Схема импульсного зу для автомобильного аккумулятора с регулировкой тока: Схемы простых зарядных для авто с регулировкой напряжения и тока

Содержание

Схемы простых зарядных для авто с регулировкой напряжения и тока

Главная » Разное » Схемы простых зарядных для авто с регулировкой напряжения и тока

Три простые схемы регулятора тока для зарядных устройств

Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.

Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.

В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.

Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.

Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.

Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.

Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.

Постараюсь пояснить принцип работы схем максимально простыми словами…

Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток. Датчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.

Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.

Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.

Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно. Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.

Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока. Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.

Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.

Выход операционного усилителя управляется мощным полевым транзистором.

То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.

Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока. Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором, в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.

Взамен будет нагреваться транзистор и от этого никуда не денешься.

Архив к статье; скачать…

Автор; АКА Касьян

11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:
  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт

ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В.  Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

Необходимые компоненты:

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Умное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания  на 12 вольт — 10 ампер.

1 схема промышленного ЗУ

Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Инверторный вид

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20:  «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

Схема Электроника

1 схема мощного ЗУ

Мощное ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Советское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М

Схема Электрон 3М

За час: 2 принципиальные схемы зарядки своими руками

Простые схемы

1 самая простая схема на автоматическое ЗУ для авто АКБ

Простая схема

Топ 4 схем импульсных ЗУ

Импульсные ЗУ

1 схема на тиристорное ЗУ

Схема

1 упрощенная схема с сайта Паяльник

Схема

1 схема на интеллектуальное ЗУ

Интеллектуальное ЗУ

4 подробные схемы защиты для ЗУ

Защита

Новые схемы 2017 и 2018 года

Новые схемы

1 схема на китайское ЗУ

Схема

1 простая схема — как собрать ЗУ

Схема

Регулятор тока зарядного устройства

В конструкции самодельного зарядного устройства для автомобильного аккумулятора важной частью является узел стабилизации и ограничения тока. Такой узел дает возможность выставить любой угодный ток заряда, при этом будет делать это за счет повышения или понижения выходного напряжения.

Схема предложенная в статье может отлично работать в совместимости с любым зарядным устройством.

Вариант реализации такого блока до безобразия прост  и собран на одном элементе ОУ. Зарядное устройство должно отдавать напряжение 13,5-14,5 Вольт при токе до 10 Ампер.

Полевой транзистор – основной силовой элемент и весь ток проходит по нему, поэтому обязательно устанавливают на теплоотвод.

Можно использовать низковольтные полевые транзисторы с током от 20 , а еще лучше от 40 Ампер. Для наших целей отлично подойдут мощные N- канальные полевые транзисторы типа IRF3205, IRFZ44/46/48 iили аналогичные.

Силовой шунт в моем случая в виде низкоомного резистора, если кому лень искать, можете использовать шунт , который стоит в дешевых китайских мультиметрах, такие шунты можно использовать для довольно точных замеров при токах до 10-14Ампер.

Полевой транзистор при желании можно заменить на биполярный, но с учетом того, что последний должен иметь большой ток коллектора, к примеру КТ819ГМ или КТ8101 из наших , тоже устанавливают на теплоотвод.

ОУ в моем варианте задействован сдвоенный , типа ЛМ358, но можно использовать и одиночные операционные усилители, к примеру – TL071/081

Автор; АКА Касьян

Зарядное устройство для автомобильного аккумулятора своими руками

Зарядное устройство (ЗУ) для аккумулятора необходимо каждому автолюбителю, но стоит оно немало, а регулярные профилактические поездки в автосервис не выход. Обслуживание батареи в СТО требует времени и денег. Кроме того, на разряженном аккумуляторе до сервиса ещё нужно доехать. Собрать своими руками работоспособное зарядное устройство для автомобильного аккумулятора своими руками сможет каждый, кто умеет пользоваться паяльником.

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.

Как узнать состояние батареи

Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В — полностью заряжена;
  • 12.3…12.4 В — 75%;
  • 12.0…12.1 В — 50%;
  • 11.8…11.9 В — 25%;
  • 11.6…11.7 В — разряжена;
  • ниже 11.6 В — глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

  • Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
  • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

Читайте также:  Как выбрать настольный электрический наждак с валом для дома

Самодельные зарядки для АКБ

Собрать своими руками зарядное устройство для автомобильного аккумулятора реально и не особо сложно. Для этого нужно иметь начальные знания по электротехнике и уметь держать в руках паяльник.

Простое устройство на 6 и 12 В

Такая схема самая элементарная и бюджетная. При помощи этого ЗУ вы сможете качественно зарядить любой свинцовый аккумулятор с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч.

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4. Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

К примеру, если необходим ток в 5 А, то понадобится включить тумблеры S4 и S2. Замкнутые S5, S3 и S2 дадут в сумме 11 А. Для контроля напряжения на АКБ служит вольтметр PU1, за зарядным током следят при помощи амперметра PА1.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 см. кв.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

Схема проста, если собрать её из исправных деталей, то в налаживании не нуждается. Это устройство подойдёт и для зарядки шестивольтовых батарей, но «вес» каждого из переключателей S2-S5 будет иным. Поэтому ориентироваться в зарядных токах придётся по амперметру.

С плавной регулировкой тока

По этой схеме собрать зарядник для аккумулятора автомобиля своими руками сложнее, но она возможна в повторении и тоже не содержит дефицитных деталей. С её помощью допустимо заряжать 12-вольтовые аккумуляторы ёмкостью до 120 А/ч, ток заряда плавно регулируется.

Читайте также:  Изготовление картофелесажалки для мотоблока и мини-трактора

Зарядка батареи производится импульсным током, в качестве регулирующего элемента используется тиристор. Помимо ручки плавной регулировки тока, эта конструкция имеет и переключатель режима, при включении которого зарядный ток увеличивается вдвое.

Режим зарядки контролируется визуально по стрелочному прибору RA1. Резистор R1 самодельный, выполненный из нихромовой или медной проволоки диаметром не менее 0.8 мм. Он служит ограничителем тока. Лампа EL1 — индикаторная. На её месте подойдёт любая малогабаритная индикаторная лампа с напряжением 24–36 В.

Понижающий трансформатор можно применить готовый с выходным напряжением по вторичной обмотке 18–24 В при токе до 15 А. Если подходящего прибора под рукой не оказалось, то можно сделать самому из любого сетевого трансформатора мощностью 250–300 Вт. Для этого с трансформатора сматывают все обмотки, кроме сетевой, и наматывают одну вторичную обмотку любым изолированным проводом с сечением 6 мм. кв. Количество витков в обмотке — 42.

Тиристор VD2 может быть любым из серии КУ202 с буквами В-Н. Его устанавливают на радиатор с площадью рассеивания не менее 200 см. кв. Силовой монтаж устройства делают проводами минимальной длины и с сечением не менее 4 мм. кв. На месте VD1 будет работать любой выпрямительный диод с обратным напряжением не ниже 20 В и выдерживающий ток не менее 200 мА.

Налаживание устройства сводится к калибровке амперметра RA1. Сделать это можно, подключив вместо аккумулятора несколько 12-вольтовых ламп общей мощностью до 250 Вт, контролируя ток по заведомо исправному эталонному амперметру.

Из компьютерного блока питания

Чтобы собрать это простое зарядное устройство своими руками, понадобится обычный блок питания от старого компьютера АТХ и знания по радиотехнике. Но зато и характеристики прибора получатся приличными. С его помощью заряжают батареи током до 10 А, регулируя ток и напряжение заряда. Единственное условие — БП желателен на контроллере TL494.

Для создания автомобильной зарядки своими руками из блока питания компьютера придётся собрать схему, приведённую на рисунке.

Пошагово необходимые для доработки операции будут выглядеть следующим образом:

  1. Откусить все провода шин питания, за исключением жёлтых и чёрных.
  2. Соединить между собой жёлтые и отдельно чёрные провода — это будут соответственно «+» и «-» ЗУ (см. схему).
  3. Перерезать все дорожки, ведущие к выводам 1, 14, 15 и 16 контроллера TL494.
  4. Установить на кожух БП переменные резисторы номиналом 10 и 4,4 кОм — это органы регулировки напряжения и тока зарядки соответственно.
  5. Навесным монтажом собрать схему, приведённую на рисунке выше.

Читайте также:  Описание ручных и стационарных электрических циркулярных пил

Если монтаж выполнен правильно, то доработку закончена. Осталось оснастить новое ЗУ вольтметром, амперметром и проводами с «крокодилами» для подключения к АКБ.

В конструкции возможно использовать любые переменные и постоянные резисторы, кроме токового (нижний по схеме номиналом 0.1 Ом). Его рассеиваемая мощность — не менее 10 Вт. Сделать такой резистор можно самостоятельно из нихромового или медного провода соответствующей длины, но реально найти и готовый, к примеру, шунт от китайского цифрового тестера на 10 А или резистор С5−16МВ. Ещё один вариант — два резистора 5WR2J, включённые параллельно. Такие резисторы есть в импульсных блоках питаниях ПК или телевизоров.

Что необходимо знать при зарядке АКБ

Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:

  1. Все свинцовые аккумуляторы заряжают током не выше одной десятой от ёмкости батареи. Если у вас в авто стоит АКБ ёмкостью 60 А/ч, то расчёт зарядного тока выглядит так: 60/10=6 А.
  2. В процессе зарядки могут выделяться взрывоопасные газы. Особенно это касается обслуживаемых аккумуляторов. Достаточно одной искры, чтобы скопившийся в гараже или другом помещении водород взорвался. Поэтому заряжать аккумуляторы нужно в хорошо проветриваемом помещении или на балконе.
  3. Зарядка батареи сопровождается выделением тепла, поэтому постоянно контролируйте температуру корпуса АКБ на ощупь. Если батарея заметно нагрелась, то немедленно уменьшите зарядный ток или вообще прекратите зарядку.
  4. Если батарея обслуживаемая, постоянно контролируйте уровень электролита в банках и его плотность. В процессе заряда электролит «выкипает», а плотность повышается. Если пластины в банке оголились или плотность поднялась выше 1.29, а зарядка ещё не закончена, добавьте в электролит дистиллированной воды.
  5. Не допускайте перезарядки батареи. Максимальное напряжение на ней при подключённом ЗУ — 14.7 В.
  6. Не допускайте глубокой разрядки батареи, подзаряжайте её периодически. Если напряжение на батарее при отключённой нагрузке опустится ниже 10.7, АКБ придётся выбросить.

Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.

Схема простого зарядного устройства для АКБ

Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.

Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.

Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.

Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.

Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для консульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.

Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 ампер\часов.

Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.

Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора,  например аккумулятор на 60 ампер\часов эффективный ток заряда должен быть в районе 6 ампер и т.д.

В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.

Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.

переделал на транзистор

Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером.  Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.

Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.

Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14.4 вольт выходного напряжения.

Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.

По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.

Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).

Плата в формате .lay; скачать…

Автор; АКА КАСЬЯН



как сделать своими руками, схема

Автор Владимир Остапенко На чтение 18 мин Просмотров 13.8к. Опубликовано Обновлено


Во время эксплуатации автомобиля нередко возникает ситуация, когда аккумуляторную батарею (АКБ) приходится снимать и заряжать стационарным зарядным устройством (ЗУ). Его, конечно же, можно купить, а возможно сделать своими руками. В этой статье рассмотрим несколько обычных зарядных устройств для автомобильного аккумулятора, которые несложно повторить даже начинающему радиотехнику.

Требования к зарядке АКБ

Прежде чем сделать зарядное устройство для автомобильного аккумулятора своими руками, рассмотрим .

  1. Зарядный ток не должен превышать рекомендованный производителем батареи. Если зарядный ток не указан (неизвестен), то он не должен превышать 10 % от принятой ёмкости аккумулятора.
  2. В конце процесса зарядки ток желательно уменьшить, чтобы .
  3. Недопустима перезарядка АКБ. Как только напряжение на клеммах заряжаемой батареи достигнет значения 13,8 ± 0,15 В, зарядку стоит прекратить. Это будет существенно для AGM и гелевых батарей.
  4. При пропадании сетевого напряжения не должна происходить разрядка батареи через зарядное устройство. Глубокий разряд для свинцовой АКБ губителен.

Исходя из вышесказанного, определяем требования к зарядному устройству:

  1. Должно обеспечивать регулировку зарядного тока.
  2. Потребуется наличие встроенных измерительных приборов – амперметра и вольтметра, – позволяющих контролировать ток заряда и .
  3. Обязательно наличие цепей, предотвращающих разряд АКБ через зарядное устройство при пропадании сетевого напряжения.

Полезно. Первый и второй пункты могут выполняться оператором вручную, но существуют и автоматические ЗУ, самостоятельно регулирующие ток во время зарядки и отключающие батарею, как только она полностью зарядится. Третий пункт должен выполняться независимо от сложности схемы ЗУ.

Как сделать самодельное зарядное устройство для АКБ

А теперь рассмотрим несколько схем разной сложности, которые отвечают вышеперечисленным требованиям к ЗУ и не особо сложны для повторения.

Простой “зарядник” с гасящими конденсаторами

Это несложное устройство позволяет заряжать аккумуляторы ёмкостью до 100 А·ч произвольным током, который регулируется в интервале 1–10 А с шагом 1 А, что будет достаточно для качественного обслуживания любого автомобильного аккумулятора.

  

Схема простого зарядного устройства с гасящими конденсаторами

В ЗУ встроен понижающий трансформатор Тр1, сетевое напряжение на него подаётся через блок гасящих конденсаторов С1-С4. Каждый из конденсаторов имеет собственный переключатель, включающий его в цепь питания трансформатора. Ёмкости конденсаторов подстроены таким образом, что переключатели S1–S4 имеют вес 1, 2, 4, 8 А соответственно.

Комбинируя положения переключателей, можно выбрать произвольный ток зарядки в диапазоне 1-10 А, с шагом 1 А. К примеру, если необходимо выставить ток 6 А, то нужно замкнуть переключатели S3 и S2. Ток в 5 А обеспечит включение переключателей S3 и S1.

Пониженное трансформатором напряжение подаётся на диодный мост, выпрямляется и выходит на клеммы Х3 и Х4, к которым подключается заряжаемая батарея. Ток зарядки измеряют амперметром PA1, а вольтметр PV1 выдаёт напряжение на клеммах батареи. Цепей защиты от разряда батареи через зарядное устройство в случае пропадания сетевого напряжения в этой схеме ЗУ нет, поскольку их роль исполняет диодный мост.

О деталях. Конденсаторы С1–С4 подбирают неполярные типа МБГО, МБГП, МБЧГ, КБГ-МН, МБМ или МБГЧ с рабочим напряжением не менее 300 В для МБГЧ и КБГ-МН и не более 600 В для приборов остальных типов.

Категорически недопустимо использование электролитических конденсаторов, даже если они рассчитаны на соответствующее напряжение. “Электролит” — полярный прибор, работающий только в цепях постоянного тока. При подключении в цепь переменного тока он просто взорвётся.

Вместо диодов Д242 можно применять любые другие, выдерживающие ток не менее 10 А и обратное напряжение не ниже 25 В. Подходят, например, диоды Д214 или германиевые Д305. При любых условиях их нужно поставить на радиаторы. Трансформатор Тр1 обычный сетевой с выходным напряжением 24–26 В, способный обеспечить хотя бы полуторный зарядный ток. Приборы PA1 и PV2 — амперметр с пределом измерения 10–15 А и вольтметр на напряжение 20 В соответственно.

Указанное зарядное устройство можно применять и для зарядки батарей с другим напряжением (например, 6-вольтовых), но здесь необходимо учитывать, что «вес» тумблеров S1–S4 будет другой, и придётся определяться по амперметру.

Прибор для зарядки и тренировки аккумулятора

Это самодельное зарядное устройство заряжает аккумулятор пульсирующим током, причём в паузах между импульсами зарядки батарея разряжается током порядка 0,5 А. Это позволяет не только качественно зарядить батарею, но и успешно , осуществляя тренировку АКБ. Зарядный ток в импульсе может достигать 10 А, регулировка тока плавная.

Электрическая схема зарядного устройства для тренировки батарей

Сетевое напряжение понижается трансформатором Т1 до величины 25 В и подаётся на однополупериодный выпрямитель, собранный на диодах D1 и D2, включенных параллельно для увеличения мощности. Регулировка тока происходит при помощи ключа, встроенного на транзисторе VТ1, включенного в минусовую цепь зарядки. Степень открытия транзистора, а значит, и зарядный ток — регулируется с помощью переменного резистора R1. Питание резистор получает от простейшего параметрического стабилизатора R1, D3.

По окончании каждого положительного полупериода диоды запираются, и до начала следующего — батарея разряжается через балластный резистор R4. Ток разрядки фиксированный и, как было сказано выше, составляет 500 мА. Зарядный ток контролируется при помощи амперметра PA1, а напряжение на батарее вольтметром PV1.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Контролируя зарядный ток, необходимо учитывать, что его часть (около 10 %) течёт через балластный резистор R4. Кроме того, прибор показывает усреднённое значение, тогда как зарядка батареи производится только в половину периода. Поэтому, к примеру, при импульсном зарядном токе в 5 А амперметр с учётом потерь на R4 покажет 1,8 А.

Для предупреждения глубокого разряда батареи через балластный резистор при пропадании сетевого напряжения введён узел защиты, собранный на реле К1. Пока зарядное устройство работает, его обмотка находится под напряжением, а контакты К1.1 и К1.2 (включены параллельно для увеличения мощности) подключают батарею к ЗУ.  При пропадании сетевого напряжения реле отпускает, и его контакты отключают заряжаемый аккумулятор.

О деталях. На месте Т1 может работать любой силовой трансформатор, выдающий 22–25 В при токе в 5 А. Диоды D1 D2 — любые десятиамперные, выдерживающие обратное напряжение не ниже 40 В. Они установлены на общий радиатор. VТ1 — транзистор серии КТ827 с любой буквой. Его тоже нужно поставить на радиатор. Если корпус прибора металлический, то в качестве радиатора может выступать и он.

Стабилитрон D3 — любой маломощный с напряжением стабилизации 7,5–12 В. Резисторы R3 и R4 — С5-16МВ и ПЭВ-15 соответственно. В качестве К1 используется реле переменного тока РПУ-0 на напряжение срабатывания 24 В. Каждая группа его контактов выдерживает ток до 6 А.

 Полезно. При необходимости можно применять реле постоянного тока, но тогда его обмотку придётся подключить к схеме через выпрямительный мост.

Зарядное устройство для АКБ с ШИМ-регулировкой тока

Эта схема способна обеспечить зарядный ток до 6 А и выделяется небольшими габаритами, поскольку использует широтно-импульсный метод регулирования (ШИМ), а управляющий током зарядки транзистор работает в ключевом режиме, что существенно снижает рассеиваемую на нём мощность.

Электросхема зарядного устройства с ШИМ

Задающий генератор блока регулировки тока собран на элементах DD1.1, DD1.2 микросхемы К561ЛА7, элементы DD1.3, DD1.4 — буферные. Частота генератора — 13 кГц, скважность плавно регулируется с помощью переменного резистора R3. С генератора сигнал поступает на регулирующий элемент — мощный полевой транзистор VT1, работающий в ключевом режиме.

В зависимости от положения движка переменного резистора отношение времени открытия транзистора к его закрытому состоянию меняется, а значит, изменяется и средний ток зарядки батареи, который можно контролировать при помощи амперметра PA1.

Питание микросхема получает от простейшего параметрического стабилизатора, собранного на элементах R1, VD4. Сам стабилизатор подключен к выпрямительному мосту, обеспечивающему напряжение зарядки. Из соображений компактности, диодный мост собран на полупроводниках Шоттки с незначительным падением напряжения. Лампа EL1 — индикаторная.

О деталях. Вторичная обмотка трансформатора Т1 должна обеспечивать ток 6–7 А при напряжении 16–20 В. Если использовать трансформатор, у вторичной обмотки которого есть отвод от середины, то выпрямитель можно собрать по схеме, приведённой ниже, сократив число выпрямительных диодов вдвое.

Двухполупериодный выпрямитель на двух диодах

В мостовом выпрямителе используется диодная сборка VD1.1 VD1.2 и два отдельных диода VD3 и VD4. Все элементы установлены на общий радиатор 160х45 мм через слюдяные прокладки. При необходимости диоды Шоттки можно заменить обычными выпрямительными, но габариты устройства при этом увеличатся, поскольку понадобится радиатор большего размера. При замене необходимо учитывать, что диоды должны выдерживать ток 10 А и обратное напряжение не менее 40 В.

Если зарядный ток не будет превышать 5 А, то транзистор VT1 устанавливать на радиатор не нужно. При большем токе понадобится радиатор — медная или алюминиевая пластина размером 50х50х1 мм.

В качестве амперметра используется индикатор записи магнитофона М476/2, включенный параллельно с шунтом. Шунт представляет собой кусок медного обмоточного провода ПЭВ-2 1,5, намотанный на оправку диаметром 8 мм. Количество витков — 16, сопротивление — около 0,1 Ом.

Зарядное устройство с фазоимпульсной регулировкой

Это мощное зарядное устройство славится тем, что собрано из доступных советских деталей, которые наверняка найдутся у любого радиотехника. Прибор обеспечивает плавную регулировку тока в пределах 0 … 10 А и пригоден для зарядки аккумуляторов ёмкостью до 100 А·ч.

Схема зарядного устройства для автомобильных аккумуляторов с фазоимпульсной регулировкой

Это обычный тиристорный регулятор напряжения с фазоимпульсным управлением. Роль элемента управления выполняет аналог однопереходного транзистора, сделанный на двух биполярных приборах VT1 и VT2. Изменяя сопротивление переменного резистора R1, мы меняем время задержки открывания тиристора относительно начала полупериода, а значит, и ток зарядки, который контролируется по показаниям амперметра PA1. Для измерения напряжения на клеммах батареи служит прибор PV1. Питается устройство от мостового выпрямителя VD1–VD4, подключенного к понижающему трансформатору Т1.

О деталях. Вместо заданного на схеме тиристора КУ202В можно использовать КУ202 с буквами Г–Е, а также более мощные Т-160 и Т-250. Диоды VD1–VD4 — обычные выпрямительные с обратным напряжением не менее 40 В и выдерживающие ток 10 А. Подойдут, например, Д242, Д243, Д245, КД203, КД210, КД213 и т. п.

Тиристор и выпрямительные диоды необходимо установить на радиаторы с эффективной площадью рассеяния 100 см2 каждый. Если используется мощный тиристор серии «Т», то на радиатор его ставить не нужно. В качестве Т1 можно использовать любой силовой трансформатор, обеспечивающий ток 10 А при напряжении 18–22 В. Отлично подойдёт, к примеру ТН-61, имеющий три обмотки по 6,3 В при токе 8 А. Этого вполне достаточно для зарядки батареи ёмкостью до 80 А·ч.

Транзистор КТ361А можно заменить на КТ361б – КТ361Е, КТ502В, КТ3107А, КТ501Ж – КТ501К, КТ502Г. На месте VT2 может работать КТ315А-КТ315Д, КТ3102А, КТ312Б. Вместо диода КД 105Д подойдут КД105Г, КД105В, Д226 (с любым индексом). Измерительный прибор PA1 — амперметр с пределом измерения 10–15 А или микроамперметр с соответствующим шунтом. PV1 — вольтметр с пределом измерения 15–20 В.

Зарядное устройство с регулировкой по высокому напряжению (по первичной обмотке)

Это устройство отличается от предыдущих тем, что тиристорный регулятор зарядного тока расположен в цепи первичной обмотки силового трансформатора. При помощи этого ЗУ можно заряжать батареи током до 6 А. Поскольку коммутируемые токи по напряжению 220 В будут намного меньше, чем по низкому, радиатор регулирующему элементу не нужен. Кроме того, амперметр PA1 не имеет громоздкого шунта, а значит, устройство получается несколько компактнее.

Зарядное устройство с регулировкой по высокому напряжению

В этой схеме используется всё тот же фазоимпульсный метод. Поскольку тиристор не может работать в цепях переменного тока, он включен через диодный мост  VD1–VD4. Управляет тиристором однопереходный транзистор VT1. Задержка его открывания от начала полупериода зависит от положения движка переменного резистора R5. Именно им и регулируется зарядный ток.

В момент открытия тиристор шунтирует диодный мост, и всё сетевое напряжение прикладывается к первичной обмотке T1. При этом со вторичной обмотки снимается напряжение определённой величины (0–20 В, в зависимости от положения движка переменного резистора R5) и, пройдя через выпрямитель VD5–VD8, поступает на клеммы заряжаемого аккумулятора. Узел измерения тока собран на микроамперметре, зашунтированном резистором R1. Резистор R2 служит для калибровки прибора. Лампа HL1 — индикаторная.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Вольтметра это зарядное устройство не имеет, поэтому контролировать напряжение на клеммах заряжаемого аккумулятора придётся внешним вольтметром, к примеру, тестером. Впрочем, ничего не мешает просто встроить вольтметр в прибор.

О деталях. На месте VD1–VD4 могут работать диоды Д231–Д234, Д245, Д247 с любым буквенным индексом, КД202 с буквами К, М, Р. Радиаторы им, как и тиристору, не нужны. Вместо германиевых Д305 в низковольтном выпрямителе можно использовать Д231–Д233 без буквенного индекса или с буквой А. Их придётся установить на радиаторы с площадью поверхности 100 см2.

Конденсатор С1 должен иметь по возможности меньший ТКЕ, иначе при прогреве устройства зарядный ток «поплывёт». Подойдут конденсаторы типа К73-17 или К73-24. Трансформатор Т1 должен обеспечивать на вторичной обмотке напряжение 18–22 В при токе нагрузки 6–7 А. Микроамперметр (PA1) можно взять любой с током полного отклонения 100 мкА.

Важно! Все элементы зарядного устройства, включенные в цепь первичной обмотки, во время работы прибора находятся под опасным для жизни напряжением. Перед любой перепайкой или изменением схемы обязательно отключаем конструкцию от сети, а на шток переменного резистора R5 надеваем ручку из изоляционного материала.

Автоматическое зарядное устройство из драйвера для светодиодных лент

Драйвер для питания светодиодных лент, если он достаточно мощный (не менее 100 Вт), — готовое зарядное устройство для автомобильного аккумулятора. Единственное, что нас не устраивает — это выходное напряжение. Драйвер выдаёт 12 вольт, конечное напряжение зарядки свинцово-кислотного аккумулятора — 13,8 В. Если учесть падение напряжения на зарядных проводах, то нам нужно заставить выдавать блок питания 14,0–14,4 вольта (зависит от толщины проводов). Этим и займёмся.

Для эксперимента возьмём драйвер мощностью 110 Вт — он сможет развить зарядный ток в 7,6 А — более чем достаточно для любого автомобильного аккумулятора. Взглянем на типовую схему драйвера китайского производства:

Типовая схема драйвера для светодиодной ленты китайского производства

Нас интересует подстроечный резистор P1 (справа вверху на блоке «Выпрямитель 12 В»). Подключаем к выходу устройства вольтметр, само устройство подключаем к сети. Небольшой отвёрткой вращаем ползунок подстроечного резистора (на плате он обозначен “VR”), пытаясь поднять напряжение до 14,0–14,4 В. Скорее всего, сделать это не удастся — слишком велика разница. На нашем блоке напряжение удалось вытянуть лишь до 13,26 В.

Диапазона регулировки подстроечного резистора нам не хватило

Тут есть два варианта:

  1. Заменить подстроечный резистор другим, большего номинала.
  2. Заменить постоянный резистор R37, стоящий в делителе, другим, меньшего номинала.

Воспользуемся вторым вариантом. Но тут возникает непредвиденная проблема — нумерация элементов на нашем блоке и на схеме не совпадают. «Пляшем» от подстроечного резистора, разбираясь в дорожках, и выясняем, что на нашей плате этот резистор обозначен “R30”.

Нас интересует резистор R30

На схеме он имеет номинал 2,2 кОм, но мы рисковать не будем, поскольку схема явно не родная — выпаиваем его и измеряем сопротивление омметром. Результат — 5 кОм.

Номинал нашего R30 составил 5 кОм

Берём переменный резистор того же номинала, впаиваем на место R30, выводим движок на максимальное сопротивление и включаем блок питания в сеть. Постепенно уменьшая сопротивление, устанавливаем необходимую величину выходного напряжения.

Напряжение на выходе составляет 14,5 В

Здесь оно несколько выше нужного, но позже мы подгоним его более точно штатным подстроечным резистором VR.

Важно! Движок переменного резистора крутим очень осторожно, стараясь не поднимать напряжение выше 15 В, поскольку сглаживающие конденсаторы в фильтре драйвера рассчитаны на максимальное напряжение в 16 В.

Выпаиваем переменный резистор, измеряем его сопротивление.

Нам нужен постоянный резистор сопротивлением 4,5 кОм

Такого номинала не существует, устанавливаем ближайший — 4,6 кОм. Снова включаем устройство, штатным подстроечным резистором VR выставляем выходное напряжение 14,0– 14,4 В. Собираем блок — и у нас в руках готовое зарядное устройство со стабилизированным выходным напряжением.

Особая прелесть такого решения состоит в том, что устройство является автоматическим и никогда не перезарядит батарею, даже если мы забудем вовремя снять её с зарядки. Идеальное решение для AGM и гелевых батарей, которые очень боятся перезаряда.

Зарядное устройство из блока питания ПК

Это устройство тоже является автоматическим — оно, как и предыдущая конструкция, не даст перезарядить аккумуляторную батарею, поскольку работает в режиме стабилизации напряжения и по окончании зарядки ток через аккумулятор падает до 0. Доработке будет подвергаться блок питания персонального компьютера, собранный на ШИМ-микросхеме TL494 или её аналогах, список которых приведён в табличке ниже.

Аналоги микросхемы TL494 

Прибор

Описание

Прибор

Описание

GL494Зарубежный полный аналогM5T494PЗарубежный полный аналог
IR9494NMB3759
MB3759UA494PC
NE5561UC494
UPC494UC494CN
XR494UPC494C
ECG1729MB3759
IR3M02UA494DM
IR9494IR9494
MB3759MB3759
UPC494C1114ЕУ3Отечественный полный аналог
UA494DC1114ЕУ4
ECG17291114ЕУЗ
HA11794К1114ЕУ3
IR3M02КР1114ЕУ4

Итак, разбираем блок, вынимаем из корпуса плату. Из платы выпаиваем все питающие провода, кроме зеленого. Он служит для запуска БП материнской платой. Нам подобное управление не нужно, а потому этот провод мы просто припаиваем к площадкам, к которым раньше припаивались чёрные провода (иначе говоря — замыкаем на минус), чтобы блок питания запускался сразу после подачи на него 220 В.

Зелёный провод управления припаиваем к минусовой шине питания

Теперь к площадкам, к которым подпаивались жёлтые и чёрные провода, припаиваем два толстых провода с «крокодилами» для подключения к аккумулятору. Тот, который подпаивается вместо жёлтых, будет плюсовым, а вместо чёрных — минусовым.

Теперь нужно заставить БП выдавать вместо 12 В нужные для зарядки свинцового аккумулятора 13,8–14 В (14,4 с учётом падения напряжения на проводах под нагрузкой). Делаем это точно так же, как и в предыдущей конструкции, — заменой резистора на прибор другого номинала.

Находим первый вывод микросхемы TL494 или её аналога, ориентируясь по ключу-выемке на корпусе прибора. На фото ниже первый вывод помечен красной, а сам ключ — зелёными стрелками.

Нумерация выводов ведётся от ключа против часовой стрелки

Переворачиваем плату и по дорожке, ведущей от этого вывода, определяем, что к нему подпаяны три резистора. Нас интересует тот, который вторым выводом подключен к шине +12 В. На фото ниже он помечен красным лаком.

Нас интересует этот резистор

Номинал этого резистора нужно изменить (увеличить), но на сколько? Выпаиваем его и замеряем сопротивление. В нашем случае сопротивление составило 38 кОм. Берём переменный резистор примерно вчетверо большего номинала, выставляем движком сопротивление 38 кОм и впаиваем его вместо того, который выпаяли. Плавно увеличивая сопротивление, выставляем выходное напряжение на значение 14,4 В.

Установка выходного напряжения при помощи переменного резистора

Важно! Для каждого блока питания номинал этого резистора будет разный, т. к. схемы и детали в блоках разные, но алгоритм изменения напряжения один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придётся перезагружать, предварительно уменьшив сопротивление переменного резистора.

Выпаиваем переменный резистор, измеряем его сопротивление, подбираем постоянный ближайшего номинала, впаиваем. Проверяем наше зарядное устройство, нагрузив его лампочкой от автомобильной фары и контролируя выходное напряжение под нагрузкой. Оно должно остаться практически тем же — 14 В.

Под нагрузкой выходное напряжение “просело” на несколько десятых — это нормально

Как заряжать аккумулятор от самодельного устройства

Зарядка аккумулятора самодельным устройством ничем не отличается от зарядки промышленным прибором.

  1. Выводим регулятор тока в «0».
  2. Подключаем заряжаемый аккумулятор к клеммам ЗУ.
  3. Подаём питание на ЗУ.
  4. Устанавливаем необходимый ток зарядки.
  5. При напряжении 13,2–13,4 В на клеммах батареи уменьшаем ток вдвое.
  6. При напряжении на клеммах 13,8 В выводим регулятор тока в «0», выключаем питание ЗУ, отключаем аккумулятор.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

В двух последних конструкциях контролировать напряжение на батарее не нужно — как только аккумулятор зарядится, ток зарядки станет равным нулю.

Вот в принципе и всё о самодельных зарядных устройствах. Прочитав этот материал, мы без труда сможем подобрать наиболее подходящую схему зарядного устройства и повторить её.

Спасибо, помогло!7Не помогло1

Зарядное устройство из советских деталей для АКБ

Всех приветствую, сегодня мы соберем зарядное устройство для автомобильных аккумуляторов, но зарядка эта весьма непростая. Во-первых я буду использовать только и только советские компоненты для сборки, во-вторых несмотря на то, что схема довольно старая, обладает весьма неплохими параметрами и по классу может тягаться с хорошими, промышленными устройствами.

Основой схемы является мощный, железный трансформатор, что повышает надежность зарядного устройства, сейчас как мы знаем все делают на базе импульсных источников питания, но они даже рядом не стоят с хорошим железным трансформатором.

По сути это трансформатор + стабилизатор, представленная схема была опубликована свыше 10 лет назад в одном из радиожурналов и показалась мне очень интересной. Это стабилизатор тока и напряжения, метод стабильного тока и напряжения самый лучший для зарядки аккумуляторов.

Первая часть схемы из себя представляет стабилизатор тока с возможностью регулировки в диапозоне от 0 до 5-6 ампер, но схему можно слегка переделать и снять ток скажем в 10 ампер.

Правая часть из себя представляет стабилизаторно-фиксированное напряжение, оно подбирается в зависимости заряжаемого аккумулятора и задает напряжении окончания заряда, для автомобильных аккумуляторов это напряжение лежит в пределах от 13,5 до 14 вольт.

Силовым элементом стабилизатора является мощной биполярный транзистор с током коллектора от 10 ампер. Нужное напряжение на выходе задаётся стабилитроном, кстати, настраивают схему под нагрузкой, иначе стабилизация напряжения работать не будет.

Поговорим о трансформаторе.

Важно чтобы он обеспечивал выходное напряжение от 15 до 25 вольт, стоит учитывать то, что на стабилизаторе будут некоторые потери и выходное напряжение всегда меньше входного, в нашем случае на 1 вольт.

Ток вторичной обмотке трансформатора будет зависеть от ваших нужд, в случае зарядки автомобильных аккумуляторов трансформатор должен обеспечивать максимальный ток в 5-6 ампер, этого достаточно для нормальной зарядки аккумулятора с ёмкостью 50-60 ампер\часов.

Можно заряжать аккумуляторы и большей ёмкости, естественно, время зарядки в этом случае увеличится.

Мой трансформатор обеспечивает выходное напряжение в районе 22 вольт, схема имеет защиту от переполюсовки питания, в случае, если вы перепутаете полярность откроется защитный диод спалив предохранитель.

Имеем токовый шунт (R1), который задействован в схеме стабилизатора тока, по сути это датчик тока, который можно собрать из низкоомных резисторов, сопротивление шунта должно быть в пределах от 0,1 до 0,3 ом, мощность не менее 5 ватт.

В моём варианте использовано 2 резистора по 0,51 ом соединенных параллельно.

Мало мощный транзистор кт3107 может быть заменен любым другим транзистором прямой проводимости, можно даже использовать транзисторы средней мощности наподобие кт814-кт816.

Пара ключей кт815, также могут быть заменены на другие ключи средней мощности, обратной проводимости, можно даже КТ805, 819 и им подобные.

