Параллельное соединение аккумуляторов 18650: Как соединить Li-ion аккумуляторы 18650 не повредив их. | Проводник

Содержание

Как правильно соединять аккумуляторы последовательно и параллельно

Коротко разберём распространённое мнение – «при последовательном соединении двух аккумуляторов (АКБ), их ёмкость не меняется, она остаётся такой же, как у одного аккумулятора, поэтому время автономной работы при таком соединении будет меньше».

Но как же закон сохранения энергии? Да, при последовательном соединении аккумуляторов, формально ёмкость считается как у одного аккумулятора, а напряжение удваивается (или утраивается, учетверяется и т.д., в зависимости от количества последовательно соединённых АКБ). При параллельном же соединении АКБ – ёмкость удваивается (утраивается и т.д.), а напряжение остаётся тем же.


Варианты соединения аккумуляторов

Противоречия здесь нет. Когда люди говорят об аккумуляторе (обычно об автомобильном), то сообщают его ёмкость, но не уточняют вольтаж. Просто все привыкли, что аккумуляторы имеют напряжение 12В, и подразумевается, что упоминать об этом глупо. Но в вообще-то, ёмкость без указания вольтажа не имеет физического смысла. Существуют аккумуляторы самой разной ёмкости и на разное напряжение – на 2В, и на 6В, и на 12В, и, редко, на 24В. Кроме того, любые одинаковые АКБ можно соединять последовательно, параллельно, или последовательно-параллельно одновременно.

Но стоит только указать после величины ёмкости её вольтаж, как всё встаёт на свои места. Ведь энергоёмкость в любом случае, как бы мы не соединяли аккумуляторы, останется прежней.

Итак, если, например, два АКБ по 200Ач 12В (например, Аккумулятор Delta GEL 12-200), соединить последовательно, то получится энергоёмкость 200Ач 24В. А если эти же два АКБ соединить параллельно, то получится – 400Ач 12В.
Проверим:
200Ач * 24В = 480Ач * В = 400Ач * 12В

Но для расчётов токов (обычно, номинальным током заряда считается ток 0,1С, где С –величина равная ёмкости аккумулятора), С берут именно по цифре слева, т.е. в нашем примере, при последовательном соединении С = 200, а при параллельном С = 400. Легко заметить, что и мощность зарядного устройства в обоих случаях будет одинаковой.

Для первого случая, зарядный ток будет 0,1*200 = 20А, но при напряжении 24В. Т.е. зарядная мощность, Р = 20А 24В = 480Вт

Для второго случая, зарядный ток будет 0,1*400 = 40А, но при напряжении 12В. Т.е. зарядная мощность, Р = 40А 12В = 480Вт

Если рассматривать одиночные аккумуляторы, то, например, один аккумулятор 600Ач 2В (см. раздел Аккумуляторные батареи FAAM) по своей энергоёмкости соответствует одному аккумулятору 100Ач 12В (например, Аккумулятор DELTA GEL 12-100).

Чтобы получить из этих аккумуляторов (600Ач 2В) большую аккумуляторную батарею, например, на 24В, нужно соединить последовательно 12 шт таких АКБ с помощью перемычек (Перемычка для аккумуляторов 250 мм). Общая итоговая ёмкость получится 600Ач 24В. Эта энергоёмкость, если сравнивать её с 12-и вольтовыми АКБ по 200Ач (а такие применяются в грузовиках), соответствует 6-и штукам (три соединённых параллельно цепочки аккумуляторов, где каждая цепочка состоит из двух, соединённых последовательно, аккумуляторов):

(600Ач*2В)*12 = 600Ач*24В = (200Ач*24В) + (200Ач 24В) + (200Ач 24В)

Обратите внимание – на всех рисунках специально показано, что если минус инвертора подключён к условно первому АКБ, то плюс – к последнему. Так его следует подключать, чтобы компенсировать сопротивление даже толстых медных проводов, соединяющих аккумуляторы. Иначе, из-за их сопротивления, при огромных токах, «дальний» от выводов инвертора аккумулятор, окажется и не «дозаряжаем», и не «доразряжаем».

Итак, ёмкостью (читайте «энергоёмкостью») аккумулятора (объединённой группы аккумуляторов), называется количество электричества (т.е. мощности, равной току умноженного на НАПРЯЖЕНИЕ), которое аккумулятор отдает при разряде до наименьшего допустимого напряжения.

Чтобы аккумулятор служил долго, его нельзя разряжать более чем на 80%. Для 12-и вольтового АКБ, это соответствует напряжению на его клеммах примерно 11,5В. Но тут важно каким током относительно емкости АКБ мы его разряжаем.

Чем больше сила разрядного тока, тем ниже напряжение, до которого может разряжаться аккумулятор. Это потому что при быстром разряде большими токами относительно маленькой ёмкости аккумулятора электролит не успевает перемешиваться, и разряженный слой скапливается вокруг пластин. Напряжение АКБ падает и нагрузку снимают. Однако, спустя несколько десятков минут, электролит перемешивается и ёмкость (и, соответственно, напряжение аккумулятора) повышается.

Если же разряжать малым током относительно ёмкости, то можно вычерпать всю энергию, что плохо для долговечности АКБ. Всегда надо оставлять не менее 20% ёмкости. Подробнее об этом далее.

Отметим, что во время заряда, зарядное устройство постепенно повышает напряжение на АКБ, а затем, после снятия заряда, напряжение уменьшается, возвращаясь к спокойному состоянию (так, на 12-и вольтовом аккумуляторе, в зависимости от типа АКБ, оно обычно растёт до 14,1 – 14,5 В, а после снятия заряда, даже без нагрузки, в течении получаса возвращается к 12,5 – 12,8 В).

Схемы соединения аккумуляторов: параллельное и последовательное подключение, как сделать правильно

Объединенная группа аккумуляторов называется батареей элементов или просто гальванической батареей. Существуют два основных способа соединения элементов в батареи: последовательное и параллельное соединения.

В рамках данной статьи рассмотрим особенности последовательного и параллельного соединения аккумуляторов. Есть разные ситуации, когда может потребоваться увеличить общую емкость или поднять напряжение, прибегнув к параллельному или последовательному соединению нескольких аккумуляторов в батарею, и всегда нужно помнить о нюансах.

Параллельное соединение предполагает объединение положительных клемм аккумуляторов с общей плюсовой точкой схемы, а всех отрицательных — с общим минусом, т. е. все положительные выводы элементов присоединить к одному общему проводу, а все отрицательные выводы — к другому общему проводу. Концы общих проводов такой батареи присоединяются к внешней цепи — к приемнику.

Сущность последовательного способа соединения аккумуляторов, как это вытекает из самого его названия, заключается в том, что все взятые элементы соединяются между собою в одну последовательную цепочку, т. е. положительный полюс каждого элемента соединяется с отрицательным полюсом каждого последующего элемента. 

В результате такого соединения получается одна общая батарея, у которой у одного крайнего элемента остается свободным отрицательный, а у второго — положительный выводы. При помощи их батарея и включается во внешнюю цепь — в приемник. Далее поговорим об этом более подробно.

Параллельное соединение аккумуляторов дает объединение емкостей, и при равном исходном напряжении на каждом из аккумуляторов, входящих в собираемую из них батарею, емкость составной батареи оказывается равной сумме емкостей этих аккумуляторов.

При равных емкостях объединяемых аккумуляторов, для нахождения емкости батареи достаточно умножить количество составляющих батарею аккумуляторов на емкость одного аккумулятора в сборке.

Параллельное соединение:

Сколько бы элементов мы ни соединяли параллельно, общее их напряжение всегда будет равно напряжению одного элемента, но зато сила разрядного тока может быть увеличена во столько раз, сколько элементов будет входить в состав батареи, если только все элементы в батарее однотипные.

Соединяя аккумуляторы последовательно, получают батарею той же емкости, что и емкость одного из аккумуляторов, входящих в батарею, при условии, что емкости равны. При этом напряжение батареи будет равно сумме напряжений каждого из составляющих батарею аккумуляторов.

Ежели последовательно соединяются аккумуляторы равной емкости и равного на момент соединения напряжения, тогда напряжение батареи, полученной путем последовательного соединения, будет равно произведению напряжения одного аккумулятора и количества аккумуляторов, составляющих последовательную цепь.

Последовательное соединение:

При последовательном соединении элементов складываются и величины их внутренних сопротивлений.

Поэтому от составленной батареи независимо от величины ее напряжения можно потреблять только такой же силы ток, на какой рассчитан один элемент, входящий в состав данной батареи.

Это и понятно, так как при последовательном соединении через каждый элемент проходит тот ток, какой проходит и через всю батарею.

Таким образом, путем последовательного соединения элементов, увеличивая их общее количество, можно повысить напряжение батареи до любых пределов, но сила разрядного тока батареи останется такой же, как и у одного отдельного элемента, входящего в ее состав.

И при параллельном, и при последовательном соединении, общая энергия батареи оказывается равной сумме энергий всех аккумуляторов, составляющих батарею.

Итак, для чего же аккумуляторы объединяют в батареи? Все дело в том, что в любой схеме существуют потери, связанные с нагревом проводников. И при одном и том же сопротивлении проводника, если требуется передать определенную мощность, гораздо выгоднее передавать мощность при высоком напряжении, тогда ток потребуется меньший, и омические потери будут меньше.

По этой причине мощные источники бесперебойного питания используют батареи последовательно соединенных аккумуляторов на общее напряжение в несколько десятков вольт, а не параллельную цепь на 12 вольт. Чем выше напряжение источника, тем выше КПД преобразователя.

Когда нужен значительный ток, а одного имеющегося в наличии аккумулятора для поставленной цели не достаточно, увеличивают емкость батареи, прибегая к параллельному соединению нескольких аккумуляторов.

Не всегда экономически выгодно заменять аккумулятор на новый, обладающий большей емкостью, и иногда достаточно присоединить параллельно еще один, и повысить емкость источника до необходимой. Некоторые источники бесперебойного питания имеют отсеки для установки дополнительных аккумуляторов параллельно уже имеющемуся, с целью повысить энергетический ресурс преобразователя.

Что следует учитывать при объединении аккумуляторов в последовательную цепь? Аккумуляторы различной емкости (изготовленные по одной и той же технологии, например свинцово-кислотные) отличаются внутренним сопротивлением. Чем выше емкость, тем меньше внутреннее сопротивление, зависимость здесь почти обратно пропорциональная.

По этой причине, если последовательно соединить аккумуляторы разной емкости, и замкнуть цепь нагрузки или зарядную цепь, то ток по цепи пойдет везде одинаковый, а вот падения напряжений будут разными.

И на каком-то из аккумуляторов батареи напряжение при зарядке окажется намного выше номинала, что опасно, а при разрядке — намного ниже нижнего предела, что вредно.

Рассмотрим далее пример, покажем, чем это чревато.

Пусть в нашем распоряжении 10 аккумуляторов, номинальное напряжение каждого 12 вольт, 9 из них имеют емкость 20 ампер-часов, а один — 10 ампер-часов.

Мы решили соединить их последовательно, и заряжать от зарядного устройства с контролем зарядного тока, выставили ток на 2 ампера.

Зарядное устройство настроено так, что прекратит зарядку когда напряжение батареи пересечет отметку в 138 вольт, исходя из среднего значения в 13,8 вольт на каждый аккумулятор последовательной батареи. Что произойдет?

Для каждого аккумулятора производитель предоставляет зарядную характеристику, где можно увидеть, каким током и на протяжении какого времени нужно заряжать аккумулятор.

Очевидно, аккумулятор в 2 раза меньшей емкости при токе в 2 ампера примет столько же энергии, что и аккумуляторы большей емкости, но рост напряжения на нем будет идти примерно втрое быстрее. Так, уже через 3 часа маленький аккумулятор возьмет свое, в то же самое время большие аккумуляторы еще 6 часов должны будут заряжаться.

Но напряжение на маленьком аккумуляторе уже пошло через край, его бы нужно перевести в режим стабилизации напряжения, на наш зарядный прибор этого не делает. В конце концов система рекомбинации газов в аккумуляторе вдвое меньшей емкости не выдержит, клапаны сорвет, и аккумулятор начнет терять влагу, терять емкость, при этом большие аккумуляторы все еще будут недозаряжены.

Вывод: заряжать последовательно можно только аккумуляторы равной емкости, одной и той же технологии, одного и того же состояния разряда.

Теперь допустим, что мы разряжаем эту же последовательную цепь. Изначально на каждом аккумуляторе 13,8 вольт, а разрядный ток составляет 2 ампера.

Защита от глубокого разряда разомкнет цепь при 72 вольтах, то есть предполагается не менее 7,2 вольт на аккумулятор.

Через 4 часа маленький аккумулятор полностью разрядится, а на больших еще будет по 12 вольт, и защита от глубокого разряда не уследит подвоха. Маленький аккумулятор уже необратимо потеряет часть своей емкости.

Вот почему последовательно можно соединять лишь аккумуляторы равных емкостей, если не хотите их испортить. Лучше всего последовательно соединять аккумуляторы из одной партии, и проверить предварительно их емкости тестером АКБ, дабы убедиться, что емкости аккумуляторов, из которых вы собираетесь собрать последовательную батарею, почти равны.

А вот параллельно соединять аккумуляторы разной емкости допустимо. Разумеется, при условии равенства напряжений на их клеммах. При параллельном соединении емкости аккумуляторов не будут играть роли, поскольку внутренние сопротивления аккумуляторов окажутся подключены параллельно, и максимальный ток заряда или разряда будет у каждого аккумулятора свой, они будут работать синхронно.

Однако для клемм аккумуляторов и для каждого конкретного аккумулятора ограничения по току имеются, клеммы могут и не выдержать длительный ток, который в принципе способен дать аккумулятор, об этом важно не забывать. В технической документации к аккумулятору эти параметры указаны.

Если в момент соединения двух аккумуляторов, сильно различающихся по емкости, их напряжения отличаются значительно, неизбежна кратковременная перегрузка по току одного из аккумуляторов. Если напряжение выше у аккумулятора меньшей емкости, то перераспределение заряда в момент соединения вызовет кратковременный ток короткого замыкания в нем, и может быстро привести к его разрушению.

Если напряжение выше у аккумулятора большей емкости, то опять же под угрозой аккумулятор меньшей емкости, ибо он станет принимать заряд в режиме перегрузки. Поэтому лучше всего соединять параллельно аккумуляторы, предварительно выровняв напряжения на них, а уже следующим шагом объединять в батарею.

Надеемся, что наша статья была для вас полезной, и теперь вы знаете, как можно, а как нельзя соединять аккумуляторы и для каких целей это обычно делают.

Андрей Повный 

Параллельное и последовательное соединение аккумуляторов

При параллельном соединении, аккумуляторы соединяют так, чтобы положительные клеммы всех аккумуляторов были подключены к одной точке электрической схемы (″плюсу″), а отрицательные клеммы всех аккумуляторов были подключены к другой точке схемы (″минусу″).

Получившаяся при паралельном соединении аккумуляторная батарея имеет то же напряжение, что и у одиночного аккумулятора, а емкость такой аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые емкости, то емкость аккумуляторной батареи равна емкости одного аккумулятора, умноженной на количество аккумуляторов в батарее.

Для последовательного соединения аккумуляторов, к ″плюсу″ электрической схемы подключают положительную клемму первого аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к ″минусу″ электрической схемы.

Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой аккумуляторной батареи равно сумме напряжений входящих в нее аккумуляторов. Т.е. Если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

Электрическая энергия, накопленная в аккумуляторной батарее равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы — параллельно или последовательно.

2. Зачем соединять аккумуляторы в аккумуляторную батарею?

В любых электрических системах или устройствах есть омические потери: часть электрической энергия превращается в тепло, не производя полезной работы. Чем больше напряжение электросистемы, тем (при той же мощности) меньше ток, меньше омические потери и меньше цена системы. Т.е. выгодно иметь электрические системы высокого напряжения.

Причем, чем больше мощность системы, тем больше выигрыш высоковольтной системы по сравнению с низковольной.

Поэтому в небольших UPS (на несколько сотен ВА) обычно стоит один аккумулятор на 12 вольт (так получается дешевле), в UPS на несколько кВА используется аккумуляторная батарея напряжением в десятки вольт, а в мощных ИБП на десятки киловатт напряжение аккумуляторной батареи может превышать 500 В.

Следовательно, цель использования аккумуляторных батарей с последовательным соединением аккумуляторов — уменьшение потерь и увеличение коэффициента полезного действия (КПД).

Иногда емкости одного аккумулятора недостаточно, и нужно увеличить емкость. Иногда удобнее не ставить взамен аккумулятор большей емкости, а поставить еще один такой же аккумулятора параллельно, чтобы суммарная емкость аккумуляторной батареи аккумуляторной батареи удвоилась.

Например, для увеличения времени работы высококлассного ИБП Eaton Powerware 9130 от аккумуляторной батареи параллельно существующей батарее подключают еще одну или несколько таких же аккумуляторных батарей.

3. Можно ли соединять последовательно свинцовые аккумуляторы разной емкости?

Известно, что внутреннее сопротивление аккумуляторов, изготовленных по одной технологии, примерно обратно пропорционально емкости аккумулятора.

Поэтому, при протекании тока через последовательную аккумуляторную батарею, на свинцовых аккумуляторах разной емкости будут разные напряжения.

Опасно ли это для отдельных аккумуляторов и для аккумуляторной батареи в целом? Рассмотрим по-отдельности режимы разряда и зарядки свинцовых аккумуляторов.

Предположим, мы заряжаем последовательную аккумуляторную батарею, состоящую из семи 12-вольтовых свинцовых аккумуляторов емкостью по 10 А*час и одного 12-вольтового свинцового аккумулятора емкостью 8 А*час. В начале все аккумуляторы разряжены. Зарядное устройство реализует алгоритм зарядки I-U с начальным током 1 А и конечным напряжением 110 В (13.8 В в среднем на аккумулятор).

По данным производителя, при зарядке аккумуляторов постоянным током, напряжение на аккумуляторе изменяется в соответствии с графиком справа. В начале процесса зарядки, зарядное устройство поддерживает ток 1 А, а суммарное напряжение на аккумуляторной батарее сложится из напряжений на отдельных аккумуляторах, напряжение для каждого аккумулятора можно определить по его зарядной характеристике (графику зависимости напряжения аккумулятора от времени, который приводится производителем в его технических характеристиках). В начале зарядки на свинцовом аккумуляторе в 8 А*час будет около 12.3 В, а на всех аккумуляторах емкостью 10 А*час — примерно по 12 В на каждом. Начало зарядки абсолютно безопасно для всех 8 аккумуляторов.

Примерно через 10 часов напряжение на аккумуляторе емкостью 8 А*час достигнет 13.8 вольт. Аккумулятор в этот момент будет заряжен примерно на 80%. Остальные аккумуляторы будут заряжены примерно на 70%, а напряжение на каждом из них будет около 13.2 В.

Аккумулятор емкостью 8 А*час уже нужно переводить в режим стабилизации напряжения, но это невозможно — ведь суммарное напряжение на аккумуляторной батарее еще не достигло конечного напряжения 110 В, а составляет примерно 13.2 * 7 + 13.8 = 106.2 В.

Поэтому все аккумуляторы емкостью 10 А*час будут продолжать заряжаться, суммарное напряжение продолжит расти, а вместе с ним и напряжение на аккумуляторе емкостью 8 А*час.

Еще через 3-4 часа, напряжение на аккумуляторной батарее достигнет предела — 110 В. Это напряжение разделится следующим образом: на аккумуляторах емкостью 10 А*час будет чуть больше 13.5 В, а на аккумуляторе емкостью 8 А*час — больше 15 В.

Система рекомбинации газов, выделяющихся в этом аккумуляторе, перестанет справляться c нагрузкой, предохранительные клапаны аккумулятора откроются, аккумулятор начнет терять воду, а с ней и емкость. В то же время, все аккумуляторы емкостью 10 А*час будут недозаряжены.

Следовательно, при зарядке свинцовых аккумуляторов соединенные последовательно аккумуляторы разной емкости будут все больше и больше расходиться по своим параметрам — ″разбегаться″.

Рассмотрим теперь разряд все той же аккумуляторной батареи из 8 свинцовых аккумуляторов током 1 А. Пусть система построена так, что при уменьшении напряжения до 84 В срабатывает защита от глубокого разряда, и разряд прекращается. Начальное состояние всех свинцовых аккумуляторов — ″полностью заряжены″.

Через 7-8 часов после начала разряда, аккумулятор емкостью 8 А*час полностью разрядится. Напряжение на нем составит 10.5 В. Напряжение на остальных аккумуляторах батареи будет в это время чуть больше 11 В на каждом. Значит суммарное напряжение на аккумуляторной батарее еще далеко от конечного напряжения разряда 84 В и составляет примерно 10.5 * 7 + 11.

1 = 88,2 В. Поэтому вся аккумуляторная батарея продолжит разряжаться, в том числе и многострадальный аккумулятор емкостью 8 А*час. Напряжение на нем будет очень быстро падать, в то время, как остальные свинцовые аккумуляторы практически не будут разряжаться.

Когда напряжение на нем достигнет примерно 7 В, система отключит нагрузку, но будет уже поздно — аккумулятор будет в состоянии глубокого разряда и потеряет часть емкости.

Теперь становится понятно, что последовательно можно соединять только свинцовые аккумуляторы одинаковой емкости, иначе аккумуляторная батарея будет быстро выходить из строя.

Рекомендуется использовать для последовательного соединения свинцовые аккумуляторы одного типа, одного завода и из одной партии.

Если в аккумуляторную батарею предполагается объединить более двух свинцовых аккумуляторов последовательно, очень желателен еще и предварительный подбор аккумуляторов по емкости и напряжению с помощью тестеров аккумуляторов

Для параллельно соединенных свинцовых кислотных аккумуляторов нет опасности появления на клеммах аккумулятора разных напряжений. Напряжения на всех параллельно соединенных аккумуляторах одинаковы в силу самого характера соединения. Значит параллельно соединенные аккумуляторы не могут «разбежаться» — они будут разряжаться или заряжаться синхронно.

Но у свинцовых аккумуляторов есть ограничение не только по максимальному и минимальному напряжению, но и по токам. Например, для аккумулятора CSB GP 1272 (GP1272) производителем установлены следующие ограничения по токам.

Максимальный разрядный ток не должен превышать 100 А для аккумуляторов с клеммами шириной 3/16″ (4.75 мм) и 130 А для аккумуляторов с клеммами 1/4″ (6.35 мм) — 130 А (18С).

Протекание такого большого тока через аккумулятор емкостью всего 7.2 А*час ограничено и по времени: не более 5 с.

Почему ограничен разрядный ток, понятно — клеммы аккумулятора не могут надежно передать больший ток (хотя сам аккумулятор, вероятно, мог бы).

Если мы посмотрим технические характеристики аккумуляторов разных производителей (правда не все указывают максимально допустимый ток), нам откроется довольно пестрая картина. Для стационарных (промышленных) свинцовых аккумуляторов, максимальный ток ограничен значением, которое численно (в амперах) составляет от 5 до 25 емкостей аккумулятора (в А*час).

Некоторые производители указывают еще и ток короткого замыкания (иногда с ограничением времени — 0.1 с) — он численно составляет от 15 до 70 емкостей аккумулятора (15С….70С).

Суммируя эти данные, можно сказать, что свинцовый аккумулятор может безопасно разряжаться очень большими токами, вплоть до десятков С, причем чем меньше время разряда, тем больше допустимый ток.

Жесткого ограничения максимального зарядного тока производитель CSB GP 1272 (GP1272) не дает, он только рекомендует ограничить максимальный ток зарядного устройства значением 2.16 А (это численно равно 30% емкости аккумулятора — 0.3С).

Это ограничение совершенно точно не связано с возможностями проводников (клемм и решетки пластин аккумулятора), — проводники этого аккумулятора, как мы уже знаем, могут передать в 50 раз больший ток.

Тогда с чем же связано это ограничение?

В процессе зарядки свинцового аккумулятора, сернокислый свинец превращается в свинец или окись свинца (в зависимости от того, на положительной или отрицательной пластине происходит реакция), а сера, входившая в состав сернокислого свинца, переходит в электролит.

Для эффективного протекания электрохимической реакции зарядки свинцового аккумуляторав, нужно все время подводить в поверхности, на которой происходит реакция, свежий электролит и отводить продукты реакции (все тот же электролит, но уже содержащий больше серы).

Активная масса пластины свинцового аккумулятора имеет пористую структуру (это увеличивает активную поверхность и емкость свинцового аккумулятора).

К открытой части активной поверхности очень легко подводить (и отводить) вещества, участвующие в реакции, а перенос свежего электролита вглубь пористой пластины затруднен — по мере удаления от поверхности, поры становятся все уже и глубже.

Поэтому в начале зарядки свинцового аккумулятора, электрохимическая реакция происходит главным образом на открытой поверхности пластин и только потом распространяется вглубь активной массы.

В начале зарядки, аккумулятор способен безопасно воспринять довольно большой зарядный ток — ведь к поверхности пластины можно быстро доставить сколько угодно свежего электролита. Но по мере того, как процесс зарядки перемещается вглубь активной масыы, зарядный ток нужно уменьшать, иначе вместо электрохимической реакции зарядки аккумулятора будет происходить разложение электролита (аккумулятор «закипит»). Свинцовый аккумулятор может быть и не выйдет из строя сразу, но его старение ускорится и он раньше потеряет емкость.

Соблюдение общего ограничения тока зарядного устройства (2.16 А для аккумулятора CSB GP 1272 (GP1272), установленного производителем, позволяет безопасно заряжать аккумулятор, независимо от глубины и характера его разряда и температуры (в определенных производителем пределах). Тем не менее, в начале зарядки свинцового аккумулятора, допустим и больший зарядный ток.

Вернемся теперь к параллельно соединенным свинцовым аккумуляторам. Понятно, что, если суммарный ток через параллельную аккумуляторную батарею не превышает ограничений, установленных для каждого аккумулятора батареи, то никакой опасности для аккумуляторов нет.

Понятно также, что, если мы соединим параллельно 5 аккумуляторов CSB GP 1272 (GP1272) из одной партии и будем их заряжать током 5 х 2 = 10 А, то опять-таки нет никакой опасности — аккумуляторы абсолютно одинаковые, токи разделятся поровну, и ток через каждый аккумулятор не превысит установленного производителем ограничения.

Но если мы соединим в параллельную батарею разные аккумуляторы, и суммарный разрядный или зарядный ток заметно превысит ограничения, установленные для отдельного свинцового аккумулятора, то через какой-то аккумулятор может потечь ток, превышающий возможности этого аккумулятора. Посмотрим теперь, как распределяются токи между свинцовыми аккумуляторами параллельной аккумуляторной батареи, составленной из аккумуляторов разных типов.

В начале зарядки или разряда параллельной аккумуляторной батареи, токи (зарядный или разрядный) разделятся между аккумуляторами обратно пропорционально их внутреннему сопротивлению.

Если свинцовые аккумуляторы сильно различаются по емкости, конструкции, составу пластин или технологии изготовления, то внутреннее сопротивление аккумуляторов может оказаться не совсем обратно пропорциональным их емкости.

В этом случае, и токи в начале разряда или зарядки свинцовых аккумуляторов могут распределиться не совсем пропорционально их емкости.

Соединенные параллельно свинцовые аккумуляторы имеют одинаковое напряжение на своих клеммах. Поэтому их разряд или зарядка происходят синхронно: невозможна ситуация, когда один из параллельно соединенных аккумуляторов разрядился (или зарядился) наполовину, а другой — полностью.

Поэтому, через некоторое время после начала разряда или зарядки, токи начинают перераспределяться между аккумуляторами так, чтобы компенсировать возможно имевшую в начале процесса место диспропорцию.

В конечном счете (или, вернее сказать, в среднем), токи распределяются между аккумуляторами пропорционально их реальной емкости, даже если внутреннее сопротивление аккумуляторов не совсем обратно пропорционально емкости аккумуляторов.

Следовательно, потенциальную опасность представляет начало разряда или зарядки свинцовых аккумуляторов, соединенных параллельно.

Но в начале разряда или зарядки, как мы уже выяснили, свинцовые аккумуляторы могут без вреда для себя разряжаться или заряжаться токами, которые превышают установленные производителем ограничения.

Поэтому можно было бы сказать, что параллельное соединение разнородных аккумуляторов не представляет опасности.

Но мы будем осторожнее, и скажем, что такой опасности почти нет — но при параллельном соединении свинцовых аккумуляторов разной емкости или изготовленных по разным технологиям нужно избегать ситуаций, когда зарядный или разрядный ток аккумуляторной батареи в несколько раз превышает установленное производителем предельное значение зарядного или разрядного тока одного аккумулятора.

Схемы соединения аккумуляторных батарей для электропитания

66008 Опубликовано 26 апреля 2017

Аккумуляторные батареи (АКБ) в зависимости от их назначения собираются из определенного количества аккумулирующих энергию элементов. Схема соединения

аккумуляторных батарей при этом зависит от того, какая преследуется цель. Это может быть увеличение емкости батареи, повышение напряжения либо сочетание обеих этих параметрических характеристик устройства.

В основном батареи собирают последовательно-параллельно, а сами сборки служат для промежуточного или резервного хранения электроэнергии

Известны и повсеместно применяются 3 варианта соединения отдельных аккумуляторов в батарею: последовательное, параллельное и смешанное или комбинированное.

Повышение рабочего напряжения батареи

Аккумуляторы электрической энергии имеют различное рабочее напряжение. Варьироваться оно может в очень широком диапазоне: от 0,5 до 48 Вольт.

В то же время, для обеспечения автономного питания приборов, запуска двигателей внутреннего сгорания, питания электроприводной техники требуется другой диапазон напряжений.

Повысить рабочее напряжение автономного источника тока можно последовательным соединением нескольких аккумуляторов в батарею.

Схемы и формулы при последовательном соединении батарей

При последовательном соединении коммутируются разнополярные клеммы аккумулятора. Плюсовой вывод предыдущего устройства соединяется с минусовым выводом последующего. Суммарное рабочее напряжение батареи при таком способе будет равно сумме рабочих напряжений коммутированных источников тока.

Это значит, что для получения АКБ с рабочим напряжением 12 В необходимо последовательно соединить 4 трехвольтных источника либо 10 аккумуляторов с рабочим напряжением 1,2 В.

Емкость скомплектованной последовательным соединением источников не изменяется и остается равной емкости каждого включенного в схему аккумулятора.

Очевидным и наглядным примером такого способа комплектации батареи могут служить автомобильные АКБ. В них отдельные источники, именуемые банками, объединены в общем корпусе и последовательно соединены свинцовыми шинами.

Выбор в качестве материала для соединительных шин свинца объясняется просто: аккумуляторные электроды также изготавливаются из свинца. Шины, интегрированные в коммуникационную схему, соединяются с электродами на молекулярном уровне, а не механически.

Это позволят избежать возникновения электрохимических коррозионных процессов.

Увеличение емкости источника питания

Нередки технические условия, когда от источника питания при сохранении рабочего напряжения требуется повышенная емкость. В таких случаях для комплектования батареи применяется параллельное соединение аккумуляторов. Такой способ коммутирования позволяет в разы, а в особо ответственных случаях – в десятки раз увеличить суммарную емкость питающего устройства.

Параллельное соединение батарей с формулами

Параллельное соединение осуществляется путем коммутации однополюсных выводов источников тока: плюсовой и минусовой выводы предыдущего аккумулятора соединяются с одноименными выводами последующего.

Суммарная электрическая емкость скомпонованной таким способом коммутации батареи будет равна сумме электрических емкостей входящих в схему отдельных источников.

Это значит, что при соединении трех аккумуляторных батарей с номинальной емкостью 60 А*ч получится устройство, имеющее электрическую емкость 180 А*ч.

В качестве примера подключения аккумуляторных батарей параллельной коммутацией можно привести источники бесперебойного либо аварийного питания приборов и аппаратуры.

Параллельно подключаются АКБ большегрузных автомобилей и тяжелой специальной техники с большим объемом двигателя.

Большой распространение параллельная коммутация получила на флоте: здесь параллельно соединенные устройства питания применяются для запуска вспомогательных дизелей, работы освещения, систем связи и жизнеобеспечения в аварийных ситуациях.

Повышение напряжения с одновременным увеличением емкости АКБ

Ярким примером смешанного или комбинированного соединения аккумуляторов в комплекс с необходимыми показателями рабочего напряжения и электрической емкости служат источники питания машин с электрическим приводом.

ВАЖНО! При увеличении емкости аккумуляторных батарей увеличиваются и токи. Правильно подбирайте сечения проводов! Используйте негорючие или самозатухающие провода.

  • Тяговые аккумуляторные батареи для обеспечения работы приводных и управляющих двигателей электроприводных машин и механизмов комплектуются именно по такой схеме. Достаточно подробно о способах соединения АКБ изложено в этом видео:
  • Комбинированное соединение подразумевает использование в коммутационной схеме одновременно последовательного и параллельного способов подключения. Возможны два варианта:

1. Сначала методом последовательного соединения источников подготавливаются батареи с требуемым рабочим напряжением. На втором этапе параллельно коммутируется необходимое количество подготовленных сборок для обеспечения потребной электрической емкости.

2. Во втором варианте параллельной коммутацией предварительно набираются батареи с требуемой емкостью. После этого устройства соединяются последовательно до достижения необходимого рабочего напряжения.

Схема последовательно-параллельного соединения аккумуляторных батарей наиболее часто применяемая, так как современные батареи для автономного энергообеспечения домов имеют номинальное напряжение 3,4 В

Комплектование АКБ комбинированным способом позволяет формировать источники питания, напряжение и электрическая емкость которых ограничивается только занимаемым ими рабочим пространством.

Особенности комплектования батарей аккумуляторов

Все три способа соединения отдельных источников питания в комплекс подчиняются не сложным, но важным для эффективной и долгосрочной эксплуатации правилам.

Последовательно-параллельная схема подключения на примере литий-ионных батарей

Пролонгированная работа батареи и ее экономическая целесообразность может быть обеспечена при соблюдении следующих правил:

  • электрическая емкость включаемых в комплекс источников не должна отличаться на величину, превышающую 5% от номинальной;
  • рабочие напряжения отдельных элементов батареи должны находиться в разумном соотношении;
  • эксплуатационное техническое состояние включаемых в комплекс автономного питания элементов должно быть максимально сбалансированным;
  • сечение коммутационных линий и шин должно быть рассчитано с учетом токовых нагрузок как внутри батареи, так и во внешних электрических цепях.

Ассортимент предлагаемых рынком источников питания при грамотном подходе позволяет создавать аккумуляторные батареи со всеми необходимыми для надежного использования характеристиками.

Последовательная и параллельная конфигурация соединения аккумулятров

Категория: Поддержка по аккумуляторным батареям Опубликовано 10.04.

2016 14:30
Abramova Olesya

Электрические батареи могут достигать необходимого рабочего напряжения путем последовательного подсоединения нескольких элементов — каждый элемент добавляет свой показатель напряжения к общему напряжению всей системы.

Параллельное же соединение обеспечит более высокий показатель емкости и силы тока — суммарная емкость такой системы будет равна сумме емкостей всех подключенных элементов, сила тока также будет равняться сумме значений всех элементов.

Некоторые системы могут состоять из нескольких параллельных или последовательных соединений.

Аккумуляторы для портативных компьютеров обычно состоят из четырех 3,6 В литий-ионных элементов, соединенных последовательно для обеспечения напряжения 14,4 В и двух соединенных параллельно для увеличения емкости от 2400 мАч до 4800 мАч.

Такая конфигурация называется 4S2P, что соответственно и расшифровывается как 4 Serial 2 Parallel (что в переводе с английского — 4 последовательных и 2 параллельных соединения). Между такими элементами в аккумуляторе обязательно присутствует изоляционный материал, во избежание короткого замыкания.

Элементы большинства электрохимических систем способны к последовательному и параллельному соединению.

Важно использовать элементы одного типа, с одинаковым напряжением и емкостью, и никогда не формировать соединение из элементов разных марок и размеров, так как более слабый элемент вызовет дисбаланс всей системы.

Это особенно важно при последовательном соединении, так как вся система будет зависеть от самого слабого элемента. В этом случае уместна аналогия с цепью, где слабое звено нивелирует прочность всей цепи (рисунок 1).

Рисунок 1: Сравнение последовательного соединения электрических батарей с цепью. Каждое звено этой цепи можно сравнить с электрохимическим элементом питания в последовательно соединенной системе, слабость звена или элемента приведет к коллапсу всей системы.

Слабый элемент может выявиться не сразу, при щадящих режимах работы нагрузка на него не велика, однако при возрастании нагрузки он исчерпывает свой ресурс очень быстро.

При зарядке такой элемент полностью заряжается быстрее других, следовательно, остальное время на него действует излишняя зарядка, что приводит к вредному перезаряду. При разряде же он выходит из строя первым, заставляя остальные элементы питать нагрузку, уже превышающую номинал всей системы.

Элементы в аккумуляторных системах обязательно должны иметь одинаковые характеристики, особенно в условиях высоких нагрузок.

1. Области применения одиночных элементов питания

Система из одного электрохимического элемента питания является простейшим примером электрической батареи. Такая система не требует предварительного согласования, а защитная схема, в случае если это литий-ионная технология, крайне проста.

Типичными примерами таких систем являются 3,60 В литий-ионные аккумуляторы для мобильных телефонов и планшетов. Другим примером использования одноэлементных батарей являются настенные часы, где чаще всего используется 1,5 В щелочная батарейка.

Номинальное напряжение элемента на основе никеля составляет 1,2 В, щелочной — 1,5 В, серебряно-оксидной — 1,6 В, а свинцово-кислотной — 2,0 В. Первичные литиевые элементы обеспечивают напряжение в диапазоне от 3,0 до 3,9 В, в их числе литий-ионные — 3,6 В, литий-фосфатные — 3,2 В, литий-титанатные — 2,4 В.

Литий-марганцевая и другие электрохимические системы на основе лития часто могут обеспечить напряжение элемента на уровне 3,7 В и выше.

Это связано не столько с электрохимическими аспектами, сколько является следствием оптимизации под более высокий показатель количества ватт-часов путем уменьшения внутреннего сопротивления элемента.

Но в основном, элементы этой электрохимической системы производятся со стандартным показателем напряжения в 3,6 В.

2. Последовательное соединение

Портативное оборудование, требующее высоких значений напряжения, использует в качестве источника питания два или больше электрических элемента, соединенных последовательно. На рисунке 2 показан батарейный блок из четырех 1,2 В никелевых элементов, соединенных последовательно.

Такой блок создан для получения напряжения 4,8 В и известен как 4S. Для сравнения, свинцово-кислотный аккумулятор с шестью 2 В элементами (“банками”) будет генерировать 12 В, а четыре 3,6 В литий-ионных элемента дадут 14,4 В.

(BU-303: Номинальное напряжение аккумулятора)

Рисунок 2: Последовательное соединение четырех элементов (4S). Последовательное присоединение элемента увеличит напряжение, сила тока останется неизменной.

Если вам нужно особое значение напряжения, например, 9,5 вольт, последовательно подключите пять свинцово-кислотных, восемь никель-металл-гидридных или никель-кадмиевых, или три литий-ионных элемента.

Конечное напряжение батарейного блока может быть немного большим, чем номинальное устройства, приложение 12 В вместо 9,5 В позволит его эксплуатировать.

Большинство устройств, рассчитанных на питание электрическими батареями, могут выдерживать некоторое превышение номинального напряжения, но не следует этим злоупотреблять, слишком большое превышение напряжения может повредить устройство.

Использование электрической батареи с высоким напряжением позволяет уменьшить потери и увеличить КПД. Беспроводные инструменты работают на 12 В и 18 В аккумуляторах, более высококлассные используют даже 24 В и 36 В. Большинство электровелосипедов комплектуются 36 В литий-ионным аккумулятором, некоторые даже идут с 48 В.

Существуют инициативы в автомобильной промышленности по поводу увеличения напряжения стартерного аккумулятора с 12 В (14В) до 36 В (42 В), путем размещения в аккумуляторе 18 свинцово-кислотных элементов (“банок”).

Но этой инициативе препятствует необходимость изменения свойств электрических компонентов в автомобиле и повышенный риск возникновения искр в механических переключателях.

Некоторые гибридные автомобили работают на 48 В литий-ионном аккумуляторе и в дополнение к этому используют преобразователь напряжения для получения стандартных 12 вольт для электрической системы автомобиля.

Также возможен вариант с отдельной установкой стандартного стартерного аккумулятора для запуска двигателя внутреннего сгорания. Первые гибридные автомобили использовали 148 В аккумуляторы, электромобили имеют аккумуляторную систему напряжением 450-500 В.

Такая система состоит из более чем 100 литий-ионных элементов, соединенных последовательно.

Аккумуляторные системы высокого напряжения требуют тщательного согласования элементов, особенно при подключении к сильной нагрузке или при работе в низкотемпературных условиях.

Так как в таких последовательно соединенных системах выход из строя всего лишь одного элемента приводит к коллапсу всей системы, существуют специальная система защиты, которая выявляет неисправный элемент и позволяет “обходить” его.

Такой метод конечно же уменьшает общее напряжение системы, но как временное решение весьма практичен, и главное позволяет всей системе сохранить работоспособность.

Согласование элементов становится проблемой при необходимости замены неисправного элемента в устаревшей аккумуляторной системе.

Более современные элементы, как правило, имеют более высокую емкость, в результате чего в такой системе может возникнуть дисбаланс.

Сварная конструкция аккумуляторной системы также усложняет ремонт, и в связи с этим чаще всего вся аккумуляторная система меняется полностью.

В электромобилях, где цена аккумуляторной системы составляет весомую часть от стоимости всего транспортного средства, полная замена этой системы видится абсурдной. Поэтому производители делят аккумуляторную систему на модули, каждый из которых состоит из определенного числа элементов.

И если такой элемент выйдет из строя, замена будет необходима не всей системе, а определенному модулю. Возникновение трудностей возможно в случае, если доступны только новые модули, укомплектованные более современными элементами.

(Смотрите: Как восстановить аккумуляторную систему).

На рисунке 3 показан батарейный блок, в котором элемент-3 производит только 0,6 В вместо 1,20 В. С пониженным общим напряжением этот батарейный блок разрядится раньше обычного. Напряжение будет проседать, и в конце концов питаемое устройство отключится.

Рисунок 3: Последовательное соединение с неисправным элементом. Неисправный элемент-3 понижает общее напряжение и приводит к преждевременному прекращению работы подключенного устройства.

Аккумуляторные системы в беспилотных летательных аппаратах или других устройствах, требующих высокие токи нагрузки, часто демонстрируют неожиданное падение напряжения, если один элемент в системе является слабым.

Пиковые нагрузки увеличивают стресс на аккумуляторную систему, вызывая коллапс еще быстрее.

Измерение напряжения сразу после зарядки не поможет для идентификации слабого элемента — его напряжение без нагрузки будет относительно нормальным; для решения этой проблемы существуют специальные анализаторы электрических батарей.

3. Параллельное соединение

Если для устройства требуется высокое значение силы тока и удовлетворить это требование одним элементом невозможно, следует использовать параллельное соединение элементов.

Большинство электрохимических систем позволяют использование параллельной конфигурации подсоединения, но с некоторыми побочными эффектами. На рисунке 4 показаны четыре параллельно соединенных элемента, такая конфигурация еще называется 4P (4 Parallel).

Напряжение этой системы остается 1,20 В, но сила тока и емкость увеличены в четыре раза.

Рисунок 4: Параллельное соединение четырех электрических элементов. Благодаря параллельной конфигурации подсоединения сила тока и емкость увеличиваются, напряжение же остается неизменным.

Выход из строя единичного элемента при параллельном соединении не столь критично, как при последовательном. Такая проблема конечно уменьшит нагрузочные характеристики всей системы, но хотя бы не выведет ее из строя.

Можно провести аналогию с цилиндрами двигателя внутреннего сгорания — автомобиль сможет ехать и на трех цилиндрах, даже если у него их всего четыре.

С другой стороны, при наличии неисправного элемента в параллельных системах существует больший риск возникновения короткого замыкания, так как такой элемент как бы высасывает энергию из других, в результате чего возрастает риск возгорания. Большинство таких коротких замыканий довольно умеренны и проявляются в виде повышенного саморазряда.

Причиной короткого замыкания может быть поляризация или возникновение дендритов в элементе. Большие аккумуляторные системы часто снабжены предохранителем, который отключает неисправный элемент из параллельной цепи, если он был закорочен. На рисунке 5 показана параллельная конфигурация с одним неисправным элементом.

Рисунок 5: Параллельное соединение с одним неисправным элементом. Слабый элемент не повлияет на напряжение всей системы, но уменьшит общее время работы за счет уменьшения емкости системы. Закороченный элемент может вызвать перегрев и стать причиной возникновения пожара.

4. Последовательно-параллельное соединение

Последовательно-параллельная конфигурация подсоединения элементов, показанная на рисунке 6, предоставляет большую гибкость конструкции, с ее помощью можно создать систему с желаемыми значениями напряжения и тока, используя стандартные элементы.

Суммарная мощность будет произведением значений напряжения и силы тока, например, четыре 1,2 В элемента емкостью 1000 мАч производят 4,8 Вт мощности. Четыре элемента типоразмера 18650 емкостью 3000 мАч каждый могут быть соединены последовательно-параллельно для достижения 7,2 В и 12 Вт.

Использование тонких элементов позволит сконструировать гибкую аккумуляторную систему, но ей будет необходима система защиты.

Рисунок 6: Последовательно-параллельное соединение четырех элементов (2S2P). Такая конфигурация обеспечивает максимальную гибкость конструкции. Параллельные элементы помогают в управлении напряжением.

Литий-ионные элементы отлично подходят для последовательно-параллельных конфигураций, но необходим мониторинг каждого элемента — для соответствия значений напряжения и силы тока.

Такой мониторинг реализуется аппаратно — путем создания электронного устройства, стандартный образец которого может контролировать систему из 13 литий-ионных элементов.

Для больших аккумуляторных систем создаются специальные схемы, например, как в электромобиле Tesla, где аккумуляторная система состоит из 7000 элементов типоразмера 18650, суммарная мощность которых достигает 90 кВт/ч.

5. Рекомендации по использованию первичных батарей

  • Держите контакты элементов в чистоте. Конфигурация с четырьмя элементами имеет восемь контактов и каждый добавляет сопротивление.
  • Никогда не смешивайте разнотипные элементы, если вышел из строя один, и ему нет аналогичной замены, то необходимо заменить все. Общая производительность настолько хороша, насколько этому соответствует самый слабый элемент.
  • Соблюдайте полярность. Неправильно размещенный элемент уменьшает общее напряжение системы.
  • Для предотвращения утечки электролита и коррозии, извлекайте элементы из устройства, когда оно не используется. Особенно это касается угольно-цинковых элементов.
  • Не храните электрические батареи в металлических коробках. Элементы следует по отдельности помещать в полиэтиленовые пакеты, во избежание короткого замыкания. Не стоит носить батареи в карманах.
  • Держите батареи подальше от детей. Помимо риска попадания в дыхательные пути, что может вызвать удушение, ток электрохимической батареи при попадании в желудочно-кишечный тракт может вызвать язву, а при разрыве оболочки — отравление. (Смотрите: Влияние электрохимических батарей на здоровье человека).
  • Не заряжайте первичные (неперезаряжаемые) электрические батареи, так как накопление водорода может привести к взрыву. Экспериментировать с зарядкой можно лишь контролируя этот процесс.

6. Рекомендации по использованию вторичных батарей

  • Соблюдайте полярность при зарядке вторичных элементов. Несоблюдение может привести к короткому замыканию.
  • Извлекайте полностью заряженные элементы из зарядного устройства. Обычное зарядное устройство не имеет встроенной системы индикации заряда, следовательно, аккумулятор может перегреться.
  • Производите зарядку при комнатной температуре.

Последнее обновление 2016-02-29

Как правильно соединять аккумуляторы последовательно и параллельно

Коротко разберём распространённое мнение – «при последовательном соединении двух аккумуляторов (АКБ), их ёмкость не меняется, она остаётся такой же, как у одного аккумулятора, поэтому время автономной работы при таком соединении будет меньше».

Но как же закон сохранения энергии? Да, при последовательном соединении аккумуляторов, формально ёмкость считается как у одного аккумулятора, а напряжение удваивается (или утраивается, учетверяется и т.д., в зависимости от количества последовательно соединённых АКБ). При параллельном же соединении АКБ – ёмкость удваивается (утраивается и т.д.), а напряжение остаётся тем же.

Варианты соединения аккумуляторов

Противоречия здесь нет. Когда люди говорят об аккумуляторе (обычно об автомобильном), то сообщают его ёмкость, но не уточняют вольтаж. Просто все привыкли, что аккумуляторы имеют напряжение 12В, и подразумевается, что упоминать об этом глупо. Но в вообще-то, ёмкость без указания вольтажа не имеет физического смысла.

Существуют аккумуляторы самой разной ёмкости и на разное напряжение – на 2В, и на 6В, и на 12В, и, редко, на 24В. Кроме того, любые одинаковые АКБ можно соединять последовательно, параллельно, или последовательно-параллельно одновременно. Но стоит только указать после величины ёмкости её вольтаж, как всё встаёт на свои места.

Ведь энергоёмкость в любом случае, как бы мы не соединяли аккумуляторы, останется прежней.

Итак, если, например, два АКБ по 200Ач 12В (например, Аккумулятор Delta GEL 12-200), соединить последовательно, то получится энергоёмкость 200Ач 24В. А если эти же два АКБ соединить параллельно, то получится – 400Ач 12В.

Проверим:

200Ач * 24В = 480Ач * В = 400Ач * 12В

Но для расчётов токов (обычно, номинальным током заряда считается ток 0,1С, где С –величина равная ёмкости аккумулятора), С берут именно по цифре слева, т.е.

в нашем примере, при последовательном соединении С = 200, а при параллельном С = 400. Легко заметить, что и мощность зарядного устройства в обоих случаях будет одинаковой.

Для первого случая, зарядный ток будет 0,1*200 = 20А, но при напряжении 24В. Т.е. зарядная мощность, Р = 20А 24В = 480Вт

Для второго случая, зарядный ток будет 0,1*400 = 40А, но при напряжении 12В. Т.е. зарядная мощность, Р = 40А 12В = 480Вт

Если рассматривать одиночные аккумуляторы, то, например, один аккумулятор 600Ач 2В (см. раздел Аккумуляторные батареи FAAM) по своей энергоёмкости соответствует одному аккумулятору 100Ач 12В (например, Аккумулятор DELTA GEL 12-100).

Чтобы получить из этих аккумуляторов (600Ач 2В) большую аккумуляторную батарею, например, на 24В, нужно соединить последовательно 12 шт таких АКБ с помощью перемычек (Перемычка для аккумуляторов 250 мм). Общая итоговая ёмкость получится 600Ач 24В.

Эта энергоёмкость, если сравнивать её с 12-и вольтовыми АКБ по 200Ач (а такие применяются в грузовиках), соответствует 6-и штукам (три соединённых параллельно цепочки аккумуляторов, где каждая цепочка состоит из двух, соединённых последовательно, аккумуляторов):

(600Ач*2В)*12 = 600Ач*24В = (200Ач*24В) + (200Ач 24В) + (200Ач 24В)

Обратите внимание – на всех рисунках специально показано, что если минус инвертора подключён к условно первому АКБ, то плюс – к последнему.

Так его следует подключать, чтобы компенсировать сопротивление даже толстых медных проводов, соединяющих аккумуляторы.

Иначе, из-за их сопротивления, при огромных токах, «дальний» от выводов инвертора аккумулятор, окажется и не «дозаряжаем», и не «доразряжаем».

Итак, ёмкостью (читайте «энергоёмкостью») аккумулятора (объединённой группы аккумуляторов), называется количество электричества (т.е. мощности, равной току умноженного на НАПРЯЖЕНИЕ), которое аккумулятор отдает при разряде до наименьшего допустимого напряжения.

Чтобы аккумулятор служил долго, его нельзя разряжать более чем на 80%. Для 12-и вольтового АКБ, это соответствует напряжению на его клеммах примерно 11,5В. Но тут важно каким током относительно емкости АКБ мы его разряжаем.

Чем больше сила разрядного тока, тем ниже напряжение, до которого может разряжаться аккумулятор.

Это потому что при быстром разряде большими токами относительно маленькой ёмкости аккумулятора электролит не успевает перемешиваться, и разряженный слой скапливается вокруг пластин. Напряжение АКБ падает и нагрузку снимают.

Однако, спустя несколько десятков минут, электролит перемешивается и ёмкость (и, соответственно, напряжение аккумулятора) повышается.

Если же разряжать малым током относительно ёмкости, то можно вычерпать всю энергию, что плохо для долговечности АКБ. Всегда надо оставлять не менее 20% ёмкости. Подробнее об этом далее.

Отметим, что во время заряда, зарядное устройство постепенно повышает напряжение на АКБ, а затем, после снятия заряда, напряжение уменьшается, возвращаясь к спокойному состоянию (так, на 12-и вольтовом аккумуляторе, в зависимости от типа АКБ, оно обычно растёт до 14,1 – 14,5 В, а после снятия заряда, даже без нагрузки, в течении получаса возвращается к 12,5 – 12,8 В).

Схемы подключения аккумуляторов

У любого аккумулятора выделяют следующие основные характеристики:

  • Номинальное напряжение (В ― Вольт)
  • Емкость (Ач – Ампер*час)
  • Максимальное количество запасенной энергии = Номинальное напряжение умноженное на Емкость (кВт*ч – киловатт*час)

Существует три возможных варианта соединения аккумуляторов между собой – последовательно, параллельно или последовательно-параллельно.   В зависимости от схемы соединения аккумуляторов в Банк Аккумуляторов может меняться Номинальное напряжение или Емкость системы, при этом максимальное количество запасенной энергии всех аккумуляторов останется неизменным.

Рассмотрим каждый из возможных вариантов соединения аккумуляторов в Банк Аккумуляторов:

1)  Последовательное соединение аккумуляторов
  • При таком соединении минусовая клемма первого аккумулятора соединяется с плюсом второго, минус второго с плюсом третьего и так далее.
  • В случае такого соединения Емкость системы остается неизменной, но напряжение системы является суммой всех соединенных последовательно аккумуляторов.
  • Например:

Имеем 4 аккумулятора емкостью 200Ач и номинальным напряжением 12В. Подключив их последовательно, мы получим номинальное напряжение равное 12В*4=48В и емкость равную 200Ач.

При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 200Ач*48В=9600Вт*ч=9,6кВт*ч.

Такая схема включения используется для поднятия напряжения системы.

2) Параллельное соединение аккумуляторов

При таком соединении плюсовые клеммы аккумуляторов поочередно соединяются между собой. Минусовые клеммы также соединяются поочередно между собой.

В случае такого соединения напряжение системы остается неизменным, при этом емкость Банка Аккумуляторов является суммой всех соединенных параллельное аккумуляторов.

Например:

Имеем те же 4 аккумулятора емкостью 200Ач и номинальным напряжением 12В. Подключив их параллельно, мы получим номинальное напряжение равное 12В, а емкость при этом будет равна 4*200Ач=800Ач.

При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 800Ач*12В=9600Вт*ч=9,6кВт*ч.

 Такая схема включения используется для увеличения емкости (тока заряда) системы.

3) Последовательно-параллельное соединение аккумуляторов
  1. Такое соединение является самым востребованным при сборке Банков Аккумуляторов для различных целей.
  2. При таком соединении цепочки последовательно соединенных аккумуляторов соединяются параллельно.
  3. Например:

Снова обратимся к нашим 4 аккумуляторам емкостью 200 Ач и номинальным напряжением 12В.

Соединив по 2 аккумулятора последовательно и затем объединим их параллельно, мы получим номинальное напряжение равное 12В*2=24В и емкость равную 200Ач*2=400Ач.

При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 400Ач*24В=9600Вт*ч=9,6кВт*ч.

Примечание: обратите внимание, что максимальное количество запасенной энергии ― не зависит от схемы соединения аккумуляторов! 

Различные схемы подключения аккумуляторов нужны для оптимизации работы комплекса оборудования используемого вместе с аккумуляторами. Выбирая различные схемы соединения, мы устанавливаем необходимые токи и напряжения для всей системы.

Источник: oporasolar.ru

Эта статья прочитана 12146 раз(а)!

Продолжить чтение

Особенности эксплуатации аккумуляторов при параллельном и последовательном соединении

 

Если необходимо получить напряжение блока аккумуляторов 24 Вольта, применяется последовательное соединение. Для последовательного соединения обязательно нужно использовать аккумуляторные батареи одинаковой ёмкости, одинаковой модели и желательно одной даты выпуска (с одинаковым датакодом).

При последовательном соединении необходимо раз в полгода проверять напряжение на каждой АКБ. Если напряжения равны или отличаются менее чем на 0,1 Вольта, например 12,80 и 12,86 Вольта, то это значит, что аккумуляторы сбалансированы и можно продолжать их дальнейшую эксплуатацию. Однако, даже в этом случае необходимо не реже одного раза в полгода проводить выравнивающий заряд для выравнивания напряжений на двухвольтовых банках аккумуляторов.

Со временем может произойти разбалансировка состояний заряда, т.е. появится значительная разница между напряжениями на каждой АКБ в последовательной цепи. При разбалансировке более 0,1 Вольта рекомендуется проводить балансировку, т.е. выравнивание уровня заряда. При разбалансировке более 0,2 Вольта — балансировка обязательна.

Проведение процедуры балансировки предотвратит перезаряд одного из аккумуляторов и недозаряд второго, что в итоге положительно скажется на их сроке службы.

Самый простой способ балансировки — проведение цикла выравнивающего заряда при повышенном напряжении заряда в течение 24 часов. Напряжение выравнивающего заряда для всех серий АКБ Delta составляет 2,4 Вольта на двухвольтовую банку или 14,4 Вольта для АКБ на 12 Вольт или 28,8 Вольт для АКБ на 24 Вольта. Напряжение выравнивающего заряда для других марок АКБ уточняйте у производителя.

Если выравнивающий заряд не помогает, то отбалансировать АКБ можно, например, при помощи зарядного устройства от сети 220 Вольт, проведя выравнивающий заряд обеих АКБ по отдельности. Если при повторной проверке разбалансировка снова будет более 0,1 Вольта, то нужно повторить подзаряд только АКБ с меньшим напряжением. Для автоматической балансировки существуют специальные устройства — балансиры.

Если необходимо увеличить емкость аккумуляторов 12 Вольт, применяется параллельное соединение. Для параллельного соединения рекомендуется использовать аккумуляторные батареи одинаковой ёмкости и одинаковой модели. Однако, возможно использование и разных моделей и даже разных емкостей, но при этом зарядные токи будут распределяться неравномерно, что может привести к сокращению срока службы АКБ.

При параллельном соединении важно подключать нагрузку «по диагонали», как это видно на рисунке выше. Такое подключение совместно с применением перемычек одинаковой длины позволит сбалансировать зарядные и разрядные токи каждого аккумулятора, что приведет к продлению срока службы АКБ.

Если нужно собрать батарею большой ёмкости на напряжение 24 Вольта, то применяется последовательно-параллельное соединение аккумуляторов. При этом нужно принять во внимание и рекомендации по последовательному соединению и по параллельному соединению АКБ.

 

Смотрите также:

 

схема подключения, для увеличения ёмкости, чтобы увеличить напряжение

Автор Акум Эксперт На чтение 7 мин Просмотров 1.8к. Опубликовано


Как правильно соединить АКБ? Какие при этом могут возникнуть проблемы? Чем различаются последовательное и параллельное подключения аккумуляторов? Ответы на эти вопросы нужно знать, чтобы не «убить» новый накопитель.

Зачем соединять аккумуляторы в батареи

Для питания некоторых устройств нужны такие значения напряжения и тока, которые нельзя обеспечить имеющимися аккумуляторами. Чтобы обеспечить нужные условия, несколько накопителей объединяют.

При параллельном подключении нескольких АКБ общая емкость увеличивается. И такую конструкцию можно использовать для питания мощных устройств, которым требуются большие значения тока. Это можно использовать, когда есть два накопителя небольшой ёмкости, а нужно запитать мощное устройство или продлить его время работы от аккумуляторов. Тогда, чтобы не покупать накопители большой ёмкости, можно использовать сборку из двух имеющихся накопителей.

Параллельное включение

Чтобы повысить напряжение, аккумуляторы включают последовательно. Например, два АКБ напряжением 12 В дадут 24 В.

Последовательное включение

Чтобы одновременно увеличить разность потенциалов и ёмкость, нужно использовать комбинированное подключение.

Комбинированное подключение

Особенности и схемы последовательного и параллельного соединения

Каждая из схем имеет свои особенности, которые нужно учитывать, чтобы АКБ не вышли из строя.

Параллельное соединение — для увеличения ёмкости

При параллельном подключении аккумуляторов ёмкость складывается. Например, если подключить 5 накопителей на 1200 мАч, то получим 5 х 1200 = 6000 мАч. При параллельном соединении напряжение, выдаваемое этой конструкцией, будет таким же, как и у одного элемента конструкции.

Увеличение емкости

В параллельную сборку можно объединять аккумуляторы только с одинаковым напряжением. Если этот показатель будет отличаться, то один из АКБ будет отдавать больший ток, и возникнет перегрузка. При условии равенства потенциалов можно объединять параллельно накопители разной ёмкости. Но если это равенство будет нарушено, пострадает накопитель меньшей емкости. Если напряжение на нем будет больше, чем на остальных, то через него будет протекать большой ток. Если меньше, то он будет заряжаться в режиме перегрузки.

Параллельное подключение

Последовательное соединение — для увеличения напряжения

При последовательном соединении ёмкость сборки такая же, как и у одного аккумулятора, входящего в цепочку, а напряжение равно суммарной разности потенциалов всех элементов конструкции.

Увеличение разности потенциалов

Объединять между собой можно только накопители одинаковой ёмкости. Давайте разберемся, почему.

При последовательном соединении сила тока на всех элементах цепи одинаковая, а разность потенциалов может различаться. Внутреннее сопротивление накопителя зависит от его ёмкости. При увеличении электрической вместительности сопротивление уменьшается. Поэтому при использовании АКБ разной емкости во время зарядки напряжение на одном накопителе будет выше допустимого, а при разрядке – ниже.

Давайте рассмотрим такой случай: есть конструкция из 10 элементов разной емкости, 5 из которых рассчитаны на 20 Ач, а один – на 10 Ач. Заряжать их будем током 2 А. Отрегулируем зарядное устройство так, чтобы оно отключалось при разности потенциалов 138 В (по 13,8 В на одну батарею).

При зарядке АКБ небольшой вместительности будет заряжаться быстрее. И когда она будет заряжена, остальные АКБ еще будут пополняться энергией. Произойдет перезаряд и электролит может закипеть, что может привести к возгоранию или взрыву. К тому же это отрицательно скажется на времени жизни аккумулятора.

Заряжать последовательно подключенные батареи можно только в том случае, если они изготовлены по одной технологии, одинаковы по емкости и разряжены до одного уровня.

Последовательное включение

При разряде такой сборки АКБ малой ёмкости разрядится раньше, когда остальные еще будут отдавать энергию. Произойдет глубокий разряд накопителя, это приведет к сульфатация пластин, что станет причиной быстрого износа батареи.

Разрядные характеристики

Смешанная схема

В комбинированной схеме подключения соединение аккумуляторов происходит последовательно и параллельно. Она нужна для того, чтобы одновременно увеличить и емкость, и разность потенциалов.

Подключение накопителей может происходить по такому сценарию:

  • сначала подключаем последовательно столько аккумуляторов, сколько необходимо, чтобы обеспечить требуемую разность потенциалов;
  • потом параллельно подключаем нужное количество сборок для обеспечения требуемой вместимости.
Смешанное включение

Приведем пример. Имеется 4 АКБ, рассчитанные на напряжение 12 В, вместительностью 200 Ач. Сделаем 2 сборки по 2 батареи, подключенные последовательно. После этого объединим эти сборки, включив их параллельно. Таким образом, мы получим конструкцию емкостью 2 * 200 = 400 Ач, напряжением 2 * 12 = 24 В.

Можно ли и как правильно соединять обычные батарейки

Обычные батарейки можно подключать последовательно. Именно такое подключение используется во многих бытовых электрических приборах, например, в пульте дистанционного управления, детских игрушках, радиоприемниках.

Параллельное соединение батареек использовать не рекомендуется, потому что подобрать две батарейки с одинаковым напряжением невозможно. Между выводами возникнут разность потенциалов и паразитный ток, который будет разряжать одну из батареек. При последовательном соединении аккумуляторов одна из батарей будет просто заряжать другую, но батарейки не могут заряжаться.

Видео о подключении батареек:

Практические примеры

Часто любители автозвука подключают вторую батарею для увеличения емкости. При этом обычно одна АКБ находится под капотом, а вторая ставится в багажник. Данное соединение является параллельным, напряжение на выходе такое, как и у одного накопителя, – 12 вольт. При этом вместительность сборки будет равна сумме емкостей батарей, входящих в нее.

Теперь давайте рассмотрим, как соединить два аккумулятора параллельно. Схема такого соединения представлена на рисунке ниже.

Схема для автомобиля

Здесь буквой «Г» обозначен генератор. Своим минусовым выводом он соединен с корпусом автомобиля, а плюсовым – с соответствующим выводом АКБ. В данном примере АКБ1 – это аккумулятор, расположенный под капотом. Отрицательный вывод этой батареи также подключен к металлическому корпусу автомобиля.

Вторая батарея – та, что находится в багажнике, – обозначена на схеме АКБ2. Ее положительная клемма соединена с плюсовым выходом первой батареи. Отрицательный вывод соединяется с корпусом авто.

Для предотвращения короткого замыкания необходимо установить два предохранителя. На схеме они обозначены F1 и F2. Они располагаются на расстоянии 15-20 сантиметров от плюсовой клеммы. Подробно о данном методе соединения можно посмотреть в видео:

Иногда также используется последовательно-параллельное соединение аккумуляторов. Обычно оно применяется для питания бортовой сети грузовых автомобилей. Напряжение бортовой сети у них 24 вольта. К тому же для их питания нужны батареи большой вместительности. Решить одновременно две эти задачи поможет смешанное соединение. Схема такого соединения представлена на рисунке.

Смешанное включение

Существуют особенности последовательного соединения литиевых батарей. Эти АКБ очень чувствительны к перезаряду, а среди аккумуляторов даже из одной партии будут изделия, немного отличающимися по емкости. Поэтому, когда одна батарея уже будет заряжена, остальные еще будут пополняться энергией. И первый зарядившийся АКБ окажется перезаряженным, что плохо скажется на его долговечности. Чтобы избежать этого, используются балансировочные платы, они же BMS.

Использование балансировочной платы

Чаще всего балансир представляет собой ограничитель напряжения. Он сравнивает разность потенциалов на литиевом элементе с эталонным значением. Когда это напряжение превысит пороговое, откроется ключевой транзистор, подключенный параллельно батареи, и большая часть тока будет течь через него, что практически остановит заряд литиевого элемента.

При параллельном подключении никакой балансировки не требуется.


Соединение литий ионных аккумуляторов в батарею

20.10.2018

Защищенные литий-ионные аккумуляторы 18650 имеют специальную плату контроля, которая оберегает их от перезаряда, критического разряда и короткого замыкания. Поэтому алгоритм действий, как заряжать защищенные аккумуляторы 18650, гораздо проще, чем технология подзарядки элементов питания, не оснащенных платой защиты.

Достаточно установить аккумулятор в штатное зарядное устройство (соблюдая полярность) и подключить его к сети. Большинство современных зарядных устройств имеют индикатор, информирующий о статусе зарядки. Обычно в процессе подзарядки горит красная лампочка, а по окончании зарядки – зеленая или синяя. В среднем продолжительность подзарядки варьируется от 2 до 4 часов, причем большая часть емкости восполняется за первый час. После этого ток заряда уменьшается, и напряжение медленно доводится до граничного значения 4,2 В.

Как заряжать аккумулятор 18650 с защитой: важные правила

Чтобы защищенные Li-ion аккумуляторы типоразмера 18650 дольше сохраняли свою работоспособность, нужно:

  1. Заряжать их подходящими зарядными устройствами (в идеале – оригинальными) – источниками постоянного напряжения 5 В, которые отдают зарядный ток величиной от 0,5 до 1,0 емкости элемента питания, автоматически начинают процесс зарядки от 0,05 В и останавливают его при 4,2 В.
  2. Производить зарядку в помещениях при температуре от +15 до +25 °С. После попадания в помещение с мороза аккумулятор нужно вначале выдержать при комнатной температуре и только через несколько часов заряжать.
  3. Хранить с уровнем заряда порядка 40–50%, периодически проверяя его.

Последовательное соединение Li-ion аккумуляторов

При последовательном соединении аккумуляторов к «+» электрической схемы подключается «+» клемма 1-го элемента питания. К «-» клемме 1-го аккумулятора подключается «+» клемма 2-го элемента питания и т.д. В конце к «-» блока подключается «-» клемма последнего элемента питания. Собранная по такой схеме батарея имеет значение емкости, как и у отдельно взятого элемента питания, а напряжение – соответствующее суммарному значению напряжений всех элементов, входящих в АКБ.

Если при составлении батареи использовались элементы с равными значениями напряжения, то общее напряжение АКБ рассчитывается как напряжение одного из элементов, умноженное на общее число ячеек в сборке. Энергия батареи, независимо от формата соединения элементов, соответствует суммарному значению энергий входящих в состав АКБ банок.

Как заряжать последовательно соединенные Li-ion аккумуляторы 18650?

Аккумуляторную батарею из литиевых элементов 18650 нельзя попросту подсоединить к блоку питания. Необходимо выровнять ток заряда на каждой ячейке. Балансировка осуществляется при подзарядке, когда есть возможность без значительных потерь энергии использовать пассивное рассеивание «избыточной» электроэнергии.

Если последовательно соединенные банки запитать через зажимы на концах блока, отслеживать заряд отдельных аккумуляторов не удастся. Звено с чуть большим сопротивлением или более низкой емкостью быстрее наберет максимальное напряжение 4,2 В и, пока напряжение всей батареи достигнет этого значения, успеет достичь превышенного значения 4,3 В или еще более высоких параметров. С каждым последующим циклом заряда емкостные характеристики таких звеньев будут снижаться, а в худшем случае литий-ионный аккумулятор может взорваться из-за перегрева.

Чтобы избежать таких проблем, нужно использовать балансир – ограничитель напряжения в виде компаратора, который сравнивает напряжение на литий-ионном элементе с граничной величиной 4,2 В. Когда напряжение достигает предельной величины, приоткрывается ключ-транзистор, внедренный параллельно элементу.

Он пропускает львиную долю зарядного тока и преобразует энергию в тепло. Заряд самой банки практически приостанавливается, в то время как соседние элементы имеют возможность окончательно зарядиться. Выравнивание напряжений осуществляется в завершение процесса заряда, когда элементы достигают граничного значения 4,2 В.

Теперь коснемся вопроса, как заряжать параллельно соединенные аккумуляторы 18650. При параллельном соединении одноименные полюсы соединяются между собой: «+» с «+», «-» с «-». Напряжение остается неизменным, а емкости суммируются. Балансировка при чисто параллельном соединении (без последовательно соединенных частей) не требуется.

Опции темы
Поиск по теме
Отображение
  • Линейный вид
  • Комбинированный вид
  • Древовидный вид

Параллельное соединение Li-Ion аккумуляторов различной емкости

Думаю, пригодится многим мододелам, поэтому оставлю это здесь.
Оригинал статьи находится здесь и написан фонаревщиками, но разницы, как таковой, нет.

Ну что же. оказывается, некоторое количество людей до сих пор больше верит в магию чем в физику.
и такой простой случай, как параллельное включение химических источников тока вызывает разброд и шатание в умах.
Итак, к счастью наиболее часто используемый и разумный способ параллельного соединения аккумуляторов, а именно одинаковых, одного производителя и одной номинальной емкости, не вызывает почти ни у кого сомнений – общая емкость равна емкости одного аккумулятора умноженной на их количество. хорошо.
Но периодически возникают вопросы типа «а вот если соединить хороший заряженный аккумулятор с плохим разряженным который нашли в помойке», то общая емкость будет равна емкости самого большого аккумулятора, самого маленького, средней арифметической емкости, и вообще неизвестно чему, ибо хороший аккумулятор будет тратить часть своей энергии на заряд плохого, и вообще там будут происходить непонятные процессы, один будет разряжаться раньше другого и прочая и прочая.
Кроме того, если запараллелить хороший заряженный с плохим разряженным то они каааааак падзарвуца! поэтому параллелить надо только аккумуляторы с защитой
нет. нет. Нет и НЕТ!
Емкости всегда складываются при параллельном соединениии. ни средняя, ни минимальная или максимальная, а просто сумма.
Хороший аккумулятор не будет подзаряжать плохой, потому что для появления зарядного тока нужна разность потенциалов между аккумуляторами, а она при параллельном соединении равна нулю.
Всегда. и поэтому при разряде происходит автоматическое перераспределение токоотдачи с каждого аккумулятора таким образом, что в итоге они разряжаются одновременно, независимо от их разрядных характеристик и начальной емкости.
переходим к практическим занятиям.
Берем 2 аккумулятора – Panasonoc CGR18650E и, насколько я помню, Ultrafire 18650 (обложка с маркировкой не сохранилась) категории DOA.
Предварительно заряжаем и разряжаем каждый током 0.5А до напряжения 2.8В
Емкости получились соответственно 2403 и 171 мАч.
Внутренние сопротивления 85 и 400мОм.
Соединяем в параллельную сборку, заряжаем и разряжаем током 1А (т.е формально теми же самыми 0.5А на каждый, в случае если бы это были одинаковые аккумуляторы) до того же самого напряжения 2.8В.
Отданная такой сборкой емкость получилась 2661 мАч, что на 87мАч больше суммарной емкости отдельных аккумуляторов. удивительно? Нисколько. потому что разряд происходит не общим током поделенным на количество аккумуляторов, а различным, зависящим от внутреннего сопротивления и емкости каждого аккумулятора. Понятно, что плохой аккумулятор разряжается гораздо меньшим током чем хороший, а потому отдает несколько больше мАч. но в общем хорошо видно, что емкость хорошего не тратится на подзаряд плохого.
Далее. Животрепещущий вопрос, что же будет, если мы в дорогущий фонарик за 200 с лишним баксов понапихаем различных аккумуляторов, среди которых обязательно должен затесаться как минимум один, полностью разряженный и вообще чудом избежавший этапирования в мусорное ведро.
Да ничего не будет:

И этот ток стремительно падает, через 5-8 секунд уже немногим больше 600мА.
Напомню, что сила тока зависит от сопротивления цепи и разности потенциалов, которая в свою очередь определяется разностью эдс аккумуляторов и падением напряжений на их внутренних сопротивлениях. т.е чем больше ток, тем больше напряжение на разряженном и меньше на заряженном, что снижает разность потенциалов и вызывает уменьшение тока в цепи. и этот процесс развивается в далее в сторону снижения тока вплоть до 0.

Второй вариант – параллельное соединение заряженных и разряженных, но качественных, живых аккумуляторов (менее интересный, почему-то большинство заботит именно первый вариант, с плохим аккумулятором, а хорошие все собираются использовать исключительно равнозаряженными)

Ток прилично выше. но он так же постепенно падает.
в любом случае, индивидуальная защита аккумуляторов ни в том ни в другом случае просто не сработала бы, ток недостаточен. а с платами защиты будет еще меньше, т.к. это добавочное сопротивление.
Даже если включить 3 заряженных и 1 разряженный, скорее всего ток не будет сильно выше, потому как больший ток вызовет увеличение напряжения на разряженном аккумуляторе, что приведет к снижению разности потенциалов и т.д.

Ну и напоследок коснусь попадающихся иногда вопросов, что будет происходить при заряде и разряде параллельной сборки аккумуляторов с индивидуальными защитами. якобы при заряде один из аккумуляторов перезарядится до срабатывания защиты, отключится, и на остальные пойдет больший ток.
Нет, не может какой-то один аккумулятор перезарядиться. в сборке напряжение одинаковое по всем аккумуляторам, все они зарядятся одновременно.
Равно как и при разряде – не может один отключиться по переразряду вызвав тем самым повышенную нагрузку на остальные. не может. потому что опять таки одинаковое напряжение на каждом

Это 2-я часть обзора о запасном Li аккумуляторе для Ni-Cd шуруповерта Black&Decker. В 1-й части я делал корпус аккумулятора с защелками, ставил в него плату защиты, вольтметр-пищалку и адаптер для работы с Li-Ion батарейным блоком от шуруповерта DeWALT. Сегодня я расскажу о новом захватывающем DIY проекте – сменном батарейном блоке на базе холдера (кассеты) для 18650 Li-Ion аккумуляторов. А также — какие холдеры можно, на мой взгляд, использовать в шуруповертах и почему (немного теории). Как доработать правильный холдер (практический пример).
UPD: Незапланированный тест холдера на устойчивость к короткому замыканию и его результаты

Холдеры (они же кассеты, держатели, или боксы) – это самый простой и безопасный способ соединить между собой цилиндрические Li-Ion аккумуляторы. Простой, потому что не требуется оборудование точечной сварки (стандартный промышленный способ соединения Li-Ion банок в сборке). Безопасный, потому что ни варить, ни паять сами банки не нужно. Не имея опыта пайки лития, есть серьезный риск убить достаточно дорогие аккумуляторы. Чтобы паять литий, нужна набитая рука, мощный паяльник и соблюдение правильной техники для исключения перегрева корпуса банок в процессе пайки. Также холдеры имеют весомый плюс по сравнению с пайкой или сваркой, создающей неразъемное соединение элементов – в холдере все банки можно легко и быстро заменить.

Из-за удобства их применения холдеры давно и успешно используют во всяких DIY проектах: пауэрбанках, зарядках, источниках автономного питания и пр. Так же давно холдеры пытаются использовать и для переделки шуруповертов на литиевое питание, но результаты получаются положительными не всегда.
В чем же проблема с использованием холдеров для аккумулятора шуруповерта? Во-первых, при высоких рабочих токах шуруповерта контакты холдера сильно нагреваются. Из-за этого пластиковый корпус холдера плавится, что приводит к его разрушению и выходу аккумулятора из строя. Во-вторых, шуруповерт теряет мощность, т.к. значительная часть энергии банок уходит на нагрев контактных проводников холдера. Особенно это касается холдеров с круглыми пружинами, на которых заметно падает напряжение из-за большой длины и малого сечения пружинок. Итак, общее проблемное место всех холдеров — это их контакты, что ограничивает возможности использования холдеров в устройствах с высоким током потребления.

Означает ли это, что использовать холдеры для шуруповерта в принципе нельзя?

Утверждать столь категорично я бы не стал. Некоторые типы холдеров, после несложной доработки, использовать вполне возможно. Но обязательно нужно учитывать максимальный ток шуруповерта, с которым их планируется применять.

Какие бывают холдеры (кассеты) для 18650 Li-Ion аккумуляторов?

Чаще всего встречаются такие.


Я условно пронумеровал их как №1, 2, 3.

№1 это холдер с круглыми пружинами.

№ 2 и 3 по сути один и тот же холдер с плоскими пружинами, различие только в форме выводов. У № 2 они узкие, а у № 3 широкие. Рядом с этими холдерами я добавил изображения их контактных ламелей.

Почему греются контакты холдера при высоких токах?

При прохождении по проводнику электрического тока происходит преобразование электрической энергии в тепловую. Количество выделяемого тепла пропорционально квадрату тока, сопротивлению проводника и времени прохождения тока (закон Джоуля-Ленца, Q = I2rt).


Представим, что это контакт холдера (как отрезок проводника, включенный в общую цепь). Если в каком-то месте цепи сопротивление (r, Ом) будет выше, то проводник в этом месте будет греться сильнее.

От чего зависит сопротивление проводника? В основном от 2-х факторов (в дебри уходить не будем, это все же DIY обзор, а не научная статья) – от геометрии проводника и его удельного электрического сопротивления. Вот формула.

где r — сопротивление отрезка проводника; ρ — удельное сопротивление проводника; l — длина проводника; S — сечение проводника.

На какие мысли наводит эта формула?

Чтобы уменьшить r, нужно значение числителя (верхняя часть дроби) сделать как можно меньше, а знаменателя — как можно больше. С ρ мы ничего сделать не можем, что есть, с тем и работаем. А вот L можно уменьшить, сделав путь тока как можно короче. Применительно к плоскому ламелю холдера, это означает, что паять перемычку нужно как можно ближе к месту контакта ламеля с полюсом банки. Холдер с круглыми пружинами имеет большую длину L и соответственно повышенное сопротивление. Однако определяющее значение для выбора правильного холдера имеет сечение S контактного ламеля. Чем больше сечение, тем больший ток может выдержать холдер. На первый взгляд это просто, но есть и нюансы.

На фото холдеров вы наверно обратили внимание, что сечение ламеля на разных участках его длины разное. Что из этого следует? В той области, где сечение меньше, ламель будет греться больше. Кстати, на этом строится принцип работы плавкого предохранителя – где тонко, там и рвется.

А вот еще пример, из области автоэлектрики.

Несложно догадаться, что произойдет с тонким проводком при включении мощного потребителя.

Становится понятно, что соединять ламели холдера между собой нужно в их широкой части — от места контакта ламеля с полюсом банки до места сужения профиля ламеля.

Такой нестандартный способ соединения ламелей нужен только для работы на высоких токах. Для работы в пауэрбанке, например, штатного соединения (т.е. нижнего по рисунку) будет более чем достаточно.

А теперь отвлечемся на минуту от скучных формул.


На какой предмет похож контакт холдера № 2? Мне, как бывшему слесарю-сборщику РЭАиП, он напоминает бутылку (ну кто б сомневался).

Кстати, это наглядная визуализация английского термина bottleneck («узкое место»), применяемого в технических и других науках. Термин произошел из аналогии с узким горлышком бутылки, из-за чего не получается вылить или высыпать всё её содержимое сразу, даже если её перевернуть. При увеличении ширины горлышка увеличивается и скорость, с которой бутылка опустошается. Таким образом, «бутылочным горлышком» называют любой компонент системы, мощность (пропускная способность) которого меньше, чем потребность в нем.

Вот мы и подобрались вплотную к ответу на вопрос, какой тип холдера, с точки зрения банальной физики, лучше всего подходит для использования с шуруповертом. Таблица ниже поможет сделать выбор.

Холдеры с круглыми пружинами отбрасываем сразу. Самое малое сечение контактов из всех 3-х типов, это раз. Большая длина пружинок, значительное падение на них напряжения, это два. Популярная доработка (припаивание медного провода ко 2-му витку пружинок) ничего кардинально не изменит. Холдер №1 можно использовать только для сравнительно небольших токов, порядка 1 ампера, например, в пауэрбанках. Для питания шуруповертов они совершенно непригодны.

Теперь самое интересное. Какой холдер лучше, №2 или №3?

№2 имеет узкие выводы с сечением 0,62 кв.мм, немногим больше чем у холдера №1 (0,38 кв.мм). Такого сечения для питания шуруповерта также явно недостаточно, о чем красноречиво говорит проплавленный корпус холдера на фото ниже. Необходимо использовать нестандартное соединение в широкой части контакта. Плюс холдера №2 – самая большая площадь сечения (в широкой части контакта).

Холдер №3. С одной стороны, он имеет широкие выводы. Но вся их ценность смазывается заужением профиля в середине ламеля (помните про плавкий предохранитель?). Если соединять штатно, эффективное сечение будет всего лишь 1,08 кв.мм. Второй недостаток — сечение даже широкой части контакта холдера №3 на целых 39% меньше такого же сечения холдера №2. 1,9 кв.мм и 2,64 кв.мм соответственно.

Поскольку нагрев контактов сильно зависит от силы тока через них (помните про квадрат тока из формулы Джоуля-Ленца?), то для противодействия ему каждый дополнительный мм2 сечения контактов становится на вес золота. Поэтому лучшим холдером для высоких токов из 3-х перечисленных является тот, который имеет наибольшее сечение контактов в местах их соединения между собой.

Вывод: Для токов шуруповерта лучше подойдет холдер №2, при условии, что соединительные провода будут припаяны к его широкой части.

Следующий важный вопрос – какой ток, ограниченный допустимым нагревом, может на практике выдержать доработанный холдер №2? Такой эксперимент проводил уважаемый kirich в одном из своих обзоров. Вот его результаты.

Судя по термограмме, можно осторожно предположить, что и 20 ампер длительно не являются пределом для данного холдера, однако здесь мы уже упираемся в ограничения по максимальному току самих Li-Ion аккумуляторов форм-фактора 18650 (как правило, 30 ампер длительно).

Как альтернативный вариант, для увеличения токовой отдачи можно также использовать параллельно-последовательное соединение аккумуляторов в холдере. Например, xS2P соединение увеличивает отдаваемый батарейным блоком ток вдвое, xS3P — втрое, и т.д.

Кстати, многие думают, что чем мощнее аккумуляторный шуруповерт, то тем больше у него рабочие токи. Это не всегда так, бывает скорее наоборот. Вот пример. Посмотрите на таблицу со спецификациями моторов ф. Leshi Motor, которые ставились в Ni-Cd шуруповерты.

Мы видим, что 7.2В мотор имеет макс. ток 14,8А и мощность 67,5 Вт.
А 18В мотор имеет макс. ток 8,6А и мощность 113,7 Вт.
Удивительно, правда? Почему так? Здесь при меньшем макс. токе мощность больше за счет повышения напряжения питания (по формуле мощности P=IU).

Поскольку для холдеров критичным является именно ток, а не напряжение, это обстоятельство может в некоторых случаях расширить возможности применения холдеров для переделки на литий мощных 18 вольтовых Ni-Cd шуруповертов.

Ну и наконец, практическая часть.

Изготовление сменного батарейного блока на базе холдера №2

Напомню, что моем шуруповерте Black&Decker CD12C, для которого я делаю этот батарейный блок, стоит 12V двигатель с максимальным рабочим током 9.7А. Провода питания к этому двигателю имеют сечение 0,823 кв.мм (18AWG). Допустимую длительную токовую нагрузку проводов с разным сечением по стандарту AWG можно посмотреть здесь

Это холдер с аккумуляторами, которые я буду использовать. Ссылки на них привел в конце обзора.


Припаял выходные провода и перемычки к ламелям холдера в верхней части. Перемычки в точках 1S и 2S сделал из того же акустического медного провода сечением полтора квадрата, что и выходные провода. Для подключения точек соединения элементов к плате защиты и вольтметру припаял к перемычкам провода с наконечником типа РП-М (автоклемма).


Провода и перемычки не мешают установке аккумуляторов в холдер.


Для обратной совместимости с батарейным блоком от шуруповерта DeWALT DCD 710, который меньше по длине, сделал в адаптере разрезную фигурную вставку. Нижняя часть приклеена, а верхняя при установке холдера вынимается.


Оба блока рядом.


Батарейные блоки в адаптере меняются простой перестановкой.

Напоследок испытал новый батарейный блок в составе шуруповерта, закрутив и выкрутив без перерыва два десятка длинных саморезов, до отсечки на максимальном моменте трещотки. Ничего не задымилось и не расплавилось.
В каких же случаях можно использовать холдер вместо пайки/сварки банок? Мое личное мнение на этот счет таково: если холдер влезает в корпус старого аккумулятора и рабочий ток шуруповерта позволяет, тогда и можно ставить. А вот нужно ли ставить холдер или паять литий, каждый решает сам, в зависимости от своих убеждений и уровня подготовленности, здесь я рекомендовать ничего не могу. Для меня все определяется удобством и целесообразностью в каждом конкретном случае. Например, в корпус штатного Ni-Cd аккумулятора моего шуруповерта холдер не влезает и поэтому, если буду переделывать его на литий, то буду паять банки.

Заряжать вставленный в адаптер холдер с аккумуляторами можно теми же способами, что и батарейный блок DeWALT из прошлого обзора:

1) 12.6V зарядкой для 3S сборки литиевых аккумуляторов через штатный зарядный разъем шуруповерта. Например, зарядкой из обзора уважаемого kirich

2) Подходящей универсальной зарядкой для литиевых аккумуляторов через выходные клеммы или штатный зарядный разъем. Например, B6 mini.

3) Или можно вынуть аккумуляторы из холдера и зарядить их любой зарядкой для лития, вместе или по отдельности.

Список основных использованных материалов

UPD: Незапланированный тест холдера на устойчивость к короткому замыканию и его результаты

Хотя я и сделал защиту от себя дурака переполюсовки, в виде термоусадки разного цвета на наконечниках проводов (кроме силовых проводов адаптера, за что впоследствии и поплатился), но тем не менее на днях умудрился их перепутать. При нажатии кнопки шуруповерта послышался характерный «пшшш», сопровождаемый дымом и запахом горелой пластмассы.
Из видимых повреждений: в шуруповерте был пробит диод, а на плате защиты отпаялись силовые ключи и подгорели токоизмерительные резисторы. Таким образом, шуруповерт и плата защиты оказались выведены из строя. А вот с холдером ничего не случилось. Контакты холдера, провода с разъемами и аккумуляторы это испытание выдержали играючи.

Три схемы соединения аккумуляторных батарей для электропитания

Аккумуляторные батареи (АКБ) в зависимости от их назначения собираются из определенного количества аккумулирующих энергию элементов. Схема соединения

аккумуляторных батарей при этом зависит от того, какая преследуется цель. Это может быть увеличение емкости батареи, повышение напряжения либо сочетание обеих этих параметрических характеристик устройства.

В основном батареи собирают последовательно-параллельно, а сами сборки служат для промежуточного или резервного хранения электроэнергии

Известны и повсеместно применяются 3 варианта соединения отдельных аккумуляторов в батарею: последовательное, параллельное и смешанное или комбинированное.

Повышение рабочего напряжения батареи

Аккумуляторы электрической энергии имеют различное рабочее напряжение. Варьироваться оно может в очень широком диапазоне: от 0,5 до 48 Вольт. В то же время, для обеспечения автономного питания приборов, запуска двигателей внутреннего сгорания, питания электроприводной техники требуется другой диапазон напряжений. Повысить рабочее напряжение автономного источника тока можно последовательным соединением нескольких аккумуляторов в батарею.

Схемы и формулы при последовательном соединении батарей

При последовательном соединении коммутируются разнополярные клеммы аккумулятора. Плюсовой вывод предыдущего устройства соединяется с минусовым выводом последующего. Суммарное рабочее напряжение батареи при таком способе будет равно сумме рабочих напряжений коммутированных источников тока. Это значит, что для получения АКБ с рабочим напряжением 12 В необходимо последовательно соединить 4 трехвольтных источника либо 10 аккумуляторов с рабочим напряжением 1,2 В. Емкость скомплектованной последовательным соединением источников не изменяется и остается равной емкости каждого включенного в схему аккумулятора.

Очевидным и наглядным примером такого способа комплектации батареи могут служить автомобильные АКБ. В них отдельные источники, именуемые банками, объединены в общем корпусе и последовательно соединены свинцовыми шинами. Выбор в качестве материала для соединительных шин свинца объясняется просто: аккумуляторные электроды также изготавливаются из свинца. Шины, интегрированные в коммуникационную схему, соединяются с электродами на молекулярном уровне, а не механически. Это позволят избежать возникновения электрохимических коррозионных процессов.

Увеличение емкости источника питания

Нередки технические условия, когда от источника питания при сохранении рабочего напряжения требуется повышенная емкость. В таких случаях для комплектования батареи применяется параллельное соединение аккумуляторов. Такой способ коммутирования позволяет в разы, а в особо ответственных случаях – в десятки раз увеличить суммарную емкость питающего устройства.

Параллельное соединение батарей с формулами

Параллельное соединение осуществляется путем коммутации однополюсных выводов источников тока: плюсовой и минусовой выводы предыдущего аккумулятора соединяются с одноименными выводами последующего. Суммарная электрическая емкость скомпонованной таким способом коммутации батареи будет равна сумме электрических емкостей входящих в схему отдельных источников. Это значит, что при соединении трех аккумуляторных батарей с номинальной емкостью 60 А*ч получится устройство, имеющее электрическую емкость 180 А*ч.

В качестве примера подключения аккумуляторных батарей параллельной коммутацией можно привести источники бесперебойного либо аварийного питания приборов и аппаратуры. Параллельно подключаются АКБ большегрузных автомобилей и тяжелой специальной техники с большим объемом двигателя. Большой распространение параллельная коммутация получила на флоте: здесь параллельно соединенные устройства питания применяются для запуска вспомогательных дизелей, работы освещения, систем связи и жизнеобеспечения в аварийных ситуациях.

Повышение напряжения с одновременным увеличением емкости АКБ

Ярким примером смешанного или комбинированного соединения аккумуляторов в комплекс с необходимыми показателями рабочего напряжения и электрической емкости служат источники питания машин с электрическим приводом.

ВАЖНО! При увеличении емкости аккумуляторных батарей увеличиваются и токи. Правильно подбирайте сечения проводов! Используйте негорючие или самозатухающие провода.

Тяговые аккумуляторные батареи для обеспечения работы приводных и управляющих двигателей электроприводных машин и механизмов комплектуются именно по такой схеме. Достаточно подробно о способах соединения АКБ изложено в этом видео:

Комбинированное соединение подразумевает использование в коммутационной схеме одновременно последовательного и параллельного способов подключения. Возможны два варианта:

1. Сначала методом последовательного соединения источников подготавливаются батареи с требуемым рабочим напряжением. На втором этапе параллельно коммутируется необходимое количество подготовленных сборок для обеспечения потребной электрической емкости.

2. Во втором варианте параллельной коммутацией предварительно набираются батареи с требуемой емкостью. После этого устройства соединяются последовательно до достижения необходимого рабочего напряжения.

Схема последовательно-параллельного соединения аккумуляторных батарей наиболее часто применяемая, так как современные батареи для автономного энергообеспечения домов имеют номинальное напряжение 3,4 В

Комплектование АКБ комбинированным способом позволяет формировать источники питания, напряжение и электрическая емкость которых ограничивается только занимаемым ими рабочим пространством.

Особенности комплектования батарей аккумуляторов

Все три способа соединения отдельных источников питания в комплекс подчиняются не сложным, но важным для эффективной и долгосрочной эксплуатации правилам.

Последовательно-параллельная схема подключения на примере литий-ионных батарей

Пролонгированная работа батареи и ее экономическая целесообразность может быть обеспечена при соблюдении следующих правил:

  • электрическая емкость включаемых в комплекс источников не должна отличаться на величину, превышающую 5% от номинальной;
  • рабочие напряжения отдельных элементов батареи должны находиться в разумном соотношении;
  • эксплуатационное техническое состояние включаемых в комплекс автономного питания элементов должно быть максимально сбалансированным;
  • сечение коммутационных линий и шин должно быть рассчитано с учетом токовых нагрузок как внутри батареи, так и во внешних электрических цепях.

Ассортимент предлагаемых рынком источников питания при грамотном подходе позволяет создавать аккумуляторные батареи со всеми необходимыми для надежного использования характеристиками.

ОДНОВРЕМЕННАЯ ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ

   Сейчас всё большую популярность набирают литиевые аккумуляторы. Особенно пальчиковые, типа 18650, на 3,7 В 3000 мА. Ни сколько не сомневаюсь, что ещё 3-5 лет, и они полностью вытеснят никель-кадмиевые. Правда остаётся открытым вопрос про их зарядку. Если со старыми АКБ всё понятно — собирай в батарею и через резистор к любому подходящему блоку питания, то тут такой фокус не проходит. Но как же тогда зарядить сразу несколько штук, не используя дорогие фирменные балансировочные ЗУ?

Теория

   Для последовательного соединения аккумуляторов, обычно к плюсу электрической схемы подключают положительную клемму первого  последовательное соединение аккумуляторов аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к минусу блока. Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой батареи равно сумме напряжений входящих в нее аккумуляторов. Значит если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

   Энергия, накопленная в АКБ, равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы — параллельно или последовательно.

   Литий-ионные батареи просто подключить к БП нельзя — нужно выравнивание зарядных токов на каждом элементе (банке). Балансировку проводят при зарядке аккумулятора, когда энергии много и её можно сильно не экономить и поэтому без особых потерь можно воспользоваться пассивным рассеиванием «лишнего» электричества.

   Никель-кадмиевые АКБ не требуют дополнительных систем, поскольку каждое звено при достижении его максимального напряжения заряда перестает принимать энергию. Признаки полного заряда Ni-Cd — это увеличение напряжения до определенного значения, а затем его падение на несколько десятков милливольт, и повышение температуры — так что лишняя энергия сразу превращается в тепло.

   У литиевых аккумуляторов наоборот. Разрядка до низких напряжений вызывает деградацию химии и необратимое повреждение элемнта, с ростом внутреннего сопротивления. В общем они не защищены от перезаряда, и можно потратить много лишней энергии, резко сокращая тем самым время их службы.

   Если соединить несколько литиевых элементов в ряд и запитать через зажимы на обоих концах блока, то мы не можем контролировать заряд отдельных элементов. Достаточно того, что одно из них будет иметь несколько более высокое сопротивление или чуть меньшую емкость, и это звено гораздо быстрее достигнет напряжения заряда 4,2 В, в то время как остальные будут еще иметь 4,1 В. И когда напряжение всего пакета достигнет напряжение заряда, может оказаться, что эти слабые звенья заряжены до 4,3 Вольт или даже больше. С каждым таким циклом будет происходить ухудшение параметров. К тому же Li-Ion является неустойчивым и при перегрузке может достичь высокой температуры, а, следовательно, взорваться.

   Чаще всего на выходе источника зарядного напряжения ставится устройство, называемое «балансиром». Простейший тип балансира — это ограничитель напряжения. Он представляет из себя компаратор, сравнивающий напряжение на банке Li-Ion с пороговым значением 4,20 В. По достижении этого значения приоткрывается мощный ключ-транзистор, включенный параллельно элементу, пропускающий через себя большую часть тока заряда и превращающий энергию в тепло. На долю самой банки при этом достается крайне малая часть тока, что, практически, останавливает ее заряд, давая дозарядиться соседним. Выравнивание напряжений на элементах батареи с таким балансиром происходит только в конце заряда по достижении элементами порогового значения.

Упрощённая схема балансира для АКБ

   Вот упрощённая схема балансира тока на базе TL431. Резисторы R1 и R2 устанавливают напряжение 4,20 Вольт, или можно выбрать другие, в зависимости от типа батареи. Эталонное напряжение для регулятора снимается с транзистора, и уже на границе 4,20 В система начнет приоткрывать транзистор, чтобы не допустить превышения заданного напряжения. Минимальное увеличение напряжения вызовет очень быстрый рост тока транзистора. Во время тестов, уже при 4,22 В (превышение на 20 мВ), ток составил более 1 А.

   Сюда подходит в принципе любой транзистор PNP, работающий в диапазоне напряжений и токов, которые нас интересуют. Если батареи должны быть заряжены током 500 мА. Расчет его мощности прост: 4,20 В х 0,5 А = 2,1 В, и столько должен потерять транзистор, что вероятно, потребует небольшого охлаждения. Для зарядного тока 1 А или больше мощность потерь, соответственно, растет, и все труднее будет избавиться от тепла. Во время теста были проверены несколько разных транзисторов, в частности BD244C, 2N6491 и A1535A — все они ведут себя одинаково.

   Делитель напряжения R1 и R2 следует подобрать так, чтобы получить нужное напряжение ограничения. Для удобства вот несколько значений после применения которых, мы получим следующие результаты:

  •   R1 + R2 = Vo
  • 22K + 33K = 4,166 В
  • 15К + 22K = 4,204 В
  • 47K + 68K = 4,227 В
  • 27K + 39K = 4,230 В
  • 39K + 56K = 4,241 В
  • 33K + 47K = 4,255 В

Схема устройства для балансировки аккумуляторов

   Это аналог мощного стабилитрона, нагруженного на низкоомную нагрузку, роль которой здесь выполняют диоды D2…D5. Микросхема D1 измеряет напряжение на плюсе и минусе аккумулятора и если оно поднимается выше порога, открывает мощный транзистор, пропуская через себя весь ток от ЗУ. Как соединяется всё это вместе и к блоку питания — смотрите далее.

   Блоки получаются действительно маленькие, и вы можете смело устанавливать их сразу на элементе. Следует только иметь в виду, что на корпусе транзистора возникает потенциал отрицательного полюса батареи, и вы должны быть осторожны при установке систем общего радиатора — надо использовать изоляцию корпусов транзисторов друг от друга.

Испытания

   Сразу 6 штук балансировочных блоков понадобились для одновременной зарядки 6 аккумуляторов 18650. Элементы видны на фото ниже.

   Все элементы зарядились ровно до 4,20 вольта (напряжение были выставлены потенциометрами), а транзисторы стали горячие, хотя и обошлось без дополнительного охлаждения — зарядка током 500 мА. Таким образом, можно смело рекомендовать данный метод для одновременного заряда нескольких литиевых аккумуляторов от общего источника напряжения.

   Форум по АКБ

   Форум по обсуждению материала ОДНОВРЕМЕННАЯ ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ

18650 Аккумуляторы в параллельном режиме | Большая мощность

Введение

18650 — это особый тип перезаряжаемых литий-ионных аккумуляторных батарей, именуемый собственным именем «18650 элемент». Название 18650 относится исключительно к размеру литий-ионной аккумуляторной батареи, которая составляет 18 мм x 65 мм и немного больше, чем батарея AA. 18650 стал де-факто стандартом сменных и аккумуляторных батарей. Типичный литий-ионный элемент имеет производительность в диапазоне от 1800 мАч до 3500 мАч, выходную мощность 3.7 вольт, а также среднее время зарядки аккумулятора около четырех (4) часов. Время зарядки зависит от напряжения зарядного устройства, типа аккумулятора и силы тока.

Ячейки 18650 делятся на 2 широкие классификации: защищенные и незащищенные. Незащищенная разновидность часто используется очень опытными пользователями, которые собирают аккумуляторные батареи или используют 18650 для электронных сигарет и вейпинга. Они требуют более высоких скоростей разряда, чем допускают схемы защиты. Рекомендуется использовать защищенные батареи 18650, потому что они имеют электронную схему, встроенную в упаковку элемента (корпус батареи), которая защищает элемент от нагрева, перезарядки, перегрузки, перегрузки по току и короткого замыкания.

Это делает его более безопасным, чем незащищенный вариант. Незащищенные батареи 18650 дешевле (но менее безопасны) и должны использоваться только при внешнем мониторинге и управлении нагрузкой / потреблением и зарядкой. Что касается мощности, аккумулятор 18650 3,7 В 3400 мАч хранит от 2 до 3,5 Ач и от 10 до 13 ватт-часов. Лучшая недорогая батарея 18650 — это Panasonic NCR 18650b, которая представляет собой защищенную батарею 18650 3,7 В 3400 мАч. Одним из лучших зарядных устройств на рынке является Nitecore D4, который заряжает самые разные аккумуляторы.

18650 предлагает лучшую производительность среди всех аккумуляторных батарей потребительского класса в своем классе. Он имеет тенденцию разлагаться примерно с той же скоростью, что и батарея смартфона, но не подвержен повреждению от зарядки до полной разрядки (в отличие от старых никель-кадмиевых элементов, которые ранее широко использовались). Наиболее важным параметром, который необходимо проверить при выборе батареи 18650, является ее номинальная мощность непрерывного разряда (CDR), также известная как емкость в амперах. CDR — это скорость, с которой ток, измеряемый в амперах (A), может быть снят с батареи без ее перегрева.

Важно, чтобы CDR аккумулятора соответствовал потребляемой мощности вашего устройства. Если в этом отношении будет сделана ошибка, элементы будут иметь тенденцию к перегреву, что приведет к повреждению батареи и сокращению ее срока службы. Это, в свою очередь, может вызвать утечку из ячейки, взрыв или повреждение устройств. Между CDR (A) и емкостью аккумулятора (мАч) существует обратная зависимость: чем выше емкость, тем ниже CDR. Следовательно, устройства, которые потребляют меньше энергии, могут использовать ячейки с большей емкостью, в то время как устройства, которые имеют тенденцию потреблять больше энергии, потребуют ячеек меньшей емкости, чтобы безопасно потреблять больше тока.По состоянию на июнь 2018 года текущий максимальный CDR, достижимый для аккумулятора 18650, составляет 38 А при 2000 мАч.

Лучшие аккумуляторы обычно производятся Samsung, LG, Sony и Panasonic / Sanyo, бренды которых обеспечивают надежные рейтинги CDR. Рекомендуется хорошее качественное зарядное устройство 18650 — это зарядное устройство Nitecore I2 Intellicharge, которое заряжает два элемента одновременно. Он определяет состояние батареи, а затем изменяет напряжение и соответствующий заряд в зависимости от обстоятельств. Это помогает предотвратить повреждение из-за перезарядки.

В среднем батарея 18650 имеет тенденцию длиться от 300 до 500 циклов зарядки, но срок службы батареи может быть увеличен, если ее регулярно заряжать до полной разрядки. Следовательно, обычно можно получить год или два непрерывного функционального использования для батареи 18650, прежде чем она выйдет из строя, как это неизбежно со временем произойдет со всеми ячейками. Рекомендуется выбирать аккумулятор 18650, который немного превышает минимальные требования к разряду для устройства, для которого он будет использоваться, при этом также уделяя внимание емкости заряда.Большинство батарей имеют встроенные платы защиты (PCB), которые контролируют скорость разряда батареи и внутреннюю температуру.

Несомненно, литий-ионные батареи типа 18650 произвели революцию в портативных устройствах. Ячейки 18650 используются в фонариках, ноутбуках, смартфонах, камерах, радионянях, фитнес-гаджетах, лазерных указках и устройствах с высоким энергопотреблением. Это связано с их превосходной емкостью и скоростью разряда. 18650 бывают как в плоском стиле, так и в стиле с пуговицей.

Чтобы полностью расширить возможности 18650, его использование, преимущества и рабочие возможности параллельно, будут рассмотрены следующие ключевые моменты или вопросы, а именно:

· Можно ли подключить две разные батареи параллельно?

· Что произойдет, если вы подключите батареи 18650 параллельно?

· Можно ли параллельно заряжать аккумуляторы 18650?

Можно ли подключить две разные батареи параллельно?

Чтобы правильно решить эту проблему, необходимо понимать концепцию аккумуляторного блока.Банк батарей — это просто то, что вы получаете, когда соединяете две или более батарей вместе для одного приложения. Когда батареи соединены таким образом, вы можете либо увеличить напряжение, либо силу тока, либо и то, и другое. Есть два основных способа успешно подключить две или более батарей. Первый — через серию, а второй — параллельное соединение.

Параллельное соединение увеличит номинальный ток, но напряжение останется прежним. Также необходимо принять во внимание, что, поскольку сила тока (номинальный ток) батарей увеличилась, вам, вероятно, понадобится более прочный кабель, чтобы кабели не перегорели.В этом (параллельном) расположении перемычка используется для соединения обеих положительных клемм, а другая перемычка — для соединения отрицательных клемм обеих батарей друг с другом. Отрицательный к отрицательному и положительный к положительному. Однако другое дело, когда вы хотите подключить параллельно две разные батареи. Это связано с тем, что разные батареи означают, что батареи имеют разные номинальное напряжение и емкость. Поэтому разные батареи не следует подключать параллельно. Если это будет сделано, батареи с более высоким номинальным напряжением будут разряжаться в другую (с более низким номинальным напряжением), пока они не будут иметь равные напряжения.Если вторая батарея (с более низким номинальным напряжением) является перезаряжаемой батареей, то она будет заряжаться от первой, снова до тех пор, пока у них не будет одинакового напряжения. Что происходит, так это то, что конечное напряжение будет промежуточным между двумя разными начальными напряжениями. Это приведет к тому, что ток, протекающий между обеими батареями, будет иметь очень высокое значение. Этот высокий ток неизбежно повредит одну или даже обе батареи. В процессе очень быстро будет выделяться много тепла, что, вероятно, приведет к резким результатам, так как батареи могут или в конечном итоге закипят (сгорят).

Что произойдет, если вы подключите батареи 18650 параллельно?

С самого начала важно уточнить, что не рекомендуется смешивать вместе батареи разного типа, возраста или емкости, и для этого есть веские причины. Например, новые батареи заряжаются быстрее, чем старые батареи, что может привести к перезарядке новых батарей, в то время как система пытается полностью зарядить старые. Это повредит новую батарею, что приведет к ее выходу из строя и, в конечном итоге, выйдет из строя весь аккумуляторный блок.Это связано с тем, что батареи разного возраста будут заряжаться и разряжаться с разной скоростью, что приведет к общему сокращению срока службы батареи по сравнению с конфигурацией с батареями того же возраста. Это может привести к необратимому повреждению батарей.

Рекомендуется, чтобы подключаемые батареи были одного возраста, типа и емкости. Батарея или элемент 18650 бывает разных видов (номинальное напряжение и емкость). Поэтому только 18650 батарей одного возраста, номинального напряжения и емкости следует подключать параллельно.Если 18650 батарей одного типа, возраста, размера, емкости и номинального напряжения подключены параллельно, это приведет к увеличению емкости, что должно обеспечить более длительное время работы, однако напряжение останется прежним.

Можно ли параллельно заряжать аккумуляторы 18650?

Можно безопасно заряжать батареи 18650 параллельно при соблюдении следующих условий: все батареи должны быть номинально идентичны (что означает, что они должны быть одного возраста, типа, номинального напряжения, размера и емкости).Если это условие выполнено, то при параллельном подключении зарядный ток будет делиться поровну. Если это не так (если ячейки не идентичны), то ток не будет делиться поровну, и в худшем из сценариев полный ток от зарядного устройства в какой-то момент во время процесса зарядки перейдет в одну ячейку. Если это произойдет, и максимальный зарядный ток не превышает номинального максимального значения тока для одной ячейки, никаких повреждений не произойдет. Однако, если зарядный ток выше номинального для элемента, произойдет повреждение, так как это приведет к разрушению литий-ионных элементов.Это, в свою очередь, поставит под угрозу аккумуляторную батарею в целом и, в конечном итоге, приведет к отказу. Чтобы обеспечить безопасную параллельную зарядку аккумуляторов 18650, следует соблюдать меры предосторожности. Максимальный ток, поступающий в элемент во время зарядки, должен быть ограничен. Безопасный зарядный ток, составляющий всего одну пятую (1/5) от номинальной емкости и не превышающий половину (1/2), должен подаваться через независимую схему предотвращения перезарядки. Это первая линия защиты. Во-вторых, рекомендуется использовать защищенные литий-ионные аккумуляторы 18650 для дополнительной защиты.В-третьих, необходимо убедиться, что сама схема зарядного устройства имеет встроенную защиту, чтобы безопасно регулировать максимальное напряжение, подаваемое на элементы. Для обслуживания и хранения рекомендуется использовать зарядное устройство с емкостью не менее 2–3% от емкости аккумуляторной батареи. Зарядка и разрядка должны быть равномерными. В-четвертых, элементы также должны быть защищены от чрезмерной разрядки с помощью защитной ИС, которая также защищает от чрезмерного заряда. Если элементы батареи не будут должным образом защищены, их работа будет значительно нарушена, а срок их службы сократится.Источник питания

— Могу ли я использовать несколько аккумуляторов 18650 параллельно со стандартной платой зарядного устройства MicroUSB 3,7 В?

Есть ряд возможных проблем. Слишком много, чтобы перечислить в комментариях. Поэтому я перечислю их здесь.

Во-первых, безопасность. Если каждая ячейка уже имеет защиту, это хорошо. Я определенно рекомендую вам использовать в этом приложении защищенные ячейки. Но если нет, по крайней мере, убедитесь, что вы вставили какое-то устройство ограничения тока между зарядным устройством и каждой ячейкой.Это может быть предохранитель или PTC (самовосстанавливающийся предохранитель). Большая проблема с параллельными ячейками заключается в том, что если одна начинает выходить из строя, другие ячейки сбрасывают весь свой заряд в вышедшую из строя ячейку, что еще больше усугубляет ситуацию. Поэтому для этого случая необходим ограничитель тока. Плавкий предохранитель, вероятно, более безопасен, но PTC также будет разумным и может автоматически восстанавливаться, если он когда-либо сработает во время нормальной работы.

Другая проблема заключается в том, что при первоначальном подключении ячеек вы должны убедиться, что они уже имеют одинаковое напряжение, а если нет, то ограничивайте ток до тех пор, пока они не выровняются.В противном случае ток выравнивания может быть очень большим для 18650 (и если вы используете предохранители, ток выравнивания может вызвать их перегорание). Самый простой способ справиться с этим — полностью зарядить каждую ячейку перед их подключением. В этот момент напряжения будут очень близкими.

При параллельном подключении ячеек, вероятно, не будет большого беспокойства по поводу небольшого несоответствия емкости, если они принадлежат к той же марке и модели ячеек. Если они не совпадают идеально, они будут естественным образом распределять ток пропорционально их емкости во время зарядки и разрядки, чего мы в любом случае хотим.

Теперь рассмотрим эксплуатационные проблемы. Зарядные устройства обычно настраиваются для зарядки элемента определенной емкости. В данном случае мы не знаем, что это за емкость, но, вероятно, она не равна 4 x 18650. Небольшие вариации емкости не имеют значения, но если вы используете в 4 раза больше проектной емкости зарядного устройства, могут возникнуть некоторые проблемы. Во-первых, скорость зарядки такого большого аккумулятора будет низкой. Во-вторых, заряд может не прекратиться должным образом. Нормальный критерий прекращения заряда основан на приемке элемента во время стадии зарядки с постоянным напряжением.При 4-кратной емкости приемлемость никогда не может снизиться до нижнего предела, необходимого для нормального завершения зарядки. Кроме того, зарядные устройства обычно имеют вторичный, резервный критерий завершения. Обычно, если нормальный критерий начисления не выполняется в течение периода тайм-аута, начисление в любом случае прекращается. В этом случае тайм-аут может произойти даже до того, как батареи будут полностью заряжены. Обычно тайм-аут возникает только в том случае, если ячейка неисправна, но, поскольку емкость намного больше, чем ожидалось, он может сработать преждевременно.

Надеюсь, это поможет! Обратите внимание: перечисляя проблемы, я не пытаюсь отговорить вас от этого. Я просто хочу, чтобы вы знали о потенциальных проблемах, чтобы вы могли распознать их, если они возникнут.

Зарядка 8 литий-ионных аккумуляторов 18650 параллельно

Если у вас есть несколько ячеек, постоянно соединенных параллельно, вы можете рассматривать их как одну ячейку с большей емкостью как для разряда, так и для заряда. Разделение ячеек для их зарядки слишком сложно.

Разработайте одно зарядное устройство Lion и систему управления зданием (температура отдельных элементов покажет неисправность), которая заряжает всю вашу батарею с максимальной возможной скоростью.

В элементах будут небольшие различия, и ток зарядки (и разрядки) не будет точно одинаковым для всех элементов, но напряжение на клеммах всех элементов будет абсолютно идентичным (в конце концов, они закорочены вместе). Наихудшая проблема, с которой вы сталкиваетесь, заключается в том, что одна ячейка может выйти из строя в разомкнутой цепи, вынуждая другие ячейки к более высокому току заряда, что может привести к каскадному выходу из строя вашего блока. Если предупреждение о температуре не является, по вашему мнению, достаточно быстрым, чтобы обеспечить обнаружение неисправности, вы можете установить датчик тока на эффекте Холла в каждое соединение с батареей.

На основании вашего комментария:

Батарейки в держателях (дешевле, чем их сваривать). Батареи находятся в корпусе, и зарядка по одной ячейке (вне корпуса) не в моих интересах (так как они находятся ниже двух печатных плат)

Вы точно НЕ должны этого делать. Извлечение аккумуляторов из держателя / корпуса и их отдельная зарядка с помощью зарядных устройств TP4056 НЕ обеспечит согласованные напряжения на клеммах ваших нескольких зарядных устройств. Вы будете вводить неконтролируемые токи балансировки, когда вы снова подключите их к держателю / корпусу.Уравновешивающий ток, конечно, не разрушит батареи, но в зависимости от температуры каждой ячейки и напряжения на клеммах циркулирующие токи могут составлять от нескольких сотен мА до нескольких ампер.

Установка последовательных предохранителей для каждой ячейки (как предлагается в комментариях) — это жизнеспособный способ защиты от короткого замыкания в одной ячейке (возгорание одной ячейки в отличие от пожара 8 ячеек … возможно). Вы, конечно, могли бы подумать об этом.

TP4056 не может быть легко соединен параллельно, потому что пороговые значения напряжения и тока на клеммах будут разными для каждого чипа зарядного устройства.Однако вы можете обойтись без этого в ограниченной форме, поскольку TP4056 является линейным зарядным устройством CC / CV. Я бы не предлагал вам использовать более трех простых вариантов параллельно.

Ячейки 168650 сильно различаются, вот типичная таблица данных.

Я был бы обеспокоен тем, что если у вас когда-либо будет неисправность, в которой установлен только один элемент батареи, вы серьезно перезарядите на 3 А, особенно при отсутствии измерения температуры. Однако, если вы уверены, что ваша параллельная проводка и соединения для блока достаточно безопасны, то ток 3А может быть приемлемым зарядным током для блока.

Таблица TP4056 показывает, что существует диапазон выходных напряжений для режима CV. Если ваша аккумуляторная батарея разряжена до 3,4 В, вы можете быть уверены, что все три зарядных устройства будут в режиме CC, пока все хорошо. Однако они будут переключаться с CC на постоянный и CV в разное время (напряжения), причем микросхема с самым высоким напряжением определяет конечную точку переключения.

Три зарядных устройства производят 3 А, затем 2 А + 1 струйку, затем 1 А + 2 струйку, затем 3 струйки по мере увеличения напряжения на клеммах блока.В конце концов все три зарядных устройства отключатся, и эту точку будет определять микросхема с самым высоким напряжением.

Зарядка аккумулятора

— Если у меня две литий-ионные аккумуляторные батареи 18650 разной емкости, могу ли я заряжать их по одной и той же схеме?

Ale ответит на это неверно.

Для литий-ионных элементов

с разной емкостью потребуется разное время, потому что элемент меньшей емкости будет / может быть заряжен первым, а затем будет чрезмерно подвергаться зарядному напряжению (в то время как элемент большего размера по-прежнему получает заряд).Это приведет к «перезарядке» более слабой клетки, у нее вырастет некоторая плохая химия внутри, ее емкость упадет еще больше, и она умрет от раздувания или того хуже.

Если одна ячейка будет иметь более высокое напряжение, чем другая, ток будет течь от этой ячейки к нижней ячейке. Импеданс ячеек довольно низок, поэтому напряжения эффективно синхронизируются. Таким образом, перезарядка аккумулятора не представляет опасности.

Разрядка работает точно так же. При разумных скоростях разряда, таких как 1С, напряжения ячеек будут продолжать фиксироваться вместе.Вы не можете чрезмерно разрядить ячейку, потому что, если бы это произошло, ток начал бы течь в из других ячеек. На практике он никогда даже не попадет в это состояние.

При чрезвычайно высокой скорости разряда (здесь мы говорим о десятках ампер) несоответствие ESR батарей может привести к их нарушению баланса. Если в любой момент снять нагрузку, батареи начнут восстанавливать баланс, поскольку ток течет от высокого элемента к низкому элементу. Это действительно актуально только для RC и аналогичных приложений с высокими нагрузками, когда упаковка может быть разряжена менее чем за 2 минуты.

При зарядке может потребоваться более мощный элемент с меньшим внутренним сопротивлением. больше тока, чем может позволить конструкция элемента, что может привести к «быстрому вентиляция в том числе пожарная ».

Если ячейка имеет меньшее сопротивление и заряжается быстрее, ее напряжение будет бесконечно увеличиваться, это приведет к тому, что она будет потреблять меньший ток. При низких уровнях заряда элементы, естественно, распределяют ток пропорционально своей емкости. Одно предостережение заключается в том, что при обрыве провода ток будет перераспределен на другие ячейки, потенциально превышая их пределы зарядки.

Заявление об ограничении ответственности: предыдущее применимо только к одиночным элементам с различной емкостью, включенным параллельно. С серийными ячейками все сложнее.

Lipos может быть опасным. Это все теоретически, поэтому, пожалуйста, отнеситесь к этому с недоверием. Я все равно публикую его, потому что ответ Аля дезинформативен, даже если он сделан из лучших побуждений.

Зарядка аккумуляторов 18650 методом параллельной зарядки-знания о батареях

Возрождающие батареи могут продемонстрировать удобство при длительных поездках.И одним из наиболее важных факторов, определяющих емкость аккумулятора и его способность восстанавливаться, является соединение ячеек. Обычно вы сталкиваетесь с батареей, элементы которой соединены последовательно, но некоторые элементы также подключены параллельно.

Параллельная зарядка позволяет подключать несколько ячеек и создавать единую батарею, которую можно заряжать. Теперь, когда мы знаем, почему важно параллельное соединение ячеек, становится критически важным узнать и о методах подзарядки.Итак, сегодня мы собираемся изучить способы зарядки аккумуляторов 18650, подключенных параллельно.

Можно ли параллельно заряжать аккумуляторы 18650?

Да, вы можете заряжать батареи параллельно, параллельная зарядка означает, что вы не заряжаете батареи напряжением, в любом случае, скорее, лимитом батарей в ампер-часах.

Предел ампер-часов, известный как спецификация ампер-часов, показывает вам результат токовой ячейки в той степени, в которой батареи могут создавать ток.«Оценка AH также меняется в зависимости от того, в какой степени используется аккумулятор. Оценка «100 Ач при 2 часах» показывает, что элемент может выдавать пять ампер тока в течение 20 часов. Определите эти качества, чтобы решить, насколько равная схема изменяет предел AH. При параллельном подключении батареи имеют увеличенную емкость AH, а когда напряжение равно эквивалентному для каждой батареи. Параллельная установка схемы может использовать ее ветви, чтобы определить, в какой степени батарея может контролировать вещи на пределе AH.?

Низкотемпературный большой ток Источник питания аварийного пуска 24 В Характеристики батареи: 25,2 В 28 Ач (литиевая батарея), 27 В 300 Ф (блок суперконденсаторов) Температура зарядки : -40 ℃ ~ + 50 ℃ Температура нагнетания: -40 ℃ ~ + 50 ℃ Пусковой ток: 3000A

Если вам нужно настроить параллельную схему зарядки, элементы в любом случае будут просто катализировать их стандартное напряжение. Зарядка аккумуляторов в эквивалентной схеме подразумевает, что вы должны учитывать, как будет увеличиваться предел AH. Модельная методика для параллельной зарядки аккумуляторов заключается в использовании одной части одной и той же схемы, чтобы обвинить каждую батарею в одном зарядном устройстве.Подключите положительный вывод зарядного устройства к положительной клемме первой батареи и свяжите эту положительную клемму с положительной клеммой последующей батареи.

Продолжайте до тех пор, пока все ячейки не будут связаны. В этот момент соедините отрицательный вывод зарядного устройства с отрицательным концом основной батареи и продолжайте связывать каждый отрицательный конец аналогично тому, как вы сделали для положительных замыканий.

Как заряжать параллельную батарею 18650?

Как и отдельные элементы, вы можете объединить батареи вместе, чтобы получить более высокую энергию / мощность (ампер-часы, амперы).Можно разместить до двух батарей одинаково. Чтобы объединить батареи параллельно, вы должны связать положительный полюс с положительным, а отрицательный — с отрицательным.

Важно использовать батареи аналогичной модели с эквивалентным напряжением и никогда не смешивать батареи другого возраста.

При сопряжении двух аккумуляторов важно убедиться, что уровни заряда являются сравнительными (напряжения в пределах 0,3 В) перед подключением. Если уровень заряда сильно различается, между батареями может протекать большой ток.

В обстоятельствах, когда батареи соединены естественным образом, должна быть внешняя передача, чтобы ограничить ток, меньший, чем самый экстремальный ток заряда батареи, в частности или потенциально допустимая допустимая токовая нагрузка соединительного провода. Батареи могут достигать идеального рабочего напряжения, когда имеется связь между несколькими ячейками; каждая из ячеек добавит свой потенциал напряжения, чтобы получить общую энергию, требуемую на клеммах. С другой стороны, равная ассоциация достигает более высокого предела, просто включая абсолютные ампер-час (Ач) всех задействованных ячеек.

Однако некоторые аккумуляторные блоки включают в себя как последовательное, так и параллельное подключение. Для рабочих станций обычно используются четыре ячейки с литиевыми частицами 3,6 В, связанные в устройстве для достижения заявленного напряжения 14,4 В, а затем две ячейки, связанные с соответствующим расширением предела с 2400 мАч до 4800 мАч.

Низкая температура Высокая плотность энергии Прочный полимерный аккумулятор для ноутбука Спецификация аккумулятора: 11,1 В 7800 мАч -40 ℃ 0,2C емкость разряда ≥80% Пыленепроницаемость, устойчивость к падению, защита от коррозии, защита от электромагнитных помех

Эта конструкция известна как 4s2p, что подразумевает наличие четырех ячеек и двух одинаковых ячеек.Защитная пленка между батареями предохранит токопроводящую металлическую оболочку от короткого замыкания.

Как подключить батареи 18650 параллельно?

Чтобы соединить батареи параллельно, используйте перемычку, чтобы связать положительные клеммы и другую перемычку, чтобы соединить отрицательные клеммы двух ячеек друг с другом: отрицательный полюс с отрицательным, а положительный — положительный. Вы можете связать свою кучу с ОДНОЙ из батарей, и она будет разряжать обе батареи одинаково.

Чтобы элементы были выровнены, соедините положительный полюс с одной стороны аккумуляторного блока, а отрицательный с противоположной стороны. • Если у вас есть две группы батарей, ранее связанных с равными, вы можете объединить их, чтобы сформировать метод . Силовые курсы через параллельную ассоциацию только эквивалентны тому, что происходит в одной батарее.

Невозможно отличить. Впоследствии вы можете связать две равные ассоциации в аранжировку, как две батареи. Требуется всего одна ссылка; необходимо удлинение между положительными выводами от одного параллельного блока к отрицательному выводу другого параллельного блока.? Ничего страшного, если с терминалом связано несколько ссылок. Очень важно эффективно разрабатывать такие типы аккумуляторных батарей.

При параллельном подключении аккумуляторов попытайтесь согласовать их емкости, насколько бы разумно ни было ожидать, чтобы воздержаться от разряда одной батареи быстрее, чем другой. Кроме того, возраст батарей должен быть одинаковым, добавление новых элементов к старым приведет к тому, что старые потянут новые.

Параллельную зарядку может делать любой желающий от любого зарядного устройства и от любых аккумуляторов.Результатом параллельной зарядки является одновременное подключение нескольких батарей во избежание их замены. Это снижает вашу нагрузку за счет многократной настройки зарядного устройства для зарядки нескольких аккумуляторов.

Наши блоги — Как заряжать литиевые батареи параллельно?

27 ноября 2019 г. 19:19:55 America / Los_Angeles

Батареи могут достичь желаемого рабочего напряжения при последовательном соединении нескольких ячеек; Каждая из ячеек добавит свой потенциал напряжения, чтобы получить общее напряжение, требуемое на клеммах.С другой стороны, параллельное соединение увеличивает емкость за счет простого добавления общего ампер-часа (Ач) всех задействованных ячеек.

Однако некоторые аккумуляторные блоки состоят из комбинации последовательного и параллельного подключения. Для ноутбуков обычно используются четыре литий-ионных элемента 3,6 В, подключенных последовательно для достижения номинального напряжения 14,4 В, а затем две ячейки, подключенные параллельно, для увеличения емкости с 2400 мАч до 4800 мАч. Эта конфигурация известна как 4s2p, что означает четыре ячейки последовательно и две ячейки параллельно.Изолирующая пленка между ячейками предотвратит короткое замыкание проводящей металлической оболочки.


Большинство химикатов, используемых в батареях, подходят как для последовательного, так и для параллельного подключения. Однако важно, чтобы использовались батареи одного и того же типа с одинаковым напряжением и емкостью (Ач), и их нельзя смешивать с батареями разных производителей и размеров. Более слабая ячейка вызовет дисбаланс в системе. Это особенно важно в любой конфигурации, выполненной последовательно, потому что мощность аккумулятора равна самому слабому звену в цепи.

Параллельная зарядка литиевой батареи

Если есть необходимость в более высоких токах, и нет места для больших элементов, или если большие элементы не соответствуют конструкции или структуре батареи или устройства, тогда одна или несколько ячеек могут быть подключены параллельно. Как указывалось ранее, большая часть химического состава аккумуляторов допускает параллельное подключение и конфигурацию с минимальными побочными эффектами или их отсутствием. Номинальное напряжение может оставаться неизменным (например, 3,60 В), но емкость (Ач) и время работы аккумулятора будут увеличиваться в зависимости от количества подключенных аккумуляторов.

Таким образом, при параллельном подключении аккумуляторов емкость аккумулятора в Ач увеличится, включая время работы. Но напряжение всегда останется прежним.

Ячейка, развивающая высокое сопротивление, менее критична при добавлении к параллельному соединению, чем при последовательной конфигурации. Но неисправный элемент снижает общую нагрузочную способность. Это похоже на двигатель с четырьмя цилиндрами, который работает только на трех, а не на четырех. Однако электрическое короткое замыкание является более серьезным, поскольку неисправный элемент забирает энергию из других элементов и может создать опасность возгорания.Большинство так называемых электрических коротких замыканий мягкие и выражаются в высоком саморазряде.

Полное короткое замыкание может произойти из-за обратной поляризации или роста дендритов. Таким образом, большие блоки обычно включают в себя предохранитель, который отключит неисправный элемент от параллельной цепи при его коротком замыкании.

Слабый элемент не влияет на напряжение, но приведет к сокращению времени работы из-за уменьшенной емкости. Короткая ячейка может вызвать чрезмерное нагревание и создать опасность возгорания.В больших упаковках есть предохранитель. Предохранитель предназначен для предотвращения высокого тока путем изоляции неисправной ячейки.


Можно ли безопасно заряжать литиевые батареи параллельно?

Да, параллельно можно заряжать аккумуляторы. Все, что вам нужно сделать, — это соблюдать меры предосторожности, связанные с зарядкой литий-ионных или литий-полимерных аккумуляторов. Если вы не знаете, как это работает, вы либо найдете кого-то, кто может это сделать, либо вообще не пробуете это сделать.В большинстве случаев использование правильных инструментов (например, правильного зарядного устройства) может сэкономить вам много времени и стресса.

Только батареи одного типа (глубокого разряда, пусковые, AGM, герметичные, гелевые, необслуживаемые) могут заряжаться одновременно при параллельном подключении (от + до +, от — до -).

При параллельном подключении аккумуляторов общее напряжение аккумуляторов сохраняется. Например, если две 12-вольтовые батареи подключены параллельно, общее напряжение составляет 12 вольт.

Если вы подключаете несколько батарей параллельно, убедитесь, что вы подключили положительную клемму (+) первой батареи к положительной клемме (+) второй батареи.Затем таким же образом подключите отрицательную клемму (-) первой батареи к отрицательной клемме (-) второй батареи.

Знак плюс первой батареи и знак минус первой батареи должны быть подключены к BatteryMINDer, если таковой имеется. В противном случае подключите их к доступной батарее.

Затем также убедитесь, что вы подключаете каждую батарею к другой с помощью изолированного кабеля калибра 18 (типа шнура лампы). Зачистите его там, где вы хотите, чтобы он имел электрический контакт с клеммами каждой батареи, затем используйте кольцо или зажимы, чтобы удерживать его на месте.

Не забывайте обессеривать каждую батарею отдельно в течение 2-3 дней, если вы подключаете их параллельно. В противном случае они не будут десульфатироваться одинаково.


В чем разница между последовательной и параллельной зарядкой литиевых батарей?

Электрические компоненты подключаются последовательно или параллельно. Оба они обладают преимуществами и недостатками, а также имеют свои применения — там, где они наиболее сильны.

При последовательном подключении литий-ионных аккумуляторов емкость аккумулятора остается прежней, но напряжение аккумулятора увеличивается.

В то время как напряжение литий-ионных аккумуляторов остается неизменным при параллельном подключении аккумуляторов, емкость, однако, увеличивается с добавлением ячеек в установку. В последовательной конфигурации необходима балансировочная схема для выравнивания и компенсации дисбаланса SOC, в то время как параллельные ячейки в значительной степени уравновешивают себя. Каждая батарея большой емкости имеет внутреннюю параллельную ячейку. Но, с другой стороны, каждая высоковольтная батарея имеет элементы, последовательно соединенные внутри балансирующей цепью.

Это некоторые из различий между батареями, подключенными последовательно и параллельно. Собирая батарею для параллельного подключения, убедитесь, что вы соблюдаете все меры предосторожности, чтобы оставаться в безопасности.

Как подключить батареи последовательно и параллельно

Если вы когда-либо работали с батареями, вы, вероятно, встречали термины серия , параллельный и последовательно-параллельный , но что именно означают эти термины?

Series, Series-Parallel и Parallel — это соединение двух батарей вместе, но зачем вам вообще нужно соединять две или более батарей вместе?

Соединяя две или более батарей последовательно, последовательно-параллельно или параллельно, вы можете увеличить напряжение или емкость в ампер-часах, или даже и то, и другое; что позволяет использовать приложения с более высоким напряжением или энергоемкие приложения.

ПОДКЛЮЧЕНИЕ АККУМУЛЯТОРОВ СЕРИИ

Последовательное подключение батареи — это когда вы соединяете две или более батареи вместе для увеличения общего напряжения системы батарей, последовательное соединение батарей не увеличивает емкость, а только напряжение.
Например, если вы подключите четыре батареи 12 Вольт 26 Ач, у вас будет напряжение батареи 48 В и емкость батареи 26 Ач.

Чтобы сконфигурировать батареи для последовательного подключения, каждая батарея должна иметь одинаковое напряжение и номинальную емкость, иначе вы можете повредить батареи.Например, вы можете подключить две батареи 6 В 10 Ач вместе последовательно, но вы не можете подключить одну батарею 6 В 10 Ач с одной батареей 12 В 10 Ач.

Для последовательного подключения группы батарей вы подключаете отрицательную клемму одной батареи к положительной клемме другой и так до тех пор, пока не будут подключены все батареи, затем вы должны подключить перемычку / кабель к отрицательной клемме первой батареи в вашем цепочку батарей к вашему приложению, затем еще один кабель к положительной клемме последней батареи в вашей цепочке к вашему приложению.

При последовательной зарядке аккумуляторов необходимо использовать зарядное устройство, соответствующее напряжению аккумуляторной системы. Мы рекомендуем заряжать каждую батарею индивидуально, чтобы избежать дисбаланса батареи.

Герметичные свинцово-кислотные батареи

уже много лет являются предпочтительным выбором для систем с длинными линиями высоковольтных аккумуляторных батарей, хотя литиевые батареи могут быть сконфигурированы последовательно, это требует внимания к BMS или PCM.

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ АККУМУЛЯТОРОВ

Параллельное подключение батареи — это когда вы соединяете две или более батареи вместе для увеличения емкости в ампер-часах, при параллельном подключении батареи емкость увеличивается, однако напряжение батареи остается прежним.

Например, если вы подключите четыре аккумулятора 12 В 100 Ач, вы получите систему аккумуляторов 12 В 400 Ач.

При параллельном подключении батарей отрицательная клемма одной батареи подключается к отрицательной клемме следующей и так далее через цепочку батарей, то же самое делается с положительными клеммами, т.е. положительный полюс одной батареи к положительной клемме батареи. следующий. Например, если вам нужна аккумуляторная система 12 В 300 Ач, вам нужно будет подключить три батареи 12 В 100 Ач вместе параллельно.

Параллельная конфигурация батарей помогает увеличить время, в течение которого батареи могут питать оборудование, но из-за увеличенной емкости в ампер-часах их зарядка может занять больше времени, чем у последовательно соединенных батарей.

СЕРИЯ

— АККУМУЛЯТОРЫ С ПАРАЛЛЕЛЬНЫМ СОЕДИНЕНИЕМ

И последнее, но не менее важное! Батареи соединены последовательно-параллельно. Последовательно-параллельное соединение — это когда вы подключаете цепочку батарей для увеличения как напряжения, так и емкости системы батарей.

Например, вы можете соединить шесть батарей 6 В 100 Ач вместе, чтобы получить батарею 24 В 200 Ач, это достигается путем настройки двух цепочек по четыре батареи.

В связи с этим у вас будет два или более комплектов батарей, которые будут настроены как последовательно, так и параллельно для увеличения емкости системы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *