестает течь.Зарядка батареи заставляет ионы перемещаться обратно через электролит и встраиваться в отрицательный электрод, готовые к следующему циклу разряда (рис. 1).
Рис. 1. В литий-ионной батарее ионы лития перемещаются от одного интеркалирующего соединения к другому, в то время как электроны текут по цепи для питания нагрузки. (Источник изображения: Digi-Key)
В современных элементах для положительного электрода используются интеркалирующие соединения на основе лития, такие как оксид лития-кобальта (LiCoO 2 ), поскольку он намного более стабилен, чем высокореактивный чистый литий, и поэтому намного безопаснее.В качестве отрицательного электрода используется графит (уголь).
Хотя эти материалы удовлетворительны, все не идеально. Каждый раз, когда смещаются ионы, некоторые из них вступают в реакцию с электродом, становятся неотъемлемой частью материала и, таким образом, теряются в электрохимической реакции. В результате запас свободных ионов постепенно истощается, а срок службы батареи сокращается. Что еще хуже, каждый цикл зарядки вызывает объемное расширение электродов. Это вызывает напряжение в кристаллической структуре и вызывает микроскопические повреждения, которые снижают способность электродов принимать свободные ионы.Это накладывает ограничение на количество циклов перезарядки.
Устранение этих недостатков было в центре внимания недавних исследований литий-ионных аккумуляторов, основной целью которых является размещение большего количества ионов лития в электродах для увеличения плотности энергии, определяемой как энергия на единицу объема или веса. Это облегчает перемещение ионов внутрь и наружу электродов и облегчает прохождение ионов через электролит (то есть увеличивает подвижность ионов).
Время зарядки (для заданного тока) в конечном итоге определяется емкостью аккумулятора.Например, аккумулятор смартфона емкостью 3300 мАч будет заряжаться примерно в два раза дольше, чем аккумулятор 1600 мАч, когда оба заряжаются с использованием тока 500 мА. Чтобы учесть это, инженеры определяют скорость зарядки в единицах «C», где 1 C соответствует максимальному току, который батарея может обеспечить в течение одного часа. Например, в случае аккумулятора на 2000 мАч, C = 2 A. Та же методика применяется к зарядке. Подача зарядного тока 1 А к батарее емкостью 2000 мАч соответствует скорости 0,5 С.
Из этого следует, что увеличение зарядного тока приведет к уменьшению времени перезарядки.Это правда, но только до определенной степени. Во-первых, ионы обладают конечной подвижностью, поэтому увеличение зарядного тока выше определенного порога не приводит к их более быстрому сдвигу. Вместо этого энергия фактически рассеивается в виде тепла, повышая внутреннюю температуру батареи и рискуя необратимым повреждением. Во-вторых, неограниченная зарядка при высоком токе в конечном итоге приводит к встраиванию такого количества ионов в отрицательный электрод, что электрод распадается и батарея разрушается.
Последние разработки значительно улучшили подвижность ионов новейших литий-ионных элементов, что позволяет использовать более высокий зарядный ток без опасного повышения внутренней температуры.Но даже в самых современных продуктах все еще существует риск перезарядки, потому что это прямой результат физического устройства элемента. Следовательно, производители литий-ионных аккумуляторов предписывают строгий режим зарядки, чтобы защитить свои изделия от повреждений.
Осторожно делает
Зарядка литий-ионного аккумулятораосуществляется по профилю, обеспечивающему безопасность и долгий срок службы без снижения производительности (рис. 2). Если литий-ионный аккумулятор сильно разряжен (например, ниже 3 В), применяется небольшой «предварительный» заряд, составляющий около 10% от тока полной зарядки.Это предотвращает перегрев элемента до тех пор, пока он не сможет принять полный ток фазы постоянного тока. На самом деле, эта фаза редко требуется, потому что большинство современных мобильных устройств предназначены для выключения, пока еще остается некоторый заряд, потому что глубокая разрядка, например перезарядка, может повредить элемент.
Рис. 2: Профиль зарядки литий-ионных аккумуляторов с использованием метода постоянного тока до тех пор, пока напряжение аккумулятора не достигнет 4,1 В, с последующим «дозаправкой» с использованием метода постоянного напряжения.(Источник изображения: Texas Instruments)
Затем аккумулятор обычно заряжается постоянным током 0,5 C или менее, пока напряжение аккумулятора не достигнет 4,1 или 4,2 В (в зависимости от точного электрохимического режима). Когда напряжение аккумулятора достигает 4,1 или 4,2 В, зарядное устройство переключается на фазу «постоянного напряжения», чтобы исключить перезаряд. Превосходные зарядные устройства обеспечивают плавный переход от постоянного тока к постоянному напряжению, обеспечивая достижение максимальной емкости без риска повреждения аккумулятора.
Поддержание постоянного напряжения постепенно снижает ток, пока он не достигнет примерно 0,1 C, после чего зарядка прекращается. Если зарядное устройство остается подключенным к аккумуляторной батарее, применяется периодическая подзарядка для предотвращения саморазряда батареи. Подзарядка обычно начинается, когда напряжение холостого хода батареи падает ниже 3,9 до 4 В, и прекращается, когда снова достигается напряжение полной зарядки от 4,1 до 4,2 В.
Как уже упоминалось, перезарядка серьезно сокращает срок службы батареи и потенциально опасна.Как только ионы перестают двигаться, большая часть электрической энергии, подаваемой на батарею, преобразуется в тепловую. Это вызывает перегрев, что может привести к взрыву из-за выделения газа из электролита. В результате производители аккумуляторов выступают за точный контроль и подходящие функции безопасности зарядного устройства.
Недозаряд, хотя и не опасен, может также отрицательно сказаться на емкости аккумулятора. Например, недостаточная зарядка всего на 1% может снизить емкость аккумулятора примерно на 8% (Рисунок 3).
Рисунок 3: Недостаточная зарядка всего на доли процента может значительно снизить емкость литий-ионного аккумулятора. По этой причине важно точно измерить конечное напряжение во время зарядки.
По этим причинам зарядное устройство должно контролировать конечное напряжение в пределах ± 50 мВ от 4,1 или 4,2 В и иметь возможность определять, когда аккумулятор полностью заряжен. Методы обнаружения включают определение момента, когда ток упадет до 0.1 C во время стадии постоянного напряжения и, в более простых зарядных устройствах, зарядка только в течение заранее определенного времени и при условии, что батарея полностью заряжена. Многие зарядные устройства также включают устройства для определения температуры батареи, так что зарядка может прекратиться при превышении порогового значения. [1]
Ускоренная зарядка
Поскольку последнее поколение аккумуляторов отличается более высокой подвижностью ионов, возможна более быстрая зарядка без риска перегрева. На сегодняшний день производители микросхем предоставили широкий спектр интегрированных решений для управления литий-ионными аккумуляторами, чтобы упростить конструкцию зарядных устройств.Теперь они также предлагают кремний, который позволяет инженерам разрабатывать продукты, которые используют преимущества более быстрой зарядки во время фазы постоянного тока. (Обратите внимание, что в отрасли не существует общепринятого определения «быстрой или быстрой зарядки» для литий-ионной батареи. Скорее, этот термин качественно применяется к любому режиму зарядки, который ускоряет зарядку по сравнению с «типичной» скоростью заряда 0,5 ° C.)
Maxim Integrated, например, предлагает свое зарядное устройство MAX8900, основанное на импульсном понижающем («понижающем») источнике питания.Устройство может обеспечивать ток до 1,2 А от источника питания от 3,6 до 6,3 В, позволяя разработчику регулировать параметры заряда с помощью внешних компонентов.
Например, разработчик может реализовать быструю зарядку постоянным током, когда напряжение батареи превышает напряжение предварительного согласования и пока напряжение не достигнет 4,2 В. Максимальный ток быстрой зарядки определяется резистором между выводом SETI и землей (см. Рисунок 4).
Рисунок 4: Зарядный ток в фазе постоянного тока зарядки литий-ионного аккумулятора, обеспечиваемый MAX8900 от Maxim Integrated, может быть установлен с помощью резистора R SETI , показанного здесь внизу в центре этого приложения схема.( Схема, нарисованная с помощью Digi-Key Scheme-it , на основе оригинального изображения, любезно предоставленного Maxim Integrated)
Например, для R SETI = 2,87 кОм ток быстрой зарядки составляет 1,186 А, а для R SETI = 34 кОм ток составляет 0,1 А. На рисунке 5 показано, как меняется ток зарядки с R SETI . Maxim предлагает удобный комплект разработчика для MAX8900A, который позволяет разработчику экспериментировать со значениями компонентов, чтобы исследовать их влияние не только на скорость зарядки постоянным током, но и на скорость зарядки в других частях цикла зарядки.
Рисунок 5: Изменение зарядного тока в фазе постоянного тока зарядки литий-ионного аккумулятора, подаваемого MAX8900 с номиналом резистора R SETI .
В MAX8900 встроены некоторые защитные механизмы, предотвращающие опасное повышение температуры батареи во время быстрой зарядки. Они соответствуют спецификациям Японской ассоциации производителей электроники и информационных технологий (JEITA) по безопасной зарядке литий-ионных аккумуляторов.Для литий-ионных аккумуляторов при температуре от 0 до 15 ° C ток быстрой зарядки ограничен до 50% от его запрограммированной скорости, а если температура аккумулятора поднимается выше 60 ° C, ток полностью отключается до тех пор, пока температура падает до безопасного уровня. Сам чип защищен термическим отводом, который ограничивает ток заряда до 25% от максимального уровня, если внутренняя температура превышает 85˚C.
Maxim не единственный, кто предоставляет разработчикам гибкость при выборе скорости быстрой зарядки.Импульсное зарядное устройство MC32BC3770 от NXP Semiconductors обеспечивает контроль над режимом зарядки, позволяя разработчику не только устанавливать рабочие параметры через интерфейс I 2 C, но также устанавливать ток окончания заряда, напряжение регулирования аккумулятора, предварительную настройку. — ток заряда, пороговое значение напряжения быстрой зарядки и пороговое напряжение уменьшения заряда в дополнение к току быстрой зарядки.
Сам ток быстрой зарядки программируется от 100 до 2000 мА с настройкой по умолчанию 500 мА.В целях безопасности ток быстрой зарядки всегда ограничивается настройкой ограничения входного тока. MC32BC3770 может работать от входа до 20 В и имеет один вход для USB и двухканальный выход для питания устройства, если батарея полностью разряжена.
FAN5400 компании Fairchild Semiconductorтакже позволяет разработчикам программировать скорость зарядки и режимы работы микросхемы через интерфейс I 2 C. Устройство представляет собой USB-совместимое зарядное устройство на основе импульсного источника питания, который работает от входа 6 В (макс.) И предлагает до 1 напряжения.Зарядный ток 25 А.
FAN5400 разработан для минимизации времени зарядки и соответствует требованиям USB. Разработчик может выбрать как максимальный ток заряда, так и пороговое значение тока для прекращения зарядки во время фазы постоянного напряжения через хост I 2 C. Функции безопасности включают таймер, который отключает питание, если цикл зарядки превышает заранее установленную продолжительность, а ток заряда ограничивается, если температура микросхемы превышает 120 ° C.
Со своей стороны, Texas Instruments предлагает bq25898, переключаемое устройство управления зарядом аккумулятора, которое поддерживает быструю зарядку с высоким входным напряжением.Устройство может принимать входное напряжение до 12 В и выдает до 4 А на выходе, что делает его пригодным для зарядки аккумуляторов большей емкости в смартфонах и планшетах последнего поколения.
Подобно решениям NXP Semiconductors и Fairchild, bq25898 настраивается через последовательный интерфейс I 2 C, который позволяет разработчику устанавливать ток заряда и минимальное напряжение системы. Функции безопасности включают контроль температуры аккумулятора, таймер зарядки и защиту от перенапряжения.
Компромисс для быстрой зарядки
Разработчик должен знать о компромиссе, который возникает при быстрой зарядке: чем быстрее зарядка, тем меньше емкость, когда батарея переключается на относительно медленную часть режима зарядки с постоянным напряжением. Например, зарядка при 0,7 C приводит к емкости от 50 до 70 процентов при достижении 4,1 или 4,2 В, тогда как зарядка при температуре менее 0,2 C может привести к полной зарядке батареи, как только напряжение достигнет 4,1 или 4,2 В. Другими словами, если потребителю нужно быстрое обновление, скажем, с 25 до 50 процентов, быстрая зарядка идеальна, но если потребитель обычно подключается к сети для полной подзарядки, это обычно быстрее при скромной скорости зарядки 0.5 C, чем скорость быстрой зарядки не менее 1 C, что требует более длительной и относительно медленной «доливки».
Другой недостаток заключается в том, что повышенная внутренняя температура, создаваемая быстрой зарядкой — даже если она может быть ниже «безопасного» порога, определенного производителем конкретного литий-ионного элемента, — может вызвать небольшое повреждение, что в конечном итоге приведет к снижению емкости. и меньшее количество циклов перезарядки. Тем не менее, с улучшением технологии аккумуляторов, повышающим надежность ячеек, скорость быстрой зарядки должна быть чрезмерной, чтобы сократить срок службы аккумулятора до уровня, меньшего, чем «полезное» существование портативного продукта (определяемое как время между покупкой продукта потребителем и заменив его на более новую модель).
Заключение
В то время как некоторые новые аккумуляторные технологии находятся в стадии разработки в лаборатории, литий-ионный элемент, похоже, в ближайшее время станет основным носителем энергии для портативных устройств. Таким образом, технология будет продолжать интенсивно развиваться, устраняя ее недостатки. Мобильность ионов является одним из этих недостатков и, вероятно, улучшится даже по сравнению с батареями последнего поколения, что приведет к более быстрой зарядке при постоянном токе.
Разработчикимогут воспользоваться преимуществами более быстрой зарядки, выбрав микросхему управления аккумулятором, которая дает им гибкость в выборе скорости зарядки путем выбора одного или двух внешних компонентов или программирования через интерфейс I 2 C. Также стоит учитывать функции безопасности, встроенные в устройства управления батареями, поскольку, хотя современные литий-ионные элементы намного надежнее, чем их предшественники, быстрая зарядка все же представляет некоторые потенциальные опасности, которые разработчикам необходимо учитывать при разработке.
Артикул:
1. « Разработка доступных систем питания смешанных сигналов для зарядных устройств », Терри Кливленд, Скотт Дирборн, Microchip Technology Inc.
Заявление об ограничении ответственности: мнения, убеждения и точки зрения, выраженные различными авторами и / или участниками форума на этом веб-сайте, не обязательно отражают мнения, убеждения и точки зрения Digi-Key Electronics или официальную политику Digi-Key Electronics.
Зарядное устройство для литий-ионных аккумуляторов своими руками: 8 шагов (с изображениями)
Давайте подробно рассмотрим этот модуль.На рынке доступны две версии этой коммутационной платы для литий-ионного зарядного устройства на основе TP4056; со схемой защиты аккумулятора и без нее. Мы будем использовать один со схемой защиты аккумулятора.
Коммутационная плата, содержащая схему защиты батареи, обеспечивает защиту с использованием микросхем DW01A ( IC защиты батареи ) и FS8205A ( Dual N-Channel Enhancement Mode Power MOSFET ). Следовательно, коммутационная плата с защитой аккумулятора содержит 3 микросхемы (TP4056 + DW01A + FS8205A), тогда как плата без защиты аккумулятора содержит только 1 микросхему (TP4056).
TP4056 — это полный модуль линейного зарядного устройства постоянного тока / постоянного напряжения для одноэлементных литий-ионных батарей. Благодаря корпусу SOP и небольшому количеству внешних компонентов TP4056 идеально подходит для использования в домашних условиях. Он может работать как с USB, так и с настенными адаптерами. Я приложил изображение контактной схемы TP4056 (изображение №2) вместе с изображением цикла заряда (изображение №3), показывающее зарядку постоянным током и постоянным напряжением. Два светодиода на этой коммутационной плате показывают различное рабочее состояние, такое как зарядка, окончание зарядки и т. Д. (Изображение No.4).
Для безопасной зарядки литий-ионных аккумуляторов 3,7 В их следует заряжать постоянным током в 0,2–0,7 раза больше их емкости, пока их напряжение на клеммах не достигнет 4,2 В, затем их следует заряжать в режиме постоянного напряжения до зарядного тока снижается до 10% от начальной скорости зарядки. Мы не можем прекратить зарядку при 4,2 В, потому что емкость, достигнутая при 4,2 В, составляет всего около 40-70% от полной емкости. Обо всем этом заботится TP4056. Теперь одна важная вещь , ток зарядки определяется резистором, подключенным к выводу PROG, модули, доступные на рынке, обычно поставляются с 1.К этому выводу подключено 2 кОм, что соответствует зарядному току 1 Ампер (Изображение № 5). Вы можете поиграть с этим резистором, чтобы получить желаемый зарядный ток.
Ссылка на техническое описание TP4056
DW01A — это микросхема защиты аккумулятора, на рисунке № 6 показана типичная схема приложения. МОП-транзисторы M1 и M2 подключаются извне через микросхему FS8205A.
Ссылка на техническое описание DW01A
Ссылка на техническое описание FS8205A
Все эти элементы собраны на коммутационной плате зарядного устройства литий-ионной батареи TP4056, ссылка на которую указана в шаге №2.Нам нужно сделать только две вещи: подать напряжение в диапазоне от 4,0 до 8,0 В на входные клеммы и подключить батарею к клеммам B + и B- TP4056.
Далее мы соберем остальную часть схемы зарядного устройства.
Схема зарядного устройства литиевой батареи — Gadgetronicx
Gadgetronicx> Электроника> Принципиальные и электрические схемы> Схемы зарядного устройства> Схема
зарядного устройства для литиевой батареиКоманда Gadgetronicx 20 ноября 2019
Литиевые батареив наши дни широко используются почти повсеместно.К этим батареям нужно было обращаться по-особенному, так как зарядка и разрядка литиевой батареи — довольно своеобразный процесс. Для этой цели мы разработали схему зарядного устройства для литиевых аккумуляторов 7,4 В, которая способна эффективно удовлетворить потребности в зарядке.
РАБОТА ЦЕПИ ЗАРЯДНОГО УСТРОЙСТВА ЛИТИЕВОЙ БАТАРЕИ:
Эта схема запускается с питанием 220/110 В переменного тока от обычной розетки. Этот источник переменного тока понижается с помощью понижающего трансформатора, который преобразует этот сигнал 220 В переменного тока в 24 В переменного тока.Этот сигнал переменного тока затем выпрямляется в сигнал постоянного тока. Этот сигнал 24 В переменного тока теперь преобразуется в 24 В постоянного тока.
Этот сигнал 24 В постоянного тока подается в классический регулятор 12 В 7812. Этот источник питания 12 В используется для питания IC LM3420 зарядного устройства для литиевых батарей. LM3420 — это специальный чип для оптимальной зарядки литиевой батареи. Выход этого чипа достигает 8,4 В при зарядке литиевой батареи 7,4 В, поскольку напряжение зарядки литиевой батареи 7,4 В должно быть около 8,4 В.
ТРИКЛ ЗАРЯДКА:
Уникальность литиевых батарей заключается в том, что они требуют разного зарядного тока в зависимости от уровня заряда для длительного и эффективного использования.Использование одного и того же зарядного тока в течение всего времени зарядки приведет к снижению уровня зарядки с течением времени. Именно здесь возникает концепция капельного заряда.
Капельная зарядка использует максимальный зарядный ток, когда батарея была в состоянии низкого заряда, например, 30%. Но как только начнется зарядка, напряжение аккумулятора повысится. Для литий-ионного аккумулятора 7,4 В выходное напряжение приближается к 8,4 В. Это будет напряжение зарядки, когда батарея сантиметров достигнет от 80% до 90%.В этот момент LM3420 снижает выходной ток с максимума до точки, эквивалентной току саморазряда батареи. Это концепция непрерывной зарядки, при которой зарядка их меньшим зарядным током в конце цикла зарядки продлит срок службы аккумулятора и сохранит максимальную зарядную емкость аккумулятора.
LM3420 использует этот метод для зарядки литиевой батареи 7,4 В и продления срока службы батареи, сохраняя при этом зарядную емкость батареи.
СПИСОК ЧАСТЕЙ:
- Диод 1N4004
- Резистор 2кОм, 1кОм
- Регулятор напряжения 7812
- Источник тока
- Зарядное устройство LM3420
ПРИМЕЧАНИЕ:
- Эта схема применима с литий-ионными батареями 7,4 В
- Номинальный ток трансформатора должен быть не менее 1 А.
с использованием MCP73831
Цепь зарядного устройства литий-ионной батареи
Этот пост посвящен испытанной схеме зарядного устройства для литий-ионных аккумуляторов, которое можно использовать для зарядки любых 3.Литий-ионный аккумулятор 7 В, 500 мА с использованием источника питания 5 В постоянного тока (USB, солнечная панель, адаптер постоянного тока). Схема выполнена на микросхеме MCP73831 / 2 IC. MCP73831 — это высокотехнологичный контроллер линейного управления зарядом, предназначенный для использования в ограниченных по объему и экономичных приложениях. В этой ИС используется алгоритм заряда при постоянном токе / постоянном напряжении с возможностью выбора предварительной подготовки и прекращения зарядки.
Итак, давайте узнаем об ИС MCP73831, а также об ее особенностях и способах реализации. Его также называют миниатюрными одноэлементными, полностью интегрированными литий-ионными литий-полимерными контроллерами управления зарядом.
Характеристики MCP73831
Давайте обсудим особенности зарядного устройства MCP73831 Li-Ion / Li-Po 4,2 В, 500 мА. Его особенности следующие:
- Контроллер линейного управления зарядкой:
— Интегрированный проходной транзистор
— Интегрированный датчик тока
— Защита от обратного разряда
02. Регулировка предустановленного напряжения с высокой точностью: + 0,75%
03. Четыре варианта регулирования напряжения: 4,20 В, 4,35 В, 4,40 В, 4,50 В
04.Программируемый ток заряда: от 15 мА до 500 мА
05. Алгоритм заряда при постоянном токе и постоянном напряжении с выбираемым окончанием зарядки с предварительным условием.
06. Выбираемый контроль окончания заряда: 5%, 7,5%, 10% или 20%
07. Значение постоянного тока можно установить с помощью 1 внешнего резистора.
08. Автоматическое отключение питания: ограничивает ток заряда в зависимости от температуры кристалла при высокой мощности и высоких условиях окружающей среды.
09. Температурное регулирование: оптимизирует время цикла зарядки, поддерживая надежность устройства.
10.Температурный диапазон: от -40 ° C до + 85 ° C
11. Упаковка:
— 8 выводов, 2 мм x 3 мм DFN
— 5 выводов, SOT-23
Приложения MCP73831
MCP73831 находит широкое применение в небольших портативных устройствах благодаря своим миниатюрным размерам и лучшим возможностям управления батареями. Вот некоторые из устройств, где он широко используется:
- Зарядное устройство для литий-ионных / литий-полимерных аккумуляторов
- Помощники по персональным данным
- Сотовые телефоны
- Цифровые фотоаппараты
- MP3 плееры
- Bluetooth-гарнитуры
- Зарядные устройства USB
Контакты Описание MCP73831
1.Выход состояния заряда (STAT)
STAT выводится для подключения к светодиоду для индикации состояния заряда. В качестве альтернативы можно применить подтягивающий резистор для взаимодействия с главным микроконтроллером. STAT — это трехпозиционный логический выход на MCP73831 и выход с открытым стоком на MCP73832.
2. Опорное напряжение 0 В управления батареей (VSS)
Подключите к отрицательной клемме батареи и входного питания.
3. Выход управления зарядом аккумулятора (VBAT)
Подключите к положительной клемме аккумулятора.Вывод стока внутреннего P-канального полевого МОП-транзистора. Обход к VSS с минимальным значением 4,7 мкФ для обеспечения стабильности контура при отключении батареи.
4. Входной источник питания для управления батареями (VDD)
Рекомендуется напряжение питания [VREG (типовое) + 0,3 В] до 6 В. Обход к VSS с минимальным значением 4,7 мкФ.
5. Набор регулирования тока (PROG)
Предварительная подготовка, быстрая зарядка и токи завершения масштабируются путем размещения резистора от PROG до VSS.Контроллер управления зарядкой можно отключить, разрешив входу PROG «плавать».
Проектирование схемы зарядного устройства литий-ионной батареи 3,7 В, 500 мА
Это самое крошечное зарядное устройство для литий-ионных аккумуляторов / Li-po, поэтому вы можете держать его под рукой в любой коробке для проектов. Он также прост в использовании. Просто подключите входной контакт к любому USB-порту или источнику постоянного тока 5 В, а литий-полимерную или литий-ионную аккумуляторную батарею 3,7 В / 4,2 В — к выходному разъему на другом конце.
Литий-ионные аккумуляторынеобходимо заряжать в соответствии с тщательно контролируемой схемой постоянного тока / постоянного напряжения (CV-CC), которая является уникальной для химии этих элементов. Перезарядка и неосторожное обращение с литий-ионным элементом может привести к необратимому повреждению или нестабильности и потенциальной опасности!
Зарядка выполняется в три этапа: сначала предварительная зарядка, затем быстрая зарядка постоянным током и, наконец, постоянная зарядка постоянного напряжения для поддержания заряда аккумулятора.