Один из этих ключей управляет силовым транзистором, такое включение обеспечивает большое усиление по току. Эту часть можно заменить всего 1 составным транзистором на подобии кт827, но они нынче стоят очень дорого).

Стабилитрон в схеме стабилизации тока (VD5) должен иметь напряжение стабилизации от 5 до 8 вольт. Если не находите нужных стабилитронов, можно подключить несколько последовательно для получения нужного напряжения стабилизации.

Силовой транзистор (VT4), тут очень много аналогов, например КТ805, 809,819 и т.д.. с током от 10 ампер.

Этот транзистор обязательно устанавливают на массивный радиатор, так как схема линейная при больших токах тепловыделение будет внушительным, также советую дополнить конструкцию кулером.

Диодный выпрямитель — использовал штатные советские диоды Д242, они бывают без индекса, с индексом «а» или с индексом «б», первые два варианта на 10 ампер, диоды с индексом «б» на 5 ампер.

Мне естественно не повезло и диоды оказались именно с индексом «б» выдраны они из старого советского усилителя. Благо в усилителе оказалось 8 таких диодов, из которых был собран один мощный мост на 10 амперСхема защищена 2 предохранителями, 1 из них сетевой. ( FU1, FU2 )

Готовая схема в наладке не нуждается, единственное, что вам нужно сделать это подобрать стабилитрон VD6 на нужное напряжение.

Процесс заряда простой, подключаем аккумулятор, путём вращения верхнего переменного резистора выставляем нужный ток заряда, нижний резистор предназначен для установки максимального тока ограничения, в нашем случае 5-6 ампер.

Даже при коротком замыкании выходных клемм ток ограничивается на уровне заданного.

Печатная плата получилось довольно компактный, она так-же есть в архиве.

В следующей статье мы закончим сборку этого агрегата, установим всё в корпус, подберем нужные индикатор, в общем скучать точно не придется.

Архив к статье: скачать…

Автор; АКА Касьян

Схемы простых мощных зарядных устройств для аккумуляторов

Трансформаторные ЗУ для автомобильных аккумуляторов с высоким КПД: простейшие на гасящих конденсаторах, а также импульсные на тиристорах, симисторах и мощных полевых транзисторах.

Для начала давайте разомнёмся и забудем про такой параметр, как КПД. Предположим, что есть острое желание зарядить автомобильный АКБ, но нет возможности ввиду полного отсутствия зарядки. Также сделаем предположение, что в хозяйстве затерялись: лампа накаливания на 220 вольт, диодный мост с допустимым током, превышающим ток, при котором мы будем заряжать аккумулятор, либо, на худой конец, просто силовой (выпрямительный) диод с таким же допустимым током и максимальным обратным напряжением — не менее 300В.

Рис.1

Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ, получаем вполне себе работоспособное устройство, обеспечивающее нормированный и постоянный ток заряда подопечного аккумулятора.
Поскольку 220 вольт — это действующее значение переменного напряжения сети, то силу тока, протекающую через АКБ можно рассчитать по простой формуле:
Iзар(А) = Pламп(Вт) / (220 — Uакб)(В) ≈ Pламп(Вт) / 220(В).
Параллельное соединение двух ламп — удваивает зарядный ток, трёх — утраивает и т. д. до разумной бесконечности.
Схема, изображённая на Рис.1 справа, выдаёт ток, вдвое меньший по сравнению с предыдущей.
Большим преимуществом приведённых схем является возможность зарядки любых аккумуляторов, независимо от собственных значений их напряжений.

Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч представлена на Рис.2.


Рис.2

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4.
Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 кв. см.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

В данной схеме высокий показатель КПД достигнут за счёт применения в качестве токозадающих элементов конденсаторов, которые, как известно, имеют реактивную проводимость и не выделяют на себе тепловой мощности.
Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким собственным энергопотреблением.

Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства.
Вообще, тиристор — это прибор достаточно капризный и требующий для надёжной работы соблюдения определённого набора условий. Именно поэтому — большинство простейших схем, приведённых в различных источниках, грешат не очень стабильной работой и необходимостью подбора элементов.

Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича «Зарядные устройства», многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис.3.


Рис.3

Вот что пишет автор:

Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, который, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI…VD4.
Узел управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Конденсатор С2 — К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохранитель F1 — плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток. Диоды VD1… VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами желательно использовать теплопроводные пасты.
Вместо тиристора КУ202В подойдут КУ202Г — КУ202Е. Проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.
В приборе может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.
Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (к примеру, при 24… 26 В сопротивление резистора следует увеличить до 200 Ом).

Несмотря на популярность и работоспособность приведённый схемы, при функционировании устройства многие отмечают нехарактерное гудение трансформатора на частотах, отличных от 100 Гц. Связано это с отсутствием чётких и быстрых фронтов/спадов у сигналов, поступающих на управляющий вход тиристора при его включении/выключении, что в свою очередь создаёт условия для возникновения процессов генерации в нагрузке.

Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном (двухполярном) аналоге тиристора — симисторе.
На Рис.4 приведена схема подобного устройства из вышеупомянутой книги Т. Ходасевича.


Рис.4

Описываемое ниже простое зарядное устройство имеет широкие пределы регулирования зарядного тока — практически от 0 до 10А и может быть использовано для зарядки различных аккумуляторов на напряжение 12В.
В основу устройства положен симисторный регулятор с маломощным диодным мостом VD1-VD4 и резисторами R3 и R5. После подключения устройства к сети при плюсовом её полупериоде начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединённые резисторы R1 и R2. При минусовом полупериоде — через те же R1 и R2, диод VD2 и резистор R5. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется лишь полярность его зарядки. Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1.При этом симистор открывается. В конце полупериода симистор закрывается. описанный процесс повторяется в каждом полупериоде сети.
Общеизвестно, что управление симистором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса.
Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора. В описываемом зарядном устройстве такими резисторами являются резисторы R3 и R5, которые в зависимости от полярности полупериода сетевого напряжения поочерёдно подключаются параллельно первичной обмотке трансформатора.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5, VD6. Этот же резистор формирует импульсы разрядного тока, которые продлевают срок службы АКБ.

Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.
При изготовлении трансформатора задаются следующими параметрами: напряжением на вторичной обмотке 20В при токе 10А.


Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5).

Рис.5

Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому повторяться не буду, скажу лишь, что наличие снабберной цепи, показанной на схеме синим цветом — обязательно. В качестве нагрузки выступает первичная обмотка сетевого трансформатора.

В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44.

Рис.6

Блок управления зарядным устройством представляет собой импульсный генератор, собранный на элементах DD1.1 и DD1.2 (см. схему на рис. 6) и позволяющий регулировать скважность импульсов, буферный усилитель — инвертор на элементах DD1.3 и DD1.4 и переключающий регулирующий элемент — полевой транзистор VT1.
При указанных на схеме номиналах элементов частота генератора — около 13 кГц. Так как сопротивление открытого канала транзистора VT1 очень мало (0,017 0м) и работает он в переключательном режиме, при токе зарядки до 5 А транзистор практически не нагревается — рассеиваемая тепловая мощность не превышает 0,55 Вт.
В качестве понижающего использован сетевой трансформатор габаритной мощностью 150 Вт с вторичной обмоткой, обеспечивающей постоянное напряжение 16… 17 В на конденсаторе С1 и зарядный ток до 6 А.
Выпрямительный мост собран на диодах Шоттки, VD1 — сдвоенный SBL4045PT, a VD2 и VD3 — одиночные 10TQ045.
Если вторичную обмотку сетевого трансформатора намотать с отводом от середины, число диодов в выпрямителе и тепловыделение от них можно уменьшить вдвое.
Чертёж платы представлен на Рис.7.

Рис.7

Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его замена транзистором IRFZ44N.
Предлагаемое устройство позволяет регулировать мощность от нуля до максимального значения, а регулирующий транзистор не нуждается в эффективном отведении тепла при увеличении тока нагрузки до 5 А.


В результате длительной или неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, что приводит к их деградации и последующему выходу из строя. Известен способ восстановления таких батарей методом заряда их «ассиметричным» током. При этом соотношение зарядного и разрядного тока выбирается 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

Рис.8

На Рис.8 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.
Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.
В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22…25 В.
Измерительный прибор РА1 подойдет со шкалой 0…5 А (0…3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

 

схемы на самодельное зарядное устройство для АКБ

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

ТЕСТ:

Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:
  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

  1. Стек.
  2. Сонар.
  3. Hyundai.

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт


ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В.  Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

Необходимые компоненты:

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Умное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания  на 12 вольт — 10 ампер.

1 схема промышленного ЗУ


Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Инверторный вид

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20:  «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

Схема Электроника

1 схема мощного ЗУ


Мощное ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Советское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М

Схема Электрон 3М

За час: 2 принципиальные схемы зарядки своими руками

Простые схемы

1 самая простая схема на автоматическое ЗУ для авто АКБ

Простая схема

Топ 4 схем импульсных ЗУ

Импульсные ЗУ

1 схема на тиристорное ЗУ

Схема

1 упрощенная схема с сайта Паяльник

Схема

1 схема на интеллектуальное ЗУ

Интеллектуальное ЗУ

4 подробные схемы защиты для ЗУ

Защита

Новые схемы 2017 и 2018 года

Новые схемы

1 схема на китайское ЗУ

Схема

1 простая схема — как собрать ЗУ

Схема

Схема зарядного устройства


Обзор схем зарядных устройств автомобильных аккумуляторов

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Схема зарядного устройства для автомобильного аккумулятора – от простого к сложному

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  5. Экстремально низкая температура ускоряет саморазряд
  6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой аккумулятора: то есть, зарядным устройством.

Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.

Простая схема зарядного устройства на 12В. Зарядное устройство с регулировкой тока зарядки. Регулировка от 0 до 10А осуществляется изменением задержки открывания тринистора. Схема зарядного устройства для аккумулятора с самоотключением после зарядки. Для заряда аккумуляторов емкостью 45 ампер.Схема умного зарядного устройства, которое предупредит о не правильном подключении.

Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

Любая схема автомобильного зарядного устройства состоит из следующих компонентов:

  • Блок питания.
  • Стабилизатор тока.
  • Регулятор силы тока заряда. Может быть ручным или автоматическим.
  • Индикатор уровня тока и (или) напряжения заряда.
  • Опционально – контроль заряда с автоматическим отключением.

Любой зарядник, от самого простого, до интеллектуального автомата – состоит из перечисленных элементов или их комбинации.

Схема простого зарядного устройства для автомобильного аккумулятора

Формула нормального заряда простая, как 5 копеек – базовая емкость батареи, деленная на 10. Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт).

Простая принципиальная электрическая схема зарядного устройства для автомобиля состоит из трех компонентов: блок питания, регулятор, индикатор.

Классика – резисторный зарядник

Блок питания изготавливается из двух обмоточного «транса» и диодной сборки. Выходное напряжение подбирается вторичной обмоткой. Выпрямитель – диодный мост, стабилизатор в этой схеме не применяется.

Ток заряда регулируется реостатом.

Проволочный реостат необходим для противостояния главной проблеме такой схемы – избыточная мощность выделяется в виде тепла. Причем происходит это очень интенсивно. Разумеется, КПД такого прибора стремится к нулю, а ресурс его компонентов очень низкий (особенно реостата). Тем не менее, схема существует, и она вполне работоспособна. Для аварийной зарядки, если под рукой нет готового оборудования, собрать ее можно буквально «на коленке». Есть и ограничения – ток более 5 ампер является предельным для подобной схемы. Стало быть, заряжать можно АКБ емкостью не более 45 Ач.

Зарядное устройство своими руками, подробности, схемы – видео

Гасящий конденсатор

Принцип работы изображен на схеме. Благодаря реактивному сопротивлению конденсатора, включенного в цепь первичной обмотки, можно регулировать зарядный ток. Реализация состоит из тех же трех компонентов – блок питания, регулятор, индикатор (при необходимости). Схему можно настроить под заряд одного типа АКБ, и тогда индикатор будет не нужен.

Популярное:  Преобразователь с 12 на 220: как собрать в домашних условиях

Если добавить еще один элемент – автоматический контроль заряда, а также собрать коммутатор из целой батареи конденсаторов – получится профессиональный зарядник, остающийся простым в изготовлении. Схема контроля заряда и автоматического отключения, в комментариях не нуждается. Технология отработана, один из вариантов вы видите на общей схеме. Порог срабатывания устанавливается переменным резистором R4. Когда собственное напряжение на клеммах аккумуляторной батареи достигает настроенного уровня, реле К2 отключает нагрузку. В качестве индикатора выступает амперметр, который перестает показывать ток заряда.

Изюминка зарядного устройства – конденсаторная батарея. Особенность схем с гасящим конденсатором – добавляя или уменьшая емкость (просто подключая или убирая дополнительные элементы) вы можете регулировать выходной ток. Подобрав 4 конденсатора для токов 1А, 2А, 4А и 8А, и коммутируя их обычными выключателями в различных комбинациях, вы можете регулировать ток заряда от 1 до 15 А с шагом в 1 А.

При этом никакого паразитного нагрева (кроме естественного, выделяющегося на диодах моста), коэффициент полезного действия зарядника высокий.

Схема самодельного зарядного устройства для аккумулятора на тринисторе

Если вы не боитесь держать в руках паяльник, можно собрать автомобильный аксессуар с плавной регулировкой тока заряда, но без недостатков, присущих резисторной классике. В качестве регулятора применяется не рассеиватель тепла в виде мощного реостата, а электронный ключ на тиристоре. Вся силовая нагрузка проходит через этот полупроводник. Данная схема рассчитана на ток до 10 А, то есть позволяет без перегрузок заряжать АКБ до 90 Ач.

Регулируя резистором R5 степень открытия перехода на транзисторе VT1, вы обеспечиваете плавное и очень точное управление тринистором VS1.

Схема надежная, легко собирается и настраивается. Но есть одно условие, которое мешает занести подобный зарядник в перечень удачных конструкций. Мощность трансформатора должна обеспечивать троекратный запас по току заряда.

То есть, для верхнего предела в 10 А, трансформатор должен выдерживать длительную нагрузку 450-500 Вт. Практически реализованная схема будет громоздкой и тяжелой. Впрочем, если зарядное устройство стационарно устанавливается в помещении – это не проблема.

Популярное:  Что измеряет вольтметр? Вопрос понятен всем. Или нет?

Схема импульсного зарядного устройства для автомобильного аккумулятора

Все недостатки перечисленных выше решений, можно поменять на один – сложность сборки. Такова сущность импульсных зарядников. Эти схемы имеют завидную мощность, мало греются, располагают высоким КПД. К тому же, компактные размеры и малый вес, позволяют просто возить их с собой в бардачке автомобиля. Схемотехника понятна любому радиолюбителю, имеющему понятие, что такое ШИМ генератор. Он собран на популярном (и совершенно недефицитном) контроллере IR2153. В данной схеме реализован классический полу мостовой инвертор.

При имеющихся конденсаторах выходная мощность составляет 200 Вт. Это немало, но нагрузку можно увеличить вдвое, заменив конденсаторы на емкости по 470 мкФ. Тогда можно будет заряжать аккумуляторы емкостью до 200 Ач.

Собранная плата получилась компактной, умещается в коробочку 150*40*50 мм. Принудительного охлаждения не требуется, но вентиляционные отверстия надо предусмотреть. Если вы увеличиваете мощность до 400 Вт, силовые ключи VT1 и VT2 следует установить на радиаторы. Их надо вынести за пределы корпуса. В качестве донора может выступить блок питания от системника ПК.

Поэтому просто воспользуемся элементной базой. Отлично подойдет трансформатор, дроссель и диодная сборка (Шоттки) в качестве выпрямителя. Все остальное: транзисторы, конденсаторы и прочая мелочь – обычно в наличии у радиолюбителя по всяким коробочкам-ящичкам. Так что зарядник получается условно бесплатным.

На видео показано и рассказано как собрать самостоятельно собрать импульсное зарядное устройство для авто.

Стоимость же заводского импульсника на 300-500 Вт – не менее 50 долларов (в эквиваленте).

Вывод:

Собирайте и пользуйтесь. Хотя разумнее поддерживать вашу аккумуляторную батарею «в тонусе».

Схема простого зарядного устройства для АКБ

Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.

Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.

Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.

Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.

Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для консульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.

Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 ампер\часов.

Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.

Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора,  например аккумулятор на 60 ампер\часов эффективный ток заряда должен быть в районе 6 ампер и т.д.

В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.

Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.

переделал на транзистор

Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером.  Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.

Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.

Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14.4 вольт выходного напряжения.

Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.

По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.

Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).

Плата в формате .lay; скачать…

Автор; АКА КАСЬЯН

Схема автомобильного зарядного устройства

Качественно работающий автомобильный аккумулятор трудно переоценить. Однако, со временем он становится менее емким и способен быстрее разряжаться. На этот процесс оказывают влияние и другие факторы, связанные с условиями эксплуатации. Чтобы не попадать в затруднительную ситуацию, стоит иметь дома или в гараже простое зарядное устройство своими руками.

В большинстве случаев принципиальная схема зарядного устройства самодельной конструкции будет относительно несложной. Собрать такой аппарат удастся из подручных недорогих компонентов. При этом электрический агрегат поможет быстро запустить легковушку. Предпочтительней обзавестись пуско-зарядной аппаратурой, но она требует немного больших мощностей от используемых элементов.

Базовые полезные знания о зарядке батарей

Применять электрическую подпитку для АКБ нужно в тех ситуациях, когда замер на клеммах электроприбора демонстрирует уровень ниже 11,2 В для большинства легковых авто. Хотя двигатель способен запускаться при таком уровне вольтажа, но внутри начинаются нежелательные химические процессы. Происходит сульфатация и разрушение пластин. Емкость заметно снижается.

Важно знать, что во время длительной зимовки или стоянки авто в течение нескольких недель уровень заряда падает, поэтому рекомендуется контролировать данное значение мультиметром, а при необходимости в ход пускать сделанное своими руками ЗУ для автомобильных аккумуляторов либо купленное в автомагазине.

Для подпитки АКБ чаще всего применяются устройства двух типов:

  • выдающее на «крокодилах» напряжение постоянного типа;
  • системы с импульсным типом работы.

При зарядке от устройства постоянного тока подбирается значение тока заряда арифметически соответствующее 1/10 от установленного производителем значения емкости. Когда имеется в наличии батарея на 60 А*ч, то ампераж отдачи должен быть на уровне 6 А. Стоит учитывать исследования, согласно которым умеренное снижение количества ампер на отдачи способствует уменьшению процессов сульфатации.

Если же пластины частично стали покрываться нежелательным сульфатным налетом, то опытные автомобилисты задействуют операции по десульфатации. Применяемая методика заключается в следующем:

  • аккумулятор разряжаем до появления на мультиметре 3—5 В после замера, используя для операции большие токи и малую длительность их воздействия, например, прокручивание стартером;
  • на следующей стадии медленно полностью заряжаем блок от одноамперного источника;
  • повторяются предыдущие операции на протяжении 7—10 циклов.

Подобный принцип работы задействован в заводских зарядных десульфатирующих устройствах импульсного типа. За один цикл на клеммы АКБ поступает в течение нескольких миллисекунд непродолжительный во времени импульс обратной полярности, сменяющийся прямой полярностью.

Необходимо контролировать состояние устройства и не допускать перезаряда батареи. При достижении значений 12,8—13,2 В на контактах стоит отключать систему от подпитки. В противном случае возникнет явление кипения, повышение концентрации и плотности залитого внутрь электролита и последующее разрушение пластин. Для предотвращения негативных явлений заводская принципиальная электрическая схема зарядного устройства наделена платами электронного контроля и автоматического отключения.

Читайте также:  Как проверить аккумулятор без нагрузочной вилки

Какой бывает схема автомобильного зарядного устройства

В гаражных условиях можно воспользоваться несколькими типами зарядок для автомобиля. Они могут быть как максимально примитивными, состоящими из нескольких элементов, так и довольно громоздкими многофункциональными стационарными устройствами. Обычно автовладельцы идут по пути упрощения.

Простейшие схемы

Если в наличии нет заводского зарядного, а реанимировать АКБ необходимо без задержки, то подойдет наиболее простой вариант. В нем участвуют ограничительное сопротивление в виде нагрузки и источник питания, способный генерировать 12—25 В.

Собрать самодельное зарядное устройство получится даже «на коленках», если имеется в доме зарядка для ноутбука. Обычно они выдают около 19 В и 2 А. При сборке стоит учитывать полярность:

  • наружный контакт – минус;
  • внутренний контакт – плюс.

Важно! Обязательно должно быть установлено ограничительное сопротивление, в качестве которого нередко используют лампочку из салона.

Вывинчивать лампу из поворотник или даже «стопов» не стоит, так как они станут перегрузом для схемы. Цепь состоит из таких соединенных между собой элементов: отрицательная клемма блока ноутбука – лампа – отрицательная клемма заряжаемой батареи – положительная клемма заряжаемой батареи – плюс блока ноутбука. Достаточно полутора-двух часов для возвращения АКБ к жизни на столько, что от него можно будет запустить мотор.

При отсутствии ноутбуков или нетбуков рекомендуем отправиться заранее на радиорынок за мощным диодом, рассчитанным на обратное напряжение более 1000 В и ток выше 3 А. Небольшие габариты детали позволяют возить его с собой в бардачке или багажнике, чтобы не попасть в нежелательное положение.

Воспользоваться таким диодом можно в самодельной схеме. Предварительно откидываем и достаем аккумулятор. На следующем этапе монтируем цепочку из элементов: первый контакт бытовой розетки в квартире – отрицательный контакт на диоде – положительный контакт диода – лимитирующая нагрузка – отрицательная клемма аккумулятора – плюс аккумулятора – второй контакт бытовой розетки.

Лимитирующей нагрузкой в подобной сборке обычно служит мощная лампа накаливания. Их предпочтительней выбирать от 100 Вт. Получаемый ток можно определить из школьной формулы:

U * I = W, где

  • U – напряжение, В;
  • I – сила тока, А;
  • W – мощность, кВт.

Исходя из расчетов при нагрузке в 100-ваттной нагрузке и 220-вольтном напряжении выдача мощности ограничивается примерно половиной ампера. За ночь аккумулятор получит около 5 А, что обеспечит заводку движку. Утроить мощность и одновременно ускорить зарядку удастся с помощью добавления в цепь еще пары таких ламп. Не стоит переусердствовать и запускать к такой системе мощных потребителей типа электроплиты, так как можно вывести из строя диод и АКБ.

Важно знать, что собранная прямозарядная схема автомобильного зарядного устройства своими руками рекомендуется к применению в крайнем случае, если иного выхода нет.

Переделка компьютерного блока питания

Прежде чем приступать к экспериментам с электроприборами, нужно объективно оценить собственные силы по реализации задуманного варианта исполнения. После можно приступать к сборкам.

Читайте также:  Как поменять замок зажигания на Приоре

В первую очередь проводится подбор материальной базы. Нередко для такого дела используют старые компьютерные системники. Из них вынимают блок питания. Традиционно они снабжены выводами разного вольтажа. Кроме пятивольтовых контактов, имеются отводы на 12 В. Последние также наделены током в 2 А. Подобных параметров почти хватает для сборки схемы своими руками.

Рекомендуем поднять напряжение до уровня 15 В. Часто это осуществляется эмпирически. Для корректировки понадобится килоомное сопротивление. Такой резистор накидывают параллельно другим имеющимся резисторам в блоке возле восьминожной микросхемы во вторичной цепи БП.

Подобным методом меняют значение коэффициента передачи цепи обратной связи, что оказывает влияние на выходной вольтаж. Способ обеспечивает обычно поднятие до 13,5 В, чего хватает для простых задач с автомобильным аккумулятором.

На выходные контакты накидываются защипы-крокодилы. Дополнительных лимитирующих защит ставить не нужно, так как внутри имеется ограничивающая электроника.

Трансформаторная схема

Из-за своей доступности, надежности и простоты давно востребована у бывалых водителей. В ней используются трансформаторы со вторичной обмоткой, выдающей 12—18 В. Такие элементы встречаются в старых телевизорах, магнитофонах и прочей бытовой технике. Из более современных приборов можно посоветовать отработанные бесперебойники. Они доступны на вторичном рынке за небольшую плату.

В наиболее минималистичном варианте схемы присутствует такой набор:

  • диодный выпрямляющий мостик;
  • подобранный по параметрам трансформатор;
  • рассчитанная соответственно сети защитная нагрузка.

Так как по лимитирующей нагрузке течет большой ток, то от этого она перегревается. Чтобы сбалансировать ампераж, не допуская превышения тока зарядки, в цепь добавляют конденсатор. Его место – первичная цепь трансформатора.

В экстремальных ситуациях при грамотно просчитанном объеме конденсатора можно рискнуть и удалить трансформатор. Однако, подобная схема станет небезопасной в плане поражения электрическим током.

Оптимальными можно назвать цепи, в которых имеется регулировка параметров и лимитирование тока заряда. Представляем на странице один из примеров.

Получить диодный мостик удастся с минимальным усилием из вышедшего из строя автомобильного генератора. Достаточно выпаять его и перекоммутировать при необходимости.

Основы безопасности при сборке и эксплуатации схем

Во время работы по комплектации зарядного устройства для автомобильной АКБ стоит учитывать определенные факторы:

  • все должно быть смонтировано и установлено на пожаробезопасной площадке;
  • при работе с прямоточными примитивными зарядными устройствами нужно вооружиться средствами защиты от поражения током: резиновыми перчатками и ковриком;
  • в процессе зарядки АКБ первый раз самодельными аппаратами необходимо контролировать текущее состояние работающей системы;
  • контрольными точками являются сила тока с напряжением на выходе зарядки, допустимая степень нагрева батареи и зарядного устройства, недопущение закипания электролита;
  • если оставлять оборудование на ночь, то важно оснастить схему устройством защитного отключения.

Важно! Рядом должен всегда находиться порошковый огнетушитель, чтобы уберечь от возможного распространения огня.

Импульсное зарядное устройство для автомобильного аккумулятора: схема, инструкция

Широкую популярность получили импульсные зарядные устройства для автомобильных аккумуляторов. Схем таких устройств довольно много – одни предпочитают собирать их из подручных элементов, другие же используют готовые блоки, например от компьютеров. Блок питания персонального компьютера можно без особого труда переделать во вполне качественное зарядное для автомобильного аккумулятора. Буквально за пару часов можно сделать устройство, в котором можно будет проводить замер напряжения питания и тока зарядки. Нужно только добавить в конструкцию приборы для измерения.

Основные характеристики зарядников

Всего существует два типа зарядных устройств для аккумуляторных батарей:

  1. Трансформаторные – у них очень большой вес и габариты. Причина – используется трансформатор – у него внушительные обмотки и сердечки из электротехнической стали, у которой большой вес.
  2. Импульсные зарядные устройства для автомобильных аккумуляторов. Отзывы о таких устройствах более положительные – габариты у приборов небольшие, вес тоже маленький.

Именно за компактность и полюбились потребителям зарядные устройства импульсного типа. Но кроме этого, у них более высокий КПД в сравнении с трансформаторными. В продаже можно встретить только такого типа импульсные зарядные устройства для автомобильных аккумуляторов. Схемы у них в целом похожи, отличаются они только используемыми элементами.

Элементы конструкции зарядника

При помощи зарядного устройства восстанавливается работоспособность аккумуляторной батареи. В конструкции используется исключительно современная элементная база. В состав входят такие блоки:

  1. Импульсный трансформатор.
  2. Блок выпрямителя.
  3. Блок стабилизатора.
  4. Приборы для измерения тока зарядки и (или) напряжения.
  5. Основной блок, позволяющий осуществлять контроль процесса зарядки.

Все эти элементы имеют маленькие габариты. Импульсный трансформатор небольшой, наматываются его обмотки на ферритовых сердечниках.

Самые простые конструкции импульсных зарядных устройств для автомобильных аккумуляторов Hyundai или других марок машин можно выполнить всего на одном транзисторе. Главное – сделать схему управления этим транзистором. Все компоненты можно приобрести в магазине радиодеталей или же снять с блоков питания ПК, телевизоров, мониторов.

Особенности работы

По принципу работы все схемы импульсных зарядных устройств для автомобильных аккумуляторов можно разделить на такие подгруппы:

  1. Зарядка аккумулятора напряжением, ток при этом имеет постоянное значение.
  2. Напряжение остается неизменным, но ток при зарядке постепенно уменьшается.
  3. Комбинированный метод – объединение двух первых.

Самый «правильный» способ – это изменять ток, а не напряжение. Он подходит для большей части аккумуляторных батарей. Но это в теории, так как зарядники могут осуществлять контролирование силы тока только в том случае, если напряжение на выходе будет иметь постоянное значение.

Особенности режимов зарядки

Если ток остается постоянным, а меняется напряжение, то вы получите массу неприятностей – пластины внутри аккумуляторной батареи будут осыпаться, что приведет к выходу ее из строя. В этом случае восстановить АКБ не получится, придется только покупать новую.

Наиболее щадящим режимом оказывается комбинированный, при котором сначала происходит зарядка при помощи постоянного тока. Под конец процесса происходит изменение тока и стабилизация напряжения. С помощью этого возможность закипания аккумуляторной батареи сводится к минимуму, газов тоже меньше выделяется.

Как подобрать зарядное?

Чтобы АКБ прослужила как можно дольше, необходимо правильно выбрать импульсное зарядное устройство для автомобильного аккумулятора. В инструкциях к ним указываются все параметры: ток зарядки, напряжение, даже схемы в некоторых приводятся.

Обязательно учитывайте, что зарядник должен вырабатывать ток, равный 10 % от суммарной емкости аккумуляторной батареи. Также вам потребуется учесть такие факторы:

  1. Обязательно учитывайте у продавца, сможет ли конкретная модель зарядника полностью восстановить работоспособность аккумулятора. Проблема в том, что не все устройства способны делать это. Если в вашей машине стоит аккумулятор на 100 А*ч, а вы покупаете зарядник с максимальным током 6 А, то его явно будет недостаточно.
  2. Исходя из первого пункта, внимательно смотрите, какой максимальный ток может выдать устройство. Не лишним будет обратить внимание и на напряжение – некоторые устройства могут выдавать не 12, а 24 Вольта.

Желательно, чтобы в заряднике присутствовала функция автоматического отключения при достижении полного заряда аккумулятора. С помощью такой функции вы избавите себя от лишних проблем – не нужно будет контролировать зарядку. Как только достигнет зарядка максимума, устройство само отключится.

Несколько советов для работы с зарядниками

Обязательно во время эксплуатации подобного рода приборов могут возникнуть проблемы. Чтобы этого не произошло, нужно придерживаться простых рекомендаций. Главное – добиться того, чтобы в банках аккумуляторной батареи было достаточное количество электролита.

Если его мало, то долейте дистиллированной воды. Заливать чистый электролит не рекомендуется. Обязательно также учитывайте такие параметры:

  1. Величину напряжения зарядки. Максимальное значение не должно превышать 14,4 В.
  2. Величину силы тока – эту характеристику можно без особого труда регулировать на импульсных зарядных устройствах для автомобильных аккумуляторов «Орион» и аналогичных. Для этого на передней панели устанавливается амперметр и переменный резистор.
  3. Длительность зарядки аккумуляторной батареи. При отсутствии индикаторов сложно понять, когда аккумуляторная батарея заряжена, а когда разряжена. Подключите амперметр между зарядным устройством и аккумулятором – если его показания не изменяются и крайне малы, то это свидетельствует о том, что зарядка полностью восстановилась.

Какой бы зарядник вы ни использовали, старайтесь не переборщить – больше суток не держите аккумулятор. В противном случае может произойти замыкание и закипание электролита.

Самодельные устройства

За основу можно взять схему импульсного зарядного устройства для автомобильных аккумуляторов «Аида» или аналогичных. Очень часто в самоделках применяют схему IR2153. Ее отличие от всех остальных, которые используются для изготовления зарядников, в том, что устанавливается не два конденсатора, а один — электролитический. Но у такой схему есть один недостаток – с ее помощью можно сделать только маломощные устройства. Но эта проблема решается установкой более мощных элементов.

Во всех конструкциях применяются транзисторные ключи, например 8N50. Корпус у этих приборов изолирован. Диодные мосты для самодельных зарядников лучше всего использовать те, которые устанавливаются в блоках питания персональных компьютеров. В том случае если готовой мостовой сборки нет, можно сделать ее из четырех полупроводниковых диодов. Желательно, чтобы величина обратного тока у них была выше 10 ампер. Но это для случаев, когда зарядное будет использоваться с аккумуляторными батареями емкостью не более 70-8-0 А*ч.

Цепь питания зарядного устройства

В импульсных зарядных устройствах для автомобильных аккумуляторов Bosch и аналогичных обязательно используется в схеме цепи питания резистор для гашения тока. Если вы решили самостоятельно изготовить зарядник, то потребуется устанавливать резистор сопротивлением около 18 кОм. Далее по схеме находится выпрямительный блок однополупериодного типа. В нем применяется всего один полупроводниковый диод, после которого устанавливается электролитический конденсатор.

Он необходим для того, чтобы отсекать переменную составляющую тока. Желательно использовать керамические или пленочные элементы. По законам Кирхгофа составляются схемы замещения. В режиме переменного тока конденсатор заменяется в ней отрезком проводника. А при работе схемы на постоянном токе – разрывом. Следовательно, в выпрямленном токе после диода будут две составляющие: основная – постоянный ток, а также остатки переменного, их нужно убрать.

Импульсный трансформатор

В конструкции импульсного зарядного устройства для автомобильных аккумуляторов «Кото» используется специальной конструкции трансформатор. Для самоделок можно воспользоваться готовым – снять из блока питания персонального компьютера. В них применяются трансформаторы, которые идеально подходят для реализации схем зарядных устройств – они могут создать высокий уровень тока.

Также они позволяют обеспечить сразу несколько значений напряжений на выходе зарядника. Диоды, которые устанавливаются после трансформатора, должны быть именно импульсными, другие работать в схеме попросту не смогут. Они быстро выйдут из строя при попытке выпрямить высокочастотный ток. В качестве фильтрующего элемента желательно установить несколько электролитических конденсаторов и ВЧ-дроссель. Рекомендуется применить термистор сопротивлением 5 Ом, чтобы обеспечить снижение уровня бросков.

Кстати, термистор тоже можно найти в старом БП от компьютера. Обратите внимание на емкость электролитического конденсатора – ее нужно подбирать исходя из значения мощности всего устройства. На каждый 1 Ватт мощности требуется 1 мкФ. Рабочее напряжение не менее 400 В. Можно применить четыре элемента по 100 мкФ каждый, включенных параллельно. При таком соединении емкости суммируются.

Изучены 2 простые схемы десульфатора батареи

В этой статье мы исследуем 2 простые, но мощные схемы десульфатора батареи, которые можно использовать для эффективного удаления и предотвращения десульфатации в свинцово-кислотных батареях. Первый метод использует импульсы ШИМ, а второй метод реализует обычный мостовой выпрямитель для того же.

Сульфатирование в свинцово-кислотных аккумуляторах является довольно распространенным явлением и представляет собой большую проблему, поскольку этот процесс полностью снижает эффективность аккумулятора.Считается, что зарядка свинцово-кислотной батареи с помощью метода ШИМ инициирует десульфатацию, помогая восстановить эффективность батареи до некоторых уровней.

Что такое сульфатирование в свинцово-кислотных аккумуляторах

Сульфатирование — это процесс, при котором серная кислота, присутствующая в свинцово-кислотных аккумуляторах, со временем реагирует с пластинами с образованием слоев белого порошка, подобного веществу, над пластинами.

Этот слой отложений серьезно ухудшает химические процессы внутри батареи во время зарядки или разрядки, делая батарею неэффективной с ее способностью передавать энергию.

Обычно это происходит, когда аккумулятор не используется в течение длительного времени, а процессы зарядки и разрядки выполняются не очень часто.

К сожалению, не существует эффективного способа решения этой проблемы, однако было исследовано, что застрявшие отложения серы на поврежденной батарее могут быть в некоторой степени разрушены путем воздействия на батарею сильноточных импульсов во время ее зарядки.

Эти сильноточные зарядные импульсы должны быть хорошо оптимизированы с помощью некоторой схемы управления и должны тщательно диагностироваться при реализации процесса.

1) Использование ШИМ

Реализация метода через схему с ШИМ-управлением, вероятно, лучший способ сделать это.

Вот отрывок из википедии, в котором говорится:

«Десульфатация достигается за счет сильноточных импульсов, возникающих между выводами батареи. Этот метод, также называемый импульсным кондиционированием, разрушает кристаллы сульфата, которые образуются на пластинах батареи. • Короткие сильноточные импульсы, как правило, работают лучше всего. Электронные схемы используются для регулирования импульсов различной длительности и частоты сильноточных импульсов.Их также можно использовать для автоматизации процесса, поскольку для полной десульфатации батареи требуется много времени ».

https://en.wikipedia.org/wiki/Talk%3ABattery_regenerator

Схема батареи с ШИМ Обсуждаемое здесь зарядное устройство можно рассматривать как лучшую конструкцию для выполнения вышеупомянутого процесса десульфатации.

Как работает схема

IC 555 конфигурируется и используется в стандартном режиме управления PWM.

Выходной сигнал IC соответствующим образом усиливается через пару транзисторов, чтобы он мог подавать упомянутые сильноточные импульсы на батарею, которую необходимо десульфатировать.

ШИМ-регулирование может быть установлено на низкий коэффициент «отметки» для реализации процесса десульфатации.

И наоборот, если схема предназначена для использования для зарядки обычных аккумуляторов, ШИМ-регулятор может быть настроен для генерации импульсов с равными соотношениями метка / пространство или в соответствии с желаемыми спецификациями.

Управление ШИМ будет зависеть исключительно от личных предпочтений человека, поэтому должно выполняться правильно в соответствии с инструкциями производителя батарей.

Несоблюдение соответствующих процедур может привести к несчастному случаю со смертельным исходом из-за возможного взрыва аккумулятора.

Уровень входного тока, равный уровню AH батареи, может быть выбран изначально и постепенно уменьшаться, если обнаруживается положительный ответ от батареи.

2) Десульфатирование с помощью схемы трансформатора и мостового выпрямителя

Чтобы сделать этот простейший, но эффективный десульфатор аккумуляторной батареи со схемой зарядного устройства, вам просто потребуются трансформатор подходящего номинала и мостовой выпрямитель. Конструкция не только обессеривает аккумулятор, но и предотвращает возникновение этой проблемы в новых аккумуляторах и одновременно заряжает их до желаемого уровня.

В начале этого поста мы узнали, как десульфатировать, используя концепцию ШИМ, однако более глубокое исследование показывает, что процесс десульфатации батареи не обязательно требует точной схемы ШИМ, просто источник питания должен колебаться с определенной заданной скоростью, и этого достаточно, чтобы запустить процесс десульфатации (в большинстве случаев) … при условии, что батарея все еще находится в диапазоне отверждения и не выходит за пределы состояния восстановления.

Итак, что вам нужно, чтобы сделать эту сверхпростую схему десульфатора батареи, которая также будет заряжать данную батарею и, кроме того, обладать способностью предотвращать развитие проблемы сульфатирования в новых батареях?

Трансформатор подходящего номинала, мостовой выпрямитель и амперметр — все, что нужно для этой цели.

Номинальное напряжение трансформатора должно быть примерно на 25% выше номинального напряжения батареи, то есть для батареи 12 В на клеммах батареи может подаваться напряжение от 15 до 16 В.

Ток может быть приблизительно равен номиналу Ач батареи для тех, которые необходимо восстановить и которые сильно сульфатированы, для хороших аккумуляторов ток зарядки может составлять примерно 1/10 или 2/10 их номинала Ач. Мостовой выпрямитель должен быть рассчитан в соответствии с указанными или рассчитанными уровнями заряда.

Схема десульфатора с использованием мостового выпрямителя

Как мостовой выпрямитель работает как десульфатор

На приведенной выше диаграмме показаны минимальные требования к предлагаемому десульфатору батареи со схемой зарядного устройства.

Мы можем увидеть наиболее стандартную или, скорее, грубую настройку источника питания переменного тока в постоянный, где трансформатор понижает сетевое напряжение до 15 В переменного тока для указанной батареи 12 В.

Прежде чем достичь клемм аккумулятора, 15 В переменного тока проходит процесс выпрямления через подключенный модуль мостового выпрямителя и преобразуется в двухполупериодный 15 В постоянного тока.

При питании от сети 220 В частота перед мостом будет 50 Гц (стандартная спецификация сети), а после выпрямления предполагается, что она увеличится вдвое по сравнению с 100 Гц. Для входа 110 В переменного тока это будет около 120 Гц.

Это происходит из-за того, что мостовая сеть инвертирует нижние полупериоды пониженного переменного тока и объединяет их с верхними полупериодами, чтобы в итоге получить пульсирующий постоянный ток 100 или 120 Гц.

Именно этот пульсирующий постоянный ток становится ответственным за встряхивание или сбивание сульфатных отложений на внутренних пластинах конкретной батареи.

Для хорошей батареи это импульсное зарядное устройство с частотой 100 Гц гарантирует, что сульфатирование перестает происходить в первую очередь, и, таким образом, помогает удерживать пластины относительно свободными от этой проблемы.

Вы также можете увидеть амперметр, подключенный последовательно к входу питания, он обеспечивает прямую индикацию потребления тока батареей и обеспечивает «живое обновление» процедуры зарядки, а также то, может ли происходить что-либо положительное.

Для хороших аккумуляторов это предоставит информацию от начала до конца, касающуюся процесса зарядки, то есть первоначально стрелка измерителя будет указывать указанную скорость зарядки аккумулятора, и можно ожидать, что постепенно она опустится до нулевой отметки, и это когда необходимо отключить зарядное устройство.

Можно использовать более сложный подход для включения автоматического отключения, когда батарея полностью заряжена, используя схему автоматического отключения полного заряда батареи на базе операционных усилителей (вторая диаграмма)

Схема автоматического 12-вольтового портативного зарядного устройства для батареи с использованием LM317

Вы когда-нибудь пытались разработать зарядное устройство, которое заряжает аккумулятор автоматически, когда напряжение аккумулятора ниже указанного? В этой статье объясняется, как разработать автоматическое зарядное устройство.

Зарядное устройство, расположенное ниже, автоматически прекращает процесс зарядки, когда аккумулятор полностью заряжен. Это предотвращает глубокую зарядку аккумулятора. Если напряжение аккумулятора ниже 12 В, то схема автоматически заряжает аккумулятор.

Схема автоматического зарядного устройства 12 В Принципиальная схема автоматического зарядного устройства

Эта схема автоматического зарядного устройства в основном состоит из двух частей — блока питания и блока сравнения нагрузок.

Основное напряжение питания 230 В, 50 Гц подключается к первичной обмотке центрального ответвительного трансформатора для понижения напряжения до 15–0–15 В.

Выход трансформатора подключен к диодам D1, D2. Здесь диоды D1, D2 используются для преобразования низкого переменного напряжения в пульсирующее постоянное напряжение. Этот процесс также называется исправлением. Пульсирующее напряжение постоянного тока подается на конденсатор емкостью 470 мкФ для устранения пульсаций переменного тока.

Таким образом на выходе конденсатора нерегулируется постоянное напряжение.Это нерегулируемое постоянное напряжение теперь подается на регулятор переменного напряжения LM317 для обеспечения регулируемого постоянного напряжения.

Выходное напряжение этого регулятора напряжения изменяется от 1,2 В до 37 В, а максимальный выходной ток этой ИС составляет 1,5 А. Выходное напряжение этого регулятора напряжения изменяется путем изменения потенциометра 10 кОм, который подключен к регулировочному выводу LM317.

[Также читайте: Как сделать регулируемый таймер]

Выход регулятора напряжения Lm317 подается на батарею через диод D5 и резистор R5.Здесь диод D5 используется для предотвращения разряда батареи при отключении основного питания.

При полной зарядке аккумулятора стабилитрон D6, подключенный в обратном направлении, проводит ток. Теперь база транзистора BD139 NPN получает ток через стабилитрон, так что полный ток заземлен.

В этой схеме зеленый светодиод используется для индикации заряда аккумулятора. Резистор R3 используется для защиты зеленого светодиода от высокого напряжения.

Выходное видео:
Принцип схемы

Если напряжение батареи ниже 12 В, то ток от микросхемы LM317 протекает через резистор R5 и диод D5 к батарее.В это время стабилитрон D6 не будет проводить, потому что аккумулятор забирает весь ток для зарядки.

Когда напряжение батареи повышается до 13,5 В, ток в батарею прекращается, и стабилитрон получает достаточное напряжение пробоя и пропускает ток через него.

Теперь база транзистора получает ток, достаточный для включения, так что выходной ток регулятора напряжения LM317 заземляется через транзистор Q1. В результате красный светодиод показывает полный заряд.

Настройки зарядного устройства

Выходное напряжение зарядного устройства должно быть меньше, чем в 1,5 раза от напряжения аккумулятора, а ток зарядного устройства должен составлять 10% от тока аккумулятора. Зарядное устройство должно иметь защиту от перенапряжения, короткого замыкания и обратной полярности.

ПРИМЕЧАНИЕ : Также получите представление о том, как построить схему индикатора уровня заряда аккумулятора?

2. Автоматическое зарядное устройство для аккумуляторов

Принципиальная схема

В этом проекте упоминается схема автоматического зарядного устройства для герметичных свинцово-кислотных аккумуляторов.Это схема импульсного типа зарядного устройства, которая помогает продлить срок службы батарей. Работа этой схемы объясняется ниже.

LM317 действует как регулятор напряжения и устройство контроля тока. Стабилитрон 15 В используется для настройки LM317 на подачу напряжения 16,2 В на выходе при отсутствии нагрузки. Когда 2N4401 включен выходом 555, вывод ADJ LM317 заземлен, и его выходное напряжение составляет 1,3 В.

LM358 действует как компаратор и повторитель напряжения. LM336 используется для подачи опорного напряжения 2.5 В на неинвертирующую клемму (контакт 3) LM358. Сеть делителя напряжения используется для подачи части напряжения батареи на инвертирующий вывод (вывод 2) LM358.

Когда заряд аккумулятора достигает 14,5 В, входной сигнал инвертирующего терминала LM358 немного больше 2,5 В на контакте 3, установленном LM336. Это повысит выход 555.

В результате загорится красный светодиод и транзистор включится. Это приведет к заземлению вывода ADJ на LM317, и его выход упадет до 1,3 В.

Когда заряд аккумулятора падает ниже 13.8 В, выход LM358 высокий, а выход 555 низкий. В результате напряжение течет от LM317 к аккумулятору, и зеленый светодиодный индикатор светится, указывая на зарядку.

[Связанное сообщение Зарядное устройство для свинцово-кислотных аккумуляторов с использованием LM317]

3. Зарядное устройство с использованием SCR

В этом проекте реализована схема автоматического зарядного устройства с использованием SCR. Его можно использовать для зарядки аккумуляторов 12 В. Батареи с разными потенциалами, например, 6 В и 9 В, также можно заряжать, выбрав соответствующие компоненты.Схема работы следующая.

Источник переменного тока преобразуется в 15 В постоянного тока с помощью трансформатора и мостового выпрямителя, и загорается зеленый светодиод. Выход постоянного тока представляет собой пульсирующий постоянный ток, поскольку после выпрямителя нет фильтра.

Это важно, поскольку тиристор перестает проводить ток, только когда напряжение питания равно 0 или когда он отключен от источника питания, и это возможно только при пульсирующем постоянном токе.

Первоначально SCR1 начинает проводить, поскольку он получает напряжение затвора через R2 и D5.Когда SCR1 является проводящим, через аккумулятор проходит 15 В постоянного тока, и аккумулятор начинает заряжаться. Когда аккумулятор почти полностью заряжен, он препятствует прохождению тока, и ток начинает течь через R5.

Это фильтруется с помощью C1, и когда потенциал достигает 6,8 В, стабилитрон ZD1 начинает проводить и подает напряжение затвора на SCR2, достаточное для его включения.

В результате ток протекает через SCR2 через R2, и SCR1 отключается, так как напряжение затвора и напряжение питания отключены.Красный светодиод горит, указывая на полную зарядку аккумулятора.

Знать, как спроектировать схему автоматического отключения и автоматической зарядки аккумулятора с помощью SCR.

Зарядка тиристорной батареи. Автомобильное зарядное устройство

Зарядное устройство для автомобильных аккумуляторов.

Ни для кого не ново, если я скажу, что у любого автомобилиста в гараже должно быть зарядное устройство. Конечно, можно купить в магазине, но, столкнувшись с этим вопросом, я пришел к выводу, что брать не очень хорошее устройство по доступной цене не хочется.Есть такие, ток заряда которых регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая ток заряда, при этом устройство контроля тока в основном отсутствует. Это, наверное, самый дешевый вариант заводского зарядного устройства, но умное устройство не такое уж и дешевое, цена кусается, поэтому я решил найти схему в интернете и собрать сам. Критерии выбора были следующие:

Простая схема, без лишних изысков;
— наличие радиодеталей;
— плавная регулировка зарядного тока от 1 до 10 ампер;
— желательно, чтобы это было зарядно-тренировочное устройство;
— несложная настройка;
— стабильность работы (по отзывам тех, кто уже делал эту схему).

Поискав в интернете, наткнулся на схему промышленного зарядного устройства с регулирующими тиристорами.

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры как ключи (VD11, VD12), блок управления зарядом. Несколько упростив эту конструкцию, получим более простую схему:


На этой схеме нет узла контроля заряда, а все остальное практически одинаково: транс, мост, генератор, один тиристор, измерительные головки и предохранитель.Учтите, что в схеме присутствует тиристор КУ202, он немного слабоват, поэтому во избежание пробоя сильноточными импульсами его необходимо установить на радиатор. Трансформатор на 150 ватт, и вы можете использовать TC-180 от старого лампового телевизора.


Зарядное устройство регулируемое с током заряда 10А на тиристоре КУ202.

А еще прибор, не содержащий дефицитных деталей, с током заряда до 10 ампер.Это простой тиристорный регулятор мощности с фазоимпульсным управлением.

Блок управления тиристорами собран на двух транзисторах. Время, необходимое для зарядки конденсатора С1 до переключения транзистора, задается переменным резистором R7, который, по сути, устанавливает значение зарядного тока аккумулятора. Диод VD1 служит для защиты цепи управления тиристором от обратного напряжения. Тиристор, как и в предыдущих схемах, ставится либо на хороший радиатор, либо на небольшой с вентилятором охлаждения.Плата управления выглядит следующим образом:


Схема неплохая, но имеет ряд недостатков:
— колебания напряжения питания приводят к колебаниям зарядного тока;
— без защиты от короткого замыкания кроме предохранителя;
— устройство дает помехи в сеть (лечится LC фильтром).

Устройство для зарядки и восстановления аккумулятора.

it impulse устройство может заряжать и восстанавливать аккумулятор практически любого типа.Время зарядки зависит от состояния аккумулятора и варьируется от 4 до 6 часов. Из-за импульсного зарядного тока пластины аккумулятора десульфируются. См. Схему ниже.


В данной схеме генератор собран на микросхеме, что обеспечивает его более стабильную работу. Вместо NE555 можно использовать российский аналог — таймер 1006VI1 . Если кому-то КРЕН142 не нравится по мощности таймера, то его можно заменить на обычные параметрические стабилизаторы.е. Стабилитрон и стабилитрон с желаемым напряжением стабилизации, а резистор R5 уменьшен до 200 Ом . Транзистор VT1 — на радиаторе в обязательном порядке сильно греется. В схеме использован трансформатор с вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диода типа D242 . Для лучшего охлаждения радиатора транзистора VT1 можно использовать вентилятор от блока питания компьютера или блока системы охлаждения.

Восстановление и зарядка аккумулятора.

В результате неправильного использования автомобильных аккумуляторов их пластины могут сульфатироваться, и это выходит из строя.
Известен способ восстановления таких батарей при их зарядке «асимметричным» током. При этом соотношение зарядного и разрядного тока было выбрано 10: 1 (оптимальный режим). Этот режим позволяет не только восстанавливать сульфатированные аккумуляторы, но и проводить профилактическую обработку исправных.



Рис. 1.Электрическая схема зарядного устройства

На рис. 1 показано простое зарядное устройство, предназначенное для использования вышеуказанного метода. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренной зарядки). Для восстановления и тренировки АКБ лучше выставить импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Ток разряда определяется номиналом резистора R4.
Схема разработана таким образом, что аккумулятор заряжается импульсами тока в течение половины периода.напряжение сети, когда напряжение на выходе схемы превышает напряжение на аккумуляторе. Во время второго полупериода диоды VD1, VD2 закрываются и аккумулятор разряжается через сопротивление нагрузки R4.

Значение зарядного тока устанавливается регулятором R2 в амперметре. Учитывая, что при зарядке АКБ часть тока протекает через резистор R4 (10%), то показания амперметра PA1 должны соответствовать 1,8 А (для импульсного тока зарядки 5 А), так как амперметр показывает средний ток в течение определенного периода времени, а заряд производится за половину периода.

Схема защищает аккумулятор от неконтролируемого разряда в случае случайного пропадания сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применяется типа РПУ-0 с рабочим напряжением обмотки 24 В или более низким напряжением, но в этом случае ограничительный резистор включается последовательно с обмоткой.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22… 25 В.
Измерительный прибор PA1 подходит со шкалой 0 … 5 A (0 … 3 A), например, M42100. Транзистор VT1 установлен на радиаторе площадью не менее 200 кв. см, для чего удобно использовать конструкцию зарядного устройства в металлическом корпусе.

В схеме использован транзистор с большим коэффициентом усиления (1000 … 18000), который можно заменить на КТ825 с изменением полярности диодов и стабилитрона, так как он имеет другую проводимость (см. Рис. 2). Последняя буква в обозначении транзистора может быть любой.



Рис. 2. Электрическая схема зарядного устройства

Для защиты цепи от случайного короткого замыкания на выходе установлен предохранитель FU2. Резисторы
используются такие R1 типа С2-23, R2 — ППБЭ-15, R3 — С5-16МБ, R4 — ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любому, со стабилизацией напряжения от 7,5 до 12 В.
обратное напряжение.

Какой провод лучше использовать от зарядного устройства до аккумулятора.

Конечно, лучше взять гибкую медную многожильную, ну и сечение нужно выбирать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим на этикетку:

Если у вас Интересует схемотехника импульсных устройств зарядки и восстановления с использованием таймера 1006VI1 в задающем генераторе — читайте эту статью:

Устройство с электронным управлением зарядным током, выполненное на основе тиристорного импульсно-фазового регулятора мощности.
Не содержит дефицитных деталей, при заведомо рабочие детали не требует регулировки.
Зарядное устройство позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, что, как считается, помогает продлить срок службы батареи.
Устройство работает при температуре окружающей среды от — 35 ° С до + 35 ° С.
Устройство показано на рис. 2.60.
Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего преобразователя T1 через диод moctVDI + VD4.
Блок управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор C2 заряжается до переключения однопереходного транзистора, может контролироваться переменным резистором R1. Когда двигатель расположен в крайнем правом положении, его зарядный ток станет максимальным, и наоборот.
Диод VD5 защищает схему управления тиристором VS1 от обратного напряжения, которое появляется при включении тиристора.

В будущем зарядное устройство может быть дополнено различными автоматическими компонентами (отключение по завершении зарядки, поддержание нормального напряжения аккумуляторов при длительном хранении, сигнализация правильной полярности подключения аккумулятора, защита от коротких замыканий на выходе и т. Д.) .
К недостаткам устройства можно отнести: колебания зарядного тока при нестабильном напряжении электросети.
Как и все подобные тиристорные импульсно-фазовые регуляторы, устройство мешает радиоприему. Для борьбы с ними networkLC — фильтр, аналогичный тому, что используется в импульсных сетевых источниках питания.

Конденсатор С2 — К73-11, емкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А будет заменен на КТ361Б — КТ361Е, КТ3107L, КТ502В, КТ502Г, КТ501Ж — КТ50IK, КТ315Л — на КТ315Б + КТ315Д, КТ312Б, КТ3102Л, КТ503В +. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Резистор переменный Р1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой 10 А. Его можно изготовить независимо от любого миллиамперметра, подбирая шунт по образцу амперметра.
Блок предохранителей F1 — плавкий, но удобно использовать сетевой автомат на 10 А или автомобильный биметаллический на такой же ток.
Диоды VD1 + VP4 могут быть любыми на постоянном токе 10 А и обратном напряжении не менее 50 В (серии D242, D243, D245, KD203, KD210, KD213).
Диоды выпрямителя и тиристора размещены на радиаторах полезной площадью около 100 см * каждый. Для улучшения теплового контакта устройств с радиаторами лучше использовать теплопроводные пасты.
Вместо тиристора КУ202В подходят КУ202Г — КУ202Э; На практике проверено, что устройство нормально работает с более мощными тиристорами Т-160, Т-250.
Следует отметить, что можно использовать непосредственно железную стенку корпуса в качестве радиатора тиристора.Тогда же на корпусе будет минусовой вывод устройства, что в целом нежелательно из-за угрозы самопроизвольного замыкания вывода плюсового провода на корпус. Если тиристор укрепить через слюдяную прокладку, угрозы короткого замыкания не будет, но тепловыделение от него ухудшится.
В приборе может быть использован готовый сетевой понижающий трансформатор нужной мощности с напряжением вторичной обмотки от 18 до 22 В.
Если напряжение трансформатора на вторичной обмотке больше 18 В, то резистор R5 следует заменить другим сопротивлением большего сопротивления. (например, при 24 * 26 В сопротивление резистора нужно увеличить до 200 Ом).
В случае, когда вторичная обмотка трансформатора имеет отвод от середины, либо имеется две однородные обмотки и напряжение каждой находится в заданных пределах, то выпрямитель лучше выполнять по обычной двухпериодной схеме на два диода.
При напряжении вторичной обмотки 28 * 36 В можно вообще отказаться от выпрямителя — его роль будет одновременно выполнять тиристор VS1 (выпрямление — полупериод). Для этого варианта блока питания нужно между резистором R5 и плюсовым проводом подключить разделительный диод КД105Б или Д226 с любым буквенным индексом (катод к резистору R5).Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, КУ202Е).
Для описываемого устройства подойдет унифицированный трансформатор ТН-61. 3 его вторичные обмотки должны быть соединены последовательно, и они способны пропускать ток до 8 А.
Все части устройства, кроме трансформатора Т1, диодов VD1 + выпрямителя переменного тока VD4, переменного резистора R1, предохранителя FU1 и тиристора VS1, установлены. на печатной плате из фольгированного стеклопластика 1.Толщиной 5 мм.
Рисунок доски представлен в журнале Радио № 11 за 2001 год.

Более современная конструкция несколько проще в изготовлении и настройке и содержит доступный силовой трансформатор с одной вторичной обмоткой, а характеристики регулировки выше, чем у предыдущей схемы.

Предлагаемое устройство имеет стабильную плавную регулировку. Фактическое значение выходного тока находится в диапазоне 0,1 … 6А, что позволяет заряжать любой аккумулятор, а не только автомобильный. При зарядке маломощных аккумуляторов желательно последовательно подключать к цепи балластный резистор в несколько Ом или дроссель, т.к. пиковое значение зарядного тока может быть достаточно большим из-за особенностей тиристорных контроллеров.Для снижения пикового зарядного тока в таких схемах используются силовые трансформаторы с ограниченной мощностью, не превышающей 80 — 100 Вт, и с плавной нагрузочной характеристикой, что исключает необходимость в дополнительном балластном сопротивлении или дросселе. Особенностью предложенной схемы является необычное использование широко используемой микросхемы TL494 (KIA494, K1114UE4). Задающий генератор микросхемы работает на низкой частоте и синхронизируется с полуволнами сетевого напряжения с помощью узла на оптопаре U1 и транзисторе VT1, что позволило использовать микросхему TL494 для фазового регулирования выходного тока.Микросхема содержит два компаратора, один из которых используется для регулирования выходного тока, а второй — для ограничения выходного напряжения, что позволяет отключать зарядный ток при достижении полной зарядки аккумулятора (для автомобильных аккумуляторов Umax = 14,8 V). На НУ DA2 собран узел усилителя напряжения шунта для регулирования зарядного тока. При использовании шунта R14 с другим сопротивлением необходимо выбрать резистор R15. Сопротивление должно быть таким, чтобы при максимальном выходном токе не наблюдалось насыщения выходного каскада ОУ.Чем больше сопротивление R15, тем меньше минимальный выходной ток, но максимальный ток уменьшается из-за насыщения ОС. Резистор R10 ограничивает верхний предел выходного тока. Основная часть схемы собрана на печатной плате размером 85 х 30 мм (см. Рисунок).

Конденсатор C7 припаян непосредственно к печатным проводникам. Чертеж печатной платы в натуральную величину.

В качестве измерителя использовался микроамперметр с самодельной шкалой, калибровка показаний осуществляется резисторами R16 и R19.Вы можете использовать цифровой измеритель тока и напряжения, как показано в зарядном устройстве с цифровым дисплеем. Следует иметь в виду, что измерение выходного тока такого устройства производится с большой погрешностью из-за его импульсного характера, но в большинстве случаев она незначительна. В схеме можно использовать любые доступные транзисторные оптопары, например AOT127, AOT128. Операционный усилитель DA2 можно заменить практически любым доступным операционным усилителем, а конденсатор C6 можно исключить, если операционный усилитель имеет внутреннюю частотную коррекцию.Транзистор VT1 можно заменить на КТ315 или любой маломощный. В качестве VT2 можно использовать транзисторы КТ814 В, Г; КТ817В, Г и другие. В качестве тиристора VS1 можно использовать любой имеющийся в наличии с подходящими техническими характеристиками, например отечественный КУ202, импортный 2Н6504 … 09, С122 (А1) и другие. Диодный мост VD7 можно собрать из любых доступных силовых диодов с подходящими характеристиками.

На втором рисунке показана схема внешних подключений печатной платы. Наладка прибора сводится к подбору сопротивления R15 под конкретный шунт, который можно подавать на любые проволочные резисторы с сопротивлением 0.02 … 0,2 Ом, мощности которого хватит на длительный ток до 6 А. После настройки схемы выбрать R16, R19 конкретный измеритель и шкалу.

Устройство с электронным управлением зарядным током, выполненное на основе тиристорного импульсно-фазового регулятора мощности. Не содержит дефицитных деталей, при заведомо исправных элементах регулировки не требует.

Зарядное устройство позволяет заряжать автомобильные аккумуляторы током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора и переносной лампы.Зарядный ток по форме близок к импульсному, что, как считается, помогает продлить срок службы батареи. Устройство работоспособно при температуре окружающей среды от — 35 ° С до + 35 ° С.

Схема устройства представлена ​​на рис. 2.60.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего преобразователя T1 через диод moctVDI + VD4.

Блок управления тиристором выполнен на аналоге однопереходного транзистора VT1, VT2.Время, в течение которого конденсатор C2 заряжается до переключения однопереходного транзистора, можно регулировать с помощью переменного резистора R1. В крайнем правом углу схемы расположения его двигателя зарядный ток будет максимальным, и наоборот.

Диод VD5 защищает цепь управления тиристором VS1 от обратного напряжения, возникающего при включении тиристора.


В будущем зарядное устройство может быть дополнено различными автоматическими компонентами (отключение после зарядки, поддержание нормального напряжения аккумулятора при длительном хранении, сигнализация правильной полярности подключения аккумулятора, защита от коротких замыканий на выходе и т. Д.).

К недостаткам устройства можно отнести колебания зарядного тока при нестабильном напряжении электросети.

Как и все подобные тиристорные импульсно-фазовые регуляторы, устройство мешает радиоприему. Для борьбы с ними следует предусмотреть силовой LC-фильтр, аналогичный тому, что используется в импульсных блоках питания.

Конденсатор С2 — К73-11, емкостью от 0,47 до 1 мкФ, или. К73-16, К73-17, К42У-2, МБГП.

Транзистор КТ361А заменен на КТ361Б, КТ361Е, КТ310L, КТ502В, КТ502Г, КТ315Б, КТ315Б D226 с любым буквенным индексом.

Резистор переменный R1 — СП-1, СДР-30а или СПО-1.

Амперметр PA1 — любой постоянного тока со шкалой 10 А. Его можно изготовить независимо от любого миллиамперметра, подбирая шунт по образцу амперметра.

Предохранитель F1 плавкий, но также удобно использовать автоматический выключатель на 10 А или биметаллический автомобиль на тот же ток.

Диоды VD1 + VP4 могут быть любыми на постоянный ток 10 А и обратное напряжение не менее 50 В (серии D242, D243, D245, KD203, KD210, KD213).

Выпрямительные и тиристорные диоды устанавливаются на радиаторах полезной площадью около 100 см2 каждый. Для улучшения теплового контакта устройств с радиаторами желательно использовать теплопроводящие пасты.

Вместо тиристора. КУ202В подходят КУ202Г — КУ202Е; Проверено на практике, устройство отлично работает с более мощными тиристорами Т-160, Т-250.

Следует отметить, что допускается использование металлической стенки корпуса непосредственно в качестве радиатора тиристора.Тогда, правда, на корпусе будет минусовой вывод устройства, что вообще нежелательно из-за опасности случайного замыкания выводного плюсового провода на корпус. Если установить тиристор через слюдяную прокладку, опасности закрытия не будет, но теплоотдача от него ухудшится.

В устройстве можно использовать готовый сетевой понижающий трансформатор необходимой мощности с вторичным напряжением от 18 до 22 В.

Если напряжение трансформатора на вторичной обмотке больше 18 В, резистор R5 должен быть заменяется другим, более высоким сопротивлением (например, когда 24… 26 В, сопротивление резистора следует увеличить до 200 Ом).

В случае, когда вторичная обмотка трансформатора имеет отвод от середины, либо имеется две одинаковые обмотки и каждое напряжение находится в заданных пределах, то выпрямитель лучше выполнять по стандартной двухпериодной схеме на два диода.

При напряжении вторичной обмотки 28 … 36 В можно вообще отказаться от выпрямителя — его роль будет одновременно выполнять тиристор VS1 (выпрямление полуволновое).Для такого варианта блока питания необходимо между резистором R5 и плюсовым проводом включить разделительный диод КД105Б или Д226 с любым буквенным индексом (катод к резистору R5). Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, КУ202Е).

:

Необходимость подзарядки аккумуляторной батареи двигателя появляется у наших соотечественников регулярно. Кто-то делает это из-за разряда батареи, кто-то — в рамках обслуживания.В любом случае наличие зарядного устройства (памяти) значительно облегчает эту задачу. Подробнее о том, что представляет собой тиристорное зарядное устройство для автомобильного аккумулятора и как сделать такое устройство по схеме — читайте ниже.

Описание тиристорной памяти

Тиристорное зарядное устройство — это устройство с электронным управлением зарядным током. Такие устройства выполнены на базе тиристорного регулятора мощности, который является импульсно-фазовым. В запоминающем устройстве этого типа нет дефицитных компонентов, и если все его детали целы, то его даже не нужно будет регулировать после изготовления.

С помощью этого зарядного устройства можно заряжать автомобильный аккумулятор током от нуля до десяти ампер. Кроме того, его можно использовать как регулируемый источник питания для различных устройств, например, паяльника, переносной лампы и т. Д. По своей форме зарядный ток очень похож на импульсный, а последний, в свою очередь, позволяет продлить срок службы аккумулятора. Использование тиристорной памяти допускается в диапазоне температур от -35 до +35 градусов.

Схема

Если вы решили построить тиристорную память своими руками, то можно использовать множество различных схем.Рассмотрим описание на примере схемы 1. В этом случае питание тиристорной памяти осуществляется от обмотки 2 трансформаторного узла через диодный мост VDI + VD4. Управляющий элемент выполнен в виде аналога однопереходного транзистора. В этом случае с помощью элемента переменного резистора можно отрегулировать время, в течение которого конденсаторная составляющая С2 будет заряжаться. Если положение этой части крайнее правое, то индикатор зарядного тока будет самым высоким, и наоборот.Благодаря диоду VD5 цепь управления тиристором VS1 защищена.

Преимущества и недостатки

Главное достоинство такого устройства — качественная зарядка током, что позволит не разрушить, а увеличить срок службы аккумулятора в целом.

При необходимости память может быть дополнена всевозможными автоматическими компонентами, рассчитанными на такие варианты:

  • устройство сможет автоматически отключиться по окончании зарядки;
  • поддержание оптимального напряжения АКБ в случае длительного хранения без эксплуатации;
  • еще одна функция, которую можно рассматривать как преимущество, заключается в том, что тиристорная память может сообщать автовладельцу, правильно ли он подключил полярность аккумулятора, а это очень важно при зарядке;
  • также в случае добавления дополнительных компонентов может быть реализовано еще одно преимущество — защита узла от замыканий выходов (автор видео — канал Blaze Electronics).

Что касается непосредственно недостатков, то к ним можно отнести колебания зарядного тока, если напряжение в бытовой сети нестабильно. Кроме того, как и другие тиристорные регуляторы, такое запоминающее устройство может мешать передаче сигнала. Чтобы этого не произошло, при изготовлении памяти необходимо дополнительно установить LC-фильтр. Такие фильтрующие элементы, например, используются в сетевых блоках питания.

Как сделать на память самому?

Если говорить о производстве памяти своими руками, то рассмотрим этот процесс на примере схемы 2.В этом случае управление тиристором осуществляется посредством фазового сдвига. Мы не будем описывать весь процесс, так как он индивидуален в каждом случае, в зависимости от добавления в конструкцию дополнительных компонентов. Ниже мы рассмотрим основные нюансы, которые следует учитывать.

В нашем случае устройство собрано на обычном оргалите, в том числе конденсатор:

  1. На радиаторе следует устанавливать диодные элементы, обозначенные на схеме как VD1 и VD 2, а также тиристоры VS1 и VS2, установка последних допускается на общем радиаторе.
  2. Элементы сопротивления
  3. R2, как и R5, следует использовать не менее 2 Вт.
  4. Что касается трансформатора, то его можно купить в магазине или взять с паяльной станции (качественные трансформаторы можно найти в старом советском паяльнике). Можно перемотать вторичный провод на новый участок примерно 1,8 мм на 14 вольт. В принципе можно использовать и более тонкие провода, так как такой мощности будет достаточно.
  5. Когда все элементы в ваших руках, всю конструкцию можно установить в одном корпусе.Например, для этого можно взять старый осциллограф. В этом случае мы не будем давать никаких рекомендаций, так как корпус — личное дело каждого.
  6. После того, как зарядное устройство будет готово, нужно проверить его работоспособность. Если есть сомнения в качестве сборки, рекомендуем провести диагностику устройства на более старом аккумуляторе, который в случае чего не жалко было бы выбросить. Но если вы все сделали правильно, в соответствии со схемой, то проблем в плане эксплуатации возникнуть не должно.Учтите, что производимую память не нужно настраивать, она изначально должна работать правильно.

Видео «Простая тиристорная память своими руками»

Как сделать простую тиристорную память своими руками — посмотрите видео ниже (автор видео — канал Blaze Electronics).

Цепь зарядного устройства

| Полный проект DIY Electronics

Большинство зарядных устройств прекращают зарядку батареи, когда она достигает максимального зарядного напряжения, установленного схемой.Эта схема зарядного устройства для аккумулятора 12 В заряжает аккумулятор при определенном напряжении, то есть напряжении поглощения, и после достижения максимального напряжения зарядки зарядное устройство изменяет выходное напряжение на напряжение холостого хода для поддержания аккумулятора при этом напряжении. Напряжение абсорбции и плавающее напряжение зависят от типа батареи.

Для этого зарядного устройства установлены напряжения для герметичной свинцово-кислотной (SLA) батареи 12 В, 7 Ач, для которой напряжение поглощения составляет от 14,1 В до 14,3 В, а плавающее напряжение — 13.От 6 до 13,8 В. Для безопасной работы и во избежание перезарядки аккумулятора, напряжение поглощения выбрано как 14,1 В, а плавающее напряжение выбрано как 13,6 В. Эти значения должны быть установлены в соответствии с указаниями производителя батареи.

Схема зарядного устройства 12 В

Рис. 1: Схема зарядного устройства 12 В для батареи

Принципиальная схема абсорбирующего и поплавкового зарядного устройства на 12 В показана на рис. 1. Он построен на понижающем трансформаторе X1, регулируемом стабилизаторе напряжения LM317 (IC1), компараторе операционного усилителя LM358 (IC2). и несколько других компонентов.Используемый в этой схеме первичный трансформатор 230 В переменного тока и вторичный трансформатор 15–0–15 В, 1 А понижают сетевое напряжение, которое выпрямляется диодами D1 и D2 и сглаживается конденсатором C1. Это напряжение подается на вход LM317 для регулирования.

Базовая схема представляет собой регулируемый источник питания с использованием LM317 с контролем на выходе путем изменения сопротивления на регулировочном штыре 1. Для LM317 требуется хороший радиатор. LM358 — это усилитель двойного действия, который используется для контроля перезарядки аккумулятора.Конденсатор C4 должен быть как можно ближе к выводу 1 IC2. Перемычка J1 используется для калибровки (настройки). Устанавливая напряжение зарядки, снимите перемычку и после калибровки снова подключите ее.

Для начальной настройки снимите перемычку J1, выключите S2, включите S1 и отрегулируйте потенциометр VR2, чтобы получить 13,6 В в контрольной точке TP2. Отрегулируйте потенциометр VR3 так, чтобы светодиод 2 начал светиться. Настройте потенциометр VR1 на 0,5 В (разница 14,1 В и 13,6 В) в контрольной точке TP1. Настройте VR2 на 14,1 В в контрольной точке TP2.

С этими настройками TP2 должен показывать 14,1 В при низком напряжении в контрольной точке TP3 и 13,6 В при высоком напряжении в контрольной точке TP3. Подключите перемычку J1. Теперь зарядное устройство готово к работе. Подключите заряжаемый аккумулятор 12 В (BUC), соблюдая полярность, к CON2. Включите S2; один из светодиодов вне LED2 и LED3 загорится (скорее всего, это будет LED2). Если ни один из них не загорается, проверьте соединения; батарея могла быть разряжена. Включите S1 для зарядки. Полностью заряженный аккумулятор будет обозначен свечением светодиода LED3.

Не беспокойтесь, если вы забудете выключить зарядное устройство. Зарядное устройство находится на плавающем напряжении (13,6 В), и его можно держать в этом режиме зарядки вечно.

Строительство и испытания

Односторонняя печатная плата для цепи абсорбирующего аккумулятора 12 В и плавающего зарядного устройства показана на рис. 2, а схема ее компонентов — на рис. 3. Соберите схему на печатной плате, за исключением трансформатора X1 и заряжаемой батареи (BUC).

Рис. 2: Печатная плата схемы зарядного устройства 12В Рис.3: Компоновка компонентов печатной платы

Загрузите печатную плату и компоновку компонентов в формате PDF: щелкните здесь

Поместите печатную плату в небольшую коробку. Закрепите клемму аккумулятора на передней части коробки для подключения BUC. Подключите переключатели S1 и S2, потенциометры VR1 — VR3 и т. Д. На корпусе коробки.

Банкноты EFY

  1. Выключите S2 или отсоедините клеммы аккумулятора, чтобы избежать ненужной разрядки аккумулятора, когда он не заряжается, то есть когда S1 выключен.
  2. Подключите аккумулятор, соблюдая полярность.
  3. Корпус IC1 не должен быть заземлен, поэтому используйте изоляцию.

Фаяз Хассан, менеджер металлургического завода в Висакхапатнам, Висакхапатнам, интересуется проектами микроконтроллеров, мехатроникой и робототехникой.

Эта статья была впервые опубликована 26 июня 2016 г. и обновлена ​​13 августа 2019 г.

Импульсная, линейная и импульсная зарядка T

Аннотация: Существует три метода зарядки Li + аккумуляторов: импульсный, линейный и импульсный.У каждого метода есть свои преимущества и недостатки. Зарядка в импульсном режиме сводит к минимуму рассеивание мощности в широком диапазоне напряжений адаптера переменного тока, но занимает больше места на плате и увеличивает сложность по сравнению с линейной и импульсной зарядкой. Линейные зарядные устройства имеют небольшие размеры и отлично подходят для оборудования, чувствительного к шуму, но рассеиваемая мощность высока. Импульсные зарядные устройства небольшие и эффективные, но для них требуется адаптер переменного тока с ограничением тока. Выберите метод оплаты, исходя из приоритета стоимости, площади и эффективности.

Зарядка Li + аккумуляторов в мобильных телефонах и КПК — это баланс.С одной стороны, большой ток необходим для быстрой замены энергии, истощенной из батареи при передаче голоса или данных. С другой стороны, зарядное устройство должно быть маленьким, чтобы поместиться в постоянно уменьшающемся форм-факторе мобильного телефона и коммуникативного КПК. Знание типов доступных зарядных устройств и компромиссов между ними позволяет разработчику выбрать правильное зарядное устройство для конкретного приложения.

Требования к зарядным устройствам Li +

Зарядное устройство Li + аккумулятора должно ограничивать зарядный ток и максимальное напряжение аккумулятора.Разработчики должны проконсультироваться с производителем батареи, чтобы определить, что требуется для безопасной зарядки конкретной батареи. Другие функции часто добавляются для увеличения срока службы батарей или работы зарядного устройства. К ним относятся снижение зарядного тока для чрезмерно разряженных элементов, обнаружение неисправных элементов, мониторинг напряжения аккумулятора и / или измерение уровня топлива, ограничение входного тока, выключение зарядного устройства после завершения заряда, автоматический перезапуск зарядки после частичного разряда, индикация состояния заряда и управление включением / отключением внешнего зарядного устройства.

Эти функции могут быть реализованы в самом зарядном устройстве, в ASIC или дискретной схеме, или, возможно, в программном обеспечении микроконтроллера. Разработчики схем решают, какие функции включить и как их реализовать, в зависимости от конкретного приложения и приемлемого уровня стоимости или сложности.

Типы зарядных устройств Li +

Зарядные устройства Li + бывают трех типов: импульсные, линейные и импульсные. Основное различие между этими топологиями — это размер и стоимость vs.компромисс производительности, который они предлагают. Зарядные устройства

с импульсным режимом обычно больше и сложнее и требуют большого пассивного выходного LC-фильтра; дополнительное пространство на плате повышает эффективность.

Линейные и импульсные зарядные устройства занимают мало места на плате и требуют минимум внешних компонентов. Хотя линейному зарядному устройству может не потребоваться много места на плате для размещения ИС и ее внешних компонентов, ему может потребоваться дополнительная площадь на плате для рассеивания тепла, выделяемого проходным транзистором зарядного устройства.Импульсные зарядные устройства не представляют этой проблемы. Однако для них требуется адаптер переменного тока с ограничением по току, который обычно стоит дороже.

Импульсные зарядные устройства

На рисунке 1 показана схема типичной импульсной схемы зарядного устройства Li +. Он использует контроллер зарядного устройства MAX1737 Li + с двумя n-канальными полевыми МОП-транзисторами для понижения напряжения адаптера переменного тока до напряжения батареи. Рассеиваемая мощность этой схемы остается ниже примерно 1 Вт во всем диапазоне напряжений батареи и в широком диапазоне напряжений адаптера переменного тока.Эту схему можно легко масштабировать, чтобы можно было заряжать до четырех последовательных ячеек токами до 4 А.


Рис. 1. Зарядное устройство MAX1737 Switch Mode Li +.

Импульсные зарядные устройства имеют неизменно низкую рассеиваемую мощность при больших колебаниях входного напряжения и напряжения батареи, что является несомненным преимуществом перед линейными зарядными устройствами. Импульсные зарядные устройства также обладают преимуществом перед импульсными зарядными устройствами: они хорошо работают в широком диапазоне входного напряжения, что позволяет использовать меньший и более дешевый сетевой адаптер переменного тока, чем при использовании импульсного зарядного устройства.Основными недостатками зарядного устройства такого типа являются его размер и сложность. Контроллер вместе с внешними переключателями и LC-фильтром занимает больше места на плате, чем другие типы зарядных устройств. К другим недостаткам относятся электромагнитные помехи и электрические помехи, вызванные переключающим действием зарядного устройства, и излучение, вызванное индуктором выходного фильтра. Фиксированная частота переключения контроллера, однако, позволяет легко фильтровать электрические шумы, но следует соблюдать осторожность при компоновке схемы и выборе компонентов, чтобы предотвратить проблемы с помехами.

Схема зарядного устройства, показанная на рисунке 1, включает в себя множество других функций, которые увеличивают как срок службы батареи, так и работу системы. Например, контроллер схемы зарядного устройства позволяет установить ограничение на ток, протекающий в цепи. Когда этот ток достигает предела, контроллер автоматически снижает ток, заряжающий аккумулятор, ограничивая ток, который может течь на вход схемы. Поскольку зарядное устройство ограничивает входной ток, для питания цепи можно использовать адаптер переменного тока меньшего размера и, как правило, более дешевый.

Зарядное устройство включает в себя конечный автомат, который выключает зарядное устройство после завершения зарядки и автоматически перезапускает зарядку, когда часть заряда слилась с аккумулятора. Функции безопасности включают бережную предварительную зарядку чрезмерно разряженных аккумуляторов при пониженном токе и возможность обнаружения неисправных аккумуляторов. Кроме того, индикаторы заряда и состояния могут напрямую управлять светодиодами или связываться с микроконтроллером.

Линейные зарядные устройства

Один из способов минимизировать размер и сложность зарядного устройства — использовать линейное зарядное устройство.В линейном зарядном устройстве используется проходной транзистор (обычно MOSFET, но иногда и биполярный транзистор) для понижения напряжения адаптера переменного тока до напряжения батареи. Количество внешних компонентов намного меньше: линейные зарядные устройства требуют входных и выходных байпасных конденсаторов, а иногда и внешнего проходного транзистора, а также резисторов для установки пределов напряжения и тока.

Основной недостаток линейного зарядного устройства — это рассеивание мощности. Зарядное устройство просто понижает напряжение адаптера переменного тока до напряжения аккумулятора.Рассеиваемая мощность проходного элемента равна напряжению адаптера минус напряжение аккумулятора, умноженное на ток зарядки. В случае зарядного устройства 1 А, регулируемого напряжения адаптера переменного тока 5 В ± 10% и напряжения батареи, которое варьируется от 4,2 В до 2,5 В, рассеиваемая мощность может составлять от 0,3 Вт до 3,0 Вт.

На рисунке 2 показано типичное линейное зарядное устройство Li +. В этой схеме используется MAX1898 и внешний полевой МОП-транзистор с p-каналом для снижения напряжения адаптера переменного тока до напряжения батареи. Этот тип зарядного устройства намного проще, чем тип переключателя, главным образом потому, что пассивный LC-фильтр не требуется.Он рассеивает наибольшую мощность, когда напряжение батареи минимально, поскольку разница между фиксированным входным напряжением и напряжением батареи наибольшая в этом состоянии. MAX1898 включает в себя функцию (называемую состоянием предварительной квалификации ), которая снижает ток зарядки для любого напряжения батареи менее 2,5 В. Поэтому в наихудшем случае рассеяние мощности происходит, когда уровень заряда батареи чуть выше номинального порога предварительной квалификации 2,5 В, а входное напряжение максимально. Для входа 5 В ± 10% максимальное входное напряжение равно 5.5В. С учетом допуска минимальное напряжение предварительной квалификации MAX1898 составляет 2,375 В. Таким образом, в худшем случае рассеиваемая мощность проходного транзистора составляет 3,125 Вт на ампер зарядного тока. При больших токах зарядки (около 1 А) большая рассеиваемая мощность может привести к чрезмерному нагреву небольшого мобильного телефона или КПК, что может снизить его производительность. К сожалению, уменьшение зарядного тока для устранения проблем рассеивания мощности увеличивает время зарядки. Выбор между дополнительным нагревом и временем дополнительной зарядки может быть затруднен в зависимости от области применения.


Рис. 2. Линейное зарядное устройство MAX1898 Li +.

Даже с учетом проблемы рассеивания мощности, связанной с линейной зарядкой, это все равно может быть лучшим выбором для беспроводных устройств. Поскольку нет переключающего действия и не требуются индукторы, линейные зарядные устройства имеют более низкие кондуктивные и излучаемые эмиссии, чем другие типы зарядных устройств. Благодаря такому снижению шума линейное зарядное устройство может стать подходящим решением для чувствительных к шуму беспроводных устройств.

MAX1898 включает в себя: индикатор зарядки, который может напрямую управлять светодиодом или микроконтроллером, схему пониженного напряжения аккумулятора, которая снижает ток зарядки для чрезмерно разряженных аккумуляторов, таймер для выключения зарядного устройства после завершения зарядки и регулируемый порог перезапуска до автоматически возобновляет зарядку, если аккумулятор разряжен.Вывод ISET устанавливает зарядный ток и показывает его уровень, пока зарядное устройство регулирует напряжение. Напряжение на выводе ISET можно контролировать с помощью АЦП или компаратора, чтобы определить, когда ток зарядки аккумулятора упал до достаточно низкого уровня; либо этот уровень, либо встроенный таймер можно использовать для прекращения зарядки. Контроллер также включает выходной контакт, который указывает состояние зарядки (/ CHG \), и комбинированный входной и выходной контакт (EN / OK), который указывает на наличие входного напряжения и включает зарядное устройство.

Импульсные зарядные устройства

Третий тип зарядного устройства Li +, импульсное зарядное устройство, обладает некоторыми преимуществами как импульсных, так и линейных зарядных устройств. Подобно импульсному зарядному устройству, импульсное зарядное устройство работает эффективно. Когда напряжение заряжаемой батареи низкое, проходной транзистор остается включенным и проводит входной ток источника непосредственно к батарее. Когда напряжение батареи достигает напряжения регулирования батареи, зарядное устройство подает импульс входного тока для достижения желаемого зарядного тока, таким образом регулируя напряжение батареи на желаемом пределе напряжения.Потому что транзистор не работает в своей линейной области во время этой части цикла заряда, а действует как переключатель, и рассеиваемая мощность намного ниже, чем у линейного зарядного устройства. Поскольку импульсному зарядному устройству не требуется выходной LC-фильтр, оно меньше, чем импульсное зарядное устройство.

На рис. 3 показано импульсное зарядное устройство MAX1736 Li +. Он не уступает линейному зарядному устройству по простоте и небольшому количеству внешних компонентов. Благодаря более низкому рассеянию мощности компромисс между временем зарядки и рассеиваемой мощностью не следует рассматривать как линейное зарядное устройство.


Рисунок 3. Импульсное зарядное устройство Li +.

Однако к импульсному зарядному устройству предъявляются особые требования. Во-первых, источник входного напряжения, питающий зарядное устройство, должен быть ограничен по току. Текущий предел должен быть достаточно точным; настенные кубы с таким уровнем точности доступны не так повсеместно, как кубики без точного ограничения тока. К тому же они дороже. Однако в некоторых случаях ограничение тока адаптера переменного тока указывается достаточно точно, чтобы гарантировать, что неисправность в устройстве, которое он питает, не создаст угрозы безопасности.Если по той или иной причине требуется точное ограничение входного тока, то при его использовании для зарядки не требуется никаких дополнительных затрат.

MAX1736 автоматически заряжает аккумулятор при низком токе 6 мА, когда напряжение аккумулятора ниже 2,5 В, чтобы предотвратить его повреждение в чрезмерно разряженном состоянии. Однако контроллер не прекращает зарядку автоматически. В большинстве случаев он прекращает зарядку после того, как зарядный ток упадет ниже некоторого порогового значения, обычно 10% от предельного зарядного тока.Чтобы установить этот режим прекращения заряда, вывод GATE MAX1736 используется для непосредственного управления входом микроконтроллера. Измеряя рабочий цикл напряжения на выводе GATE, микропроцессор определяет средний ток. В случае 10%, когда рабочий цикл на выводе GATE упадет ниже 10%, микроконтроллер завершит зарядку. Микроконтроллер также может отключить MAX1736, управляя контактом EN. Когда входной источник отсутствует или на контакте EN низкий уровень заряда батареи уменьшается до 2 мкА, чтобы зарядное устройство не разряжало батарею после завершения зарядки.

Заключение

Зарядные устройства импульсного режима рассеивают небольшую мощность в широком диапазоне входного и зарядного напряжения и тока, но отличаются большей стоимостью и сложностью, чем другие типы. Линейные зарядные устройства меньше и менее сложны, чем устройства, работающие в режиме переключения, но в большинстве случаев они рассеивают больше энергии. Импульсные зарядные устройства рассеивают значительно меньше энергии и занимают небольшую площадь на плате, но требуют более дорогих адаптеров переменного тока, которые ограничивают потребляемый от них ток. Лучший выбор появляется только после взвешивания того, какие из этих различных факторов являются наиболее важными для конкретного дизайна.

Аналогичная версия этой статьи появилась в ноябрьском номере журнала Wireless Design and Development за ноябрь 2001 года.

Цепь зарядного устройства свинцово-кислотной батареи

Введение:

Для зарядки аккумулятора от сети переменного тока нам нужен понижающий трансформатор, выпрямитель, схема фильтрации, регулятор для поддержания постоянного напряжения, после чего мы можем подать это напряжение на аккумулятор, чтобы зарядить его. Подумайте, если у вас есть только постоянное напряжение и заряжаете свинцово-кислотную батарею, мы можем сделать это, подав это постоянное напряжение на регулятор напряжения постоянного и постоянного тока и некоторые дополнительные схемы перед подачей на свинцово-кислотную батарею.Автомобильный аккумулятор также является свинцово-кислотным аккумулятором.

Как видно на рисунке, напряжение постоянного тока подается на регулятор постоянного напряжения, здесь мы используем LM317, который является регулятором постоянного напряжения. На аккумулятор подается регулируемое выходное напряжение постоянного тока. Также имеется схема режима непрерывной зарядки, которая помогает снизить ток, когда аккумулятор полностью заряжен.

Компоненты цепи зарядного устройства свинцово-кислотной батареи:

LM317:

LM317 — регулятор напряжения, изобретенный Робертом С. Добкиным и Робертом Дж.Widlar в 1970 г. основная функция этого регулятора напряжения состоит в том, чтобы регулировать напряжение и обеспечивать постоянное напряжение без каких-либо шумовых помех; например, если у нас есть 42 В, и нам нужно только 10 В, поэтому, чтобы получить этот выход, мы подадим 42 В на регулятор напряжения и непрерывные 10 В. Для LM317 нет максимального напряжения, если разница между входным и выходным напряжениями не должна превышать максимальное дифференциальное напряжение. Максимальное дифференциальное напряжение составляет около 40 В, а также он дает превышение выходного тока 1.5A для 1,2 В до 37 В. Он имеет три контакта входа, выхода и регулируемый контакт. В регулируемом мы можем регулировать разницу между входным и выходным напряжениями. Минимальное напряжение должно быть 18 В, которое подается на вход регулятора.

Свинцовая батарея:
Свинцовая батарея

— это аккумуляторная батарея для модели 1857 от Gaston Plante. Основными преимуществами свинцовой батареи являются то, что она рассеивает очень мало энергии (если рассеиваемая энергия меньше, она может работать долгое время с высокой эффективностью), у нее очень низкое соотношение энергии к весу, она может обеспечивать высокий ток и очень низкую стоимость.

Схема зарядного устройства для свинцово-кислотных аккумуляторов

:

Принципиальную схему можно увидеть ниже:

Описание цепи:

  • Напряжение постоянного тока подключено к Vin LM317, между тем, как мы подключили конденсаторы, будут разомкнуты, но если в нем есть шум переменного тока, он его устранит.
  • Vout LM317 подается на аккумулятор, который должен заряжаться, контакт 1 Регулировочный контакт LM317 подключен к транзистору Q1, резистору R1, R2, R5, который поможет настроить регулятор.
  • Выход регулируемого напряжения и тока контролируется транзистором Q1, резистором R1 и R2 и потенциометром R5. Потенциометром, который используется для установки зарядного тока. Резистор R2 будет иметь больший ток, когда батарея заряжается. В этом поможет провести транзистор Q1. Проводимость Q1 поможет отрегулировать напряжение LM317.
  • РЕЖИМ ЗАРЯДНОЙ ПЕРЕДАЧИ: в этом режиме, если аккумулятор заряжен, будет течь обратный ток. Если светодиод загорелся, можно сказать, что аккумулятор заряжен.Диод D2 защитит LM317 от обратного тока. Когда аккумулятор полностью заряжен, ток заряда уменьшится. Если ток заряда транзистор отключится, регулятор напряжения не может быть отрегулирован.
ПРИМЕЧАНИЕ:
  1. Аккумулятор должен заряжаться с током зарядки 1/10 th , поэтому регулятор напряжения должен генерировать 1/10 th зарядного тока, производимого аккумулятором
  2. Радиатор должен быть прикреплен к LM317 для повышения эффективности.

Простые микросхемы зарядного устройства для любой химии

Предпосылки

Для многих устройств с батарейным питанием обычно требуются самые разные источники заряда, химический состав батарей, напряжения и токи. Например, промышленные, высокопроизводительные, многофункциональные потребительские, медицинские и автомобильные зарядные устройства требуют более высоких напряжений и токов, поскольку появляются новые аккумуляторные блоки большой емкости для всех типов аккумуляторных химикатов. Кроме того, солнечные панели с широким диапазоном уровней мощности используются для питания множества инновационных систем, содержащих перезаряжаемые герметичные свинцово-кислотные (SLA) и литиевые батареи.Примеры включают габаритные огни пешеходного перехода, портативные акустические системы, уплотнители мусора и даже огни морских буев. Более того, некоторые свинцово-кислотные (LA) батареи, используемые в солнечных батареях, представляют собой батареи глубокого цикла, способные выдерживать длительные повторяющиеся циклы зарядки в дополнение к глубоким разрядам. Хороший пример этого — глубоководные морские буи, обязательным условием которых является 10-летний срок эксплуатации. Другой пример — внесетевые (то есть отключенные от электроэнергетической компании) системы возобновляемых источников энергии, такие как солнечная или ветровая энергия, где время безотказной работы системы имеет первостепенное значение из-за трудностей с близким доступом.

Даже в несолнечных приложениях последние рыночные тенденции означают возобновление интереса к аккумуляторным элементам SLA большой емкости. Автомобильные или пусковые элементы SLA недороги с точки зрения соотношения цена / мощность и могут обеспечивать высокие импульсные токи в течение коротких промежутков времени, что делает их отличным выбором для автомобильных и других пусковых устройств транспортных средств. Встроенные автомобильные приложения имеют входное напряжение> 30 В, а в некоторых даже выше. Рассмотрим систему определения местоположения GPS, используемую в качестве средства защиты от кражи; линейное зарядное устройство с типичным входом 12 В с понижением до двух последовательно соединенных литий-ионных аккумуляторов (7.4 В) и нуждающиеся в защите от гораздо более высоких напряжений, могут быть полезны для этого приложения. Аккумуляторы глубокого разряда LA — еще одна технология, популярная в промышленных приложениях. У них более толстые пластины, чем у автомобильных аккумуляторов, и они рассчитаны на разряд до 20% от их общей емкости. Обычно они используются там, где мощность требуется в течение длительного времени, например, в вилочных погрузчиках и тележках для гольфа. Тем не менее, как и их литий-ионные аналоги, аккумуляторы LA чувствительны к перезарядке, поэтому осторожное обращение во время цикла зарядки очень важно.

Решения на базе интегральных схем (IC)

покрывают лишь небольшую часть множества возможных комбинаций входного напряжения, напряжения заряда и тока заряда. Громоздкая комбинация микросхем и дискретных компонентов обычно использовалась для покрытия большинства оставшихся, более сложных комбинаций и топологий. Так было только в 2011 году, когда компания Analog Devices обратилась к этому рыночному пространству приложений и упростила его с помощью своего популярного решения для зарядки с двумя микросхемами, состоящего из микросхемы контроллера зарядки аккумулятора LTC4000, соединенной с совместимым преобразователем постоянного тока с внешней компенсацией.

Коммутационные и линейные зарядные устройства

ИС для зарядных устройств с традиционной линейной топологией часто ценились за их компактность, простоту и низкую стоимость. Однако к недостаткам этих линейных зарядных устройств относятся ограниченный диапазон входного напряжения и напряжения батареи, более высокое относительное потребление тока, чрезмерное рассеивание мощности, ограниченные алгоритмы прекращения заряда и более низкая относительная эффективность (эффективность ~ [VOUT / VIN] × 100%). С другой стороны, импульсные зарядные устройства для аккумуляторов также являются популярным выбором из-за их гибкой топологии, мультихимической зарядки, высокой эффективности зарядки (которая минимизирует нагрев для обеспечения быстрой зарядки) и широких диапазонов рабочего напряжения.Тем не менее, некоторые из недостатков переключаемых зарядных устройств включают относительно высокую стоимость, более сложную конструкцию на основе индукторов, потенциальное шумообразование и решения, занимающие большую площадь. Современный Лос-Анджелес, беспроводное питание, сбор энергии, солнечная зарядка, удаленный датчик и встроенные автомобильные приложения обычно питаются от высоковольтных линейных зарядных устройств по причинам, указанным выше. Однако существует возможность для более современного зарядного устройства с переключаемым режимом, которое устраняет связанные с этим недостатки.

Несложное зарядное устройство Buck Battery

Некоторые из более сложных задач, с которыми сталкивается разработчик на начальном этапе разработки зарядного решения, — это широкий диапазон источников входного сигнала в сочетании с широким диапазоном возможных аккумуляторов, высокая емкость аккумуляторов, которые необходимо заряжать, и высокое входное напряжение.

Источники входного сигнала столь же широки, сколь и разнообразны, но некоторые из наиболее сложных из них, которые связаны с системами зарядки аккумуляторов: мощные настенные адаптеры с диапазоном напряжений от 5 до 19 В и выше, выпрямленные системы на 24 В переменного тока, высокое сопротивление солнечные батареи, аккумуляторы для автомобилей и тяжелых грузовиков / Humvee.Следовательно, комбинация химического состава батарей, возможная в этих системах — на основе лития (Li-Ion, Li-Polymer, фосфат лития-железа (LiFePO4)) и на основе LA — еще больше увеличивает перестановки, что делает конструкцию еще более устрашающе.

Из-за сложности конструкции ИС существующие ИС для зарядки аккумуляторов в основном ограничены понижающей (или понижающей) или более сложной топологией SEPIC. Добавьте сюда возможность солнечной зарядки, и вы откроете множество других сложностей. Наконец, некоторые существующие решения заряжают батареи с несколькими химическими соединениями, а некоторые — со встроенной нагрузкой.Однако до сих пор ни одно зарядное устройство для ИС не обеспечивало всех необходимых характеристик производительности для решения этих проблем.

Новые многофункциональные компактные зарядные устройства

Понижающее устройство для зарядки ИС, которое решает проблемы, описанные выше, должно обладать большинством из следующих атрибутов:

  • Широкий диапазон входного напряжения
  • Широкий диапазон выходного напряжения для работы с несколькими батареями
  • Гибкость — возможность зарядки нескольких химических батарей
  • Простая и автономная работа с бортовыми алгоритмами прекращения заряда (микропроцессор не требуется)
  • Большой ток заряда для быстрой зарядки, большие элементы большой емкости
  • Возможность зарядки от солнечных батарей
  • Усовершенствованная упаковка для улучшения тепловых характеристик и экономии места

Когда несколько лет назад компания ADI разработала популярную микросхему контроллера зарядки аккумулятора LTC4000 (которая работает вместе с преобразователем постоянного тока с внешней компенсацией, образуя мощное и гибкое решение для зарядки двухчиповых аккумуляторов) несколько лет назад, она значительно упростила существующий решение, которое было довольно запутанным и громоздким.Чтобы включить управление PowerPath TM , функции повышения / понижения и ограничение входного тока, решения состояли из импульсного стабилизатора постоянного тока или контроллера зарядного устройства с понижающим переключением в паре с внешним контроллером повышения. , а также микропроцессор, а также несколько микросхем и дискретных компонентов. К основным недостаткам относятся ограниченный диапазон рабочего напряжения, отсутствие возможности подключения солнечной панели, невозможность заряжать аккумулятор любого химического состава и отсутствие прекращения заряда на борту. Перенесемся в настоящее, и теперь доступны более простые и гораздо более компактные монолитные решения для решения этих проблем.Понижающие зарядные устройства LTC4162 и LTC4015 от Analog Devices предоставляют однокристальные решения для понижающей зарядки с различными уровнями тока заряда и полным набором функций.

Зарядное устройство LTC4162

LTC4162 — это высокоинтегрированное синхронное монолитное понижающее зарядное устройство с мультихимическим режимом высокого напряжения и диспетчером PowerPath со встроенными функциями телеметрии и дополнительным отслеживанием точки максимальной мощности (MPPT). Он эффективно передает питание от различных входных источников, таких как настенные адаптеры, объединительные платы и солнечные панели, для зарядки литий-ионных / полимерных, LiFePO4 или батарейных блоков LA, при этом обеспечивая питание нагрузки системы до 35 В.Устройство обеспечивает расширенный системный мониторинг и управление PowerPath, а также мониторинг состояния батареи. Хотя для доступа к наиболее продвинутым функциям LTC4162 требуется главный микроконтроллер, использование порта C I 2 не является обязательным. Основные характеристики зарядки продукта можно отрегулировать, используя конфигурацию штыревой перемычки и программирующие резисторы. Устройство обеспечивает точность регулирования тока заряда ± 5% до 3,2 А, регулировку напряжения заряда ± 0,75% и работает в диапазоне входного напряжения от 4,5 В до 35 В.Приложения включают портативные медицинские инструменты, устройства USB-питания (USB-C), военное оборудование, промышленные портативные компьютеры и защищенные ноутбуки / планшетные компьютеры.

Рисунок 1. Типовая схема применения LTC4162-L.

LTC4162 (см. Рисунок 1) содержит точный 16-разрядный аналого-цифровой преобразователь (АЦП), который непрерывно отслеживает многочисленные параметры системы по команде, включая входное напряжение, входной ток, напряжение батареи, ток батареи, выходное напряжение, температуру батареи. , температура кристалла и последовательное сопротивление батареи (BSR).Все параметры системы можно контролировать через двухпроводной интерфейс I 2 C, а программируемые и маскируемые предупреждения гарантируют, что только интересующая информация вызовет прерывание. Алгоритм отслеживания активной точки максимальной мощности устройства глобально проверяет входной контур управления пониженным напряжением и выбирает рабочую точку для максимального извлечения энергии из солнечных панелей и других резистивных источников. Кроме того, его встроенная топология PowerPath отделяет выходное напряжение от батареи, тем самым позволяя портативному изделию запускаться мгновенно, когда источник зарядки применяется в условиях очень низкого напряжения батареи.Встроенные профили зарядки LTC4162 оптимизированы для аккумуляторов различного химического состава, включая литий-ионные / полимерные, LiFePO4 и LA. Как напряжение заряда, так и ток заряда могут автоматически регулироваться в зависимости от температуры аккумулятора в соответствии с рекомендациями JEITA или настраиваться индивидуально. Для LA непрерывная температурная кривая автоматически регулирует напряжение батареи в зависимости от температуры окружающей среды. Для любого химического состава может быть задействована дополнительная система регулирования температуры стыка фильеры, предотвращающая чрезмерный нагрев в условиях ограниченного пространства или в условиях высоких температур.См. Рисунок 2 для получения информации об эффективности зарядки литий-ионных аккумуляторов.

Наконец, LTC4162 размещен в 28-выводном корпусе QFN размером 4 мм × 5 мм с открытой металлической площадкой для обеспечения превосходных тепловых характеристик. Устройства класса E и I гарантированно работают от –40 ° C до + 125 ° C.

Рис. 2. Зависимость эффективности зарядки литий-ионных аккумуляторов от входного напряжения по количеству ячеек.

Что делать, если требуется более высокий ток?

LTC4015 также представляет собой высокоинтегрированное, мультихимическое синхронное понижающее зарядное устройство высокого напряжения со встроенными функциями телеметрии.Тем не менее, он имеет архитектуру контроллера с внешними силовыми полевыми транзисторами для более высокого тока заряда (до 20 А или более в зависимости от выбранных внешних компонентов). Устройство эффективно подает питание от входного источника (сетевой адаптер, солнечная панель и т. Д.) На литий-ионный / полимерный аккумулятор, LiFePO4 или батарею LA. Он обеспечивает расширенные функции системного мониторинга и управления, включая подсчет кулонов батареи и мониторинг состояния. Хотя для доступа к наиболее продвинутым функциям LTC4015 требуется главный микроконтроллер, использование его порта I 2 C не является обязательным.Основные характеристики зарядки продукта можно отрегулировать, используя конфигурацию штыревой перемычки и программирующие резисторы.

Рис. 3. Схема зарядного устройства для 2-элементной литий-ионной аккумуляторной батареи 12 В IN на 8 А.

LTC4015 обеспечивает точность регулирования тока заряда ± 2% до 20 А, регулировку напряжения заряда ± 1,25% и работу в диапазоне входного напряжения от 4,5 В до 35 В. Приложения включают портативные медицинские инструменты, военное оборудование, приложения для резервного питания от батарей, промышленные портативные устройства, промышленное освещение, защищенные ноутбуки / планшетные компьютеры, а также системы связи и телеметрии с дистанционным питанием.

LTC4015 также содержит точный 14-битный аналого-цифровой преобразователь (АЦП), а также высокоточный счетчик кулонов. АЦП непрерывно отслеживает многочисленные параметры системы, включая входное напряжение, входной ток, напряжение батареи, ток батареи, и по команде сообщает о температуре батареи и последовательном сопротивлении батареи (BSR). Контролируя эти параметры, LTC4015 может сообщать о состоянии аккумулятора, а также о состоянии его заряда. Все параметры системы можно контролировать через двухпроводной интерфейс I 2 C, а программируемые и маскируемые предупреждения гарантируют, что только интересующая информация вызовет прерывание.Встроенные профили зарядки LTC4015 оптимизированы для различных типов аккумуляторов, включая литий-ионные / полимерные, LiFePO4 и LA. Конфигурационные штыри позволяют пользователю выбирать между несколькими предопределенными алгоритмами заряда для каждого химического состава батареи, а также несколькими алгоритмами, параметры которых можно регулировать с помощью I 2 C. Как напряжение заряда, так и ток заряда могут быть автоматически отрегулированы в зависимости от температуры батареи в соответствии с требованиями. с рекомендациями JEITA или даже с индивидуальными настройками.См. Рисунок 4 для получения информации об эффективности зарядки свинцово-кислотным аккумулятором. LTC4015 размещен в корпусе QFN размером 5 мм × 7 мм с открытой металлической площадкой для обеспечения превосходных тепловых характеристик.

Рис. 4. Эффективность зарядки свинцово-кислотной батареи с LTC4015.

Экономия места, гибкость и более высокие уровни мощности

При равных уровнях мощности (например, 3 А), поскольку это монолитное устройство со встроенными силовыми полевыми МОП-транзисторами, LTC4162 может сэкономить до 50% площади печатной платы по сравнению с LTC4015.Поскольку их наборы функций аналогичны, LTC4015 следует использовать при выходных токах от> 3,2 А до 20 А или более. Ни одно из конкурирующих в отрасли решений для зарядных устройств IC не предлагает такой же высокий уровень интеграции и не может генерировать такие же уровни мощности. Те, которые приближаются к зарядному току (от 2 А до 3 А), ограничены только одним химическим составом аккумулятора (литий-ионный) или ограничены по напряжению заряда аккумулятора (максимум 13 В), и поэтому не предлагают уровни мощности или гибкость. из LTC4162 или LTC4015.Кроме того, если учесть количество внешних компонентов, необходимых для ближайшего конкурирующего решения для монолитного зарядного устройства, LTC4162 предлагает до 40% экономии площади печатной платы, что делает его еще более привлекательным выбором для разработки.

Солнечная зарядка

Есть много способов работать с солнечной панелью на максимальной мощности (MPP). Один из самых простых способов — подключить аккумулятор к солнечной панели через диод. Этот метод основан на согласовании максимального выходного напряжения панели с относительно узким диапазоном напряжения батареи.Когда доступные уровни мощности очень низкие (примерно менее нескольких десятков милливатт), это может быть лучшим подходом. Однако уровни мощности не всегда низкие. Поэтому в LTC4162 и LTC4015 используется метод MPPT, который определяет максимальное напряжение питания (MPV) солнечной панели при изменении количества падающего света. Это напряжение может резко меняться от 12 В до 18 В, когда ток панели изменяется в течение 2 или более десятилетий динамического диапазона. Алгоритм схемы MPPT находит и отслеживает значение напряжения панели, которое обеспечивает максимальный ток заряда для аккумулятора.Функция MPPT не только непрерывно отслеживает точку максимальной мощности, но также может выбрать правильный максимум на кривой мощности для увеличения мощности, получаемой от панели в условиях частичной тени, когда на кривой мощности возникают несколько пиков. В периоды низкой освещенности режим низкого энергопотребления позволяет зарядному устройству подавать небольшой зарядный ток, даже если света недостаточно для работы функции MPPT.

Заключение

Новейшие мощные и полнофункциональные микросхемы для зарядки аккумуляторов и PowerPath Manager от компании

, LTC4162 и LTC4015, упрощают очень сложную систему высоковольтной и сильноточной зарядки.Эти устройства эффективно управляют распределением мощности между входными источниками, такими как настенные адаптеры, объединительные платы, солнечные панели и т. Д., А также зарядкой батарей различного химического состава, включая литий-ионные / полимерные, LiFePO4 и SLA.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *