Никелевые аккумуляторы: Железо-никелевый аккумулятор — Википедия – Никель-кадмиевый аккумулятор — Википедия

Содержание

Железо-никелевый аккумулятор — Википедия

Желе́зо-ни́келевый аккумуля́тор — это вторичный химический источник тока, в котором железо — анод, электролитом является водный раствор гидроксида натрия или калия (с добавками гидроксида лития), катод — гидрат окиси никеля(III).

Активный материал содержится в никелированных стальных трубках или перфорированных карманах. С точки зрения стоимости и удельной энергоемкости, они близки к литий-ионным аккумуляторам, а с точки зрения саморазряда, эффективности и напряжения — к NiMH аккумуляторам. Это достаточно выносливые аккумуляторы, стойкие к грубому обращению (перезаряд, глубокий разряд, короткое замыкание и термические удары) и имеющие очень длинный срок службы.

Их использование стало снижаться с момента остановки производства из-за пожара на заводе/лаборатории Эдисона в 1914 году[1]проверить ссылку, по причине плохих показателей работы батарей при низких температурах, плохого удержания заряда (как у NiMH аккумуляторов) и высокой стоимости производства, сравнимой с лучшими герметизированными свинцово-кислотными аккумуляторами и до 1/2 стоимости NiMH аккумуляторов. Однако в связи с ростом стоимости свинца

[2] в последние годы, цена свинцовых аккумуляторов значительно поднялась, и цены практически сравнялись.[3]

При сравнении аккумуляторов со свинцово-кислотными следует помнить, что допустимый эксплуатационный разряд свинцово-кислотного аккумулятора значительно меньше, чем теоретическая полная ёмкость, а железоникелевого — очень близок к ней. Поэтому реальная эксплуатационная ёмкость железоникелевого аккумулятора, при равной теоретической полной ёмкости, может быть в несколько раз (в зависимости от режима) больше, чем у свинцово-кислотного.

Способность этих аккумуляторов выносить частые циклы разряд/заряд связана с низкой растворимостью реагентов в электролите. Длительное формирование металлического железа в процессе зарядки обусловлено низкой растворимостью Fe3O4. Длительный процесс образования кристаллов железа сохраняет электроды, но также лимитирует скорость работы: данные аккумуляторы заряжаются медленно и так же медленно разряжаются.

Основные факторы ограничивающие долговечность железо-никелевых аккумуляторов — выгорание графита токопроводящей добавки из-за выделения кислорода при разложении воды, коррозия никелированных железных корпусов и ламелей с последующим высыпанием активных масс в шлам, осаждение железа на сепараторах и увеличение саморазряда. Железо-никелевые элементы производства заводов Эдисона в начале 19хх годов имели трубчатую конструкцию положительного окисно-никелевого электрода с токопроводящей добавкой никелевых лепестков вместо графита и улучшенную технологию никелирования железных конструкционных материалов (запекание многослойного никелевого покрытия, полученого из водного раствора никелевой соли, в печах с водородной защитной атмосферой). При этом назначенный срок службы составлял 100 лет и рекомендованный интервал замены электролита — один раз в 5..10 лет. В более дешевых конструкциях железо-никелевых аккумуляторов со сроком службы в начальные десятки лет из-за выгорания графитной токопроводящей добавки в процессе эксплуатации элемента быстрее загрязняется электролит карбонатами и уменьшаются интервалы между заменами электролита (рекомендованный интервал замены электролита в исполнениях никелевых аккумуляторов с графитом — от 100 циклов или 1 раз в год). Также после выгорания существенного количества графита ухудшается отдаваемая емкость и увеличивается эквивалентное внутреннее сопротивление элемента из-за ухудшения контакта активной массы с электродами. Окончательное разрушение аккумулятора и полный выход из строя происходят при сквозной коррозии конструкционных элементов (ламелей и/или стального корпуса) из-за ограниченного качества никелирования дешевых вариантов исполнения аккумулятора.

Никель-железные аккумуляторы долгое время использовались в европейской горной промышленности благодаря их способности выносить вибрацию, высокие температуры и другие стрессовые воздействия. Повторно к ним возрос интерес в солнечных и ветрогенераторах, современном электротранспорте.

Вальдемар Юнгнер[править | править код]

Шведский изобретатель Вальдемар Юнгнер (Waldemar Jungner, в английском произношении — Джангнер) был изобретателем никель-кадмиевого аккумулятора в 1899. Юнгнер экспериментировал с железом в качестве замены кадмию, включая вариант со 100 % железом. Юнгнер обнаружил, что главным преимуществом перед никель-кадмиевой схемой была стоимость, но из-за более низкой эффективности зарядки и более высокого газообразования никель-железная технология была признана неполноценной и заброшена. Юнгнер получил несколько патентов на железную версию его аккумулятора (шведские патенты № 8.558/1897, 10.177/1899, 11.132/1899, 11.487/1899 и германский патент № 110.210/1899).

Томас Эдисон[править | править код]

Железо-никелевый аккумулятор был независимо изобретён Томасом Эдисоном в 1901 и использовался как источник энергии для электромобилей, таких как «Detroit Electric» и «Baker Electric». Эдисон заявлял, что никель-железные батареи будут «гораздо лучше аккумуляторов, использующих свинцовые пластины и кислоту». Работа Юнгнера была практически неизвестна в США вплоть до 40-х годов, когда там было запущено производство никель-кадмиевых аккумуляторов. 50-вольтовая никель-железная батарея была основным источником питания в немецкой ракете «Фау-2» (совместно с двумя 16-вольтовыми аккумуляторами питания 4 гироскопов, в уменьшенной версии использовалась в крылатой ракете «Фау-1»).

  • Запасённая энергия/масса: 20-50[4] Вт·ч/кг
  • Запасённая энергия/объем: 350[5] Вт·ч/л
  • Мощность/масса: 100[4] Вт/кг
  • Эффективность: 65%[6]
  • Стоимость: 1,5[5] — 6,6[4] Вт·ч/US$
  • Саморазряд: 20%[4][5] — 40 %[4]/месяц
  • Срок службы: 30[6] — 50 лет[5][7]
  • Количество рабочих циклов: Многократный глубокий разряд на срок службы заметно не влияет.
    [5]
    [6]
  • Напряжение: 1,2 В[4]
  • Рабочий диапазон температур: от −40 до +46 °C[8]

Половина реакции на катоде:

2NiOOH+2h3O+2e−⇌2Ni(OH)2+2OH−{\displaystyle {\mathsf {2NiOOH\;+\;2H_{2}O\;+\;2e^{-}\quad \rightleftharpoons \quad 2Ni(OH)_{2}+2OH^{-}}}}

и на аноде:

Fe+2OH−⇌Fe(OH)2+2e−.{\displaystyle {\mathsf {Fe+2OH^{-}\quad \rightleftharpoons \quad Fe(OH)_{2}+2e^{-}}}.}

(При разряде реакция протекает слева направо, при заряде справа налево.) [1]

В связи со значением электрохимического потенциала железа в рабочем щелочном растворе при хранении заряженого аккумулятора происходит выделение водорода и саморазряд железного электрода. Также из-за малого значения перенапряжения выделения водорода на железном электроде при заряде примерно половина прошедшего через аккумулятор электрического заряда тратится на выделение водорода даже при рекомендованых положительных рабочих температурах. Это основной фактор ограничивающий энергетическую эффективность железо-никелевого аккумулятора. При понижении температуры ниже нуля зарядная эффективность железного электрода еще больше ухудшается и примерно при ниже −20 °C аккумулятор перестает заряжаться.

Аккумулятор Эдисона производился с 1903 до 1972 компанией «Edison Battery Storage Company» в East Orange, штат Нью-Джерси. Они были достаточно прибыльными для компании. В 1972 компания была продана корпорации «Exide Battery», которая прекратила производство в 1975.

В настоящее время (2012) железо-никелевые аккумуляторы производятся в США, Китае, Венгрии, России и Украине.

Железо-никелевые аккумуляторы не содержат кадмия и свинца, что делает их более безопасными для окружающей среды, чем никель-кадмиевые и свинцово-кислотные аккумуляторы.

Никель-кадмиевый аккумулятор — Википедия

Никель-кадмиевые аккумуляторы Авиационная бортовая никель-кадмиевая аккумуляторная батарея 20НКБН-25-У3

Никель-ка́дмиевый аккумуля́тор (NiCd) — вторичный химический источник тока, в котором катодом является гидрат закиси никеля Ni(OH)2 с графитовым порошком (около 5–8%), электролитом — гидроксид калия KOH плотностью 1,19–1,21 с добавкой гидроксида лития LiOH (для образования никелатов лития и увеличения ёмкости на 21–25%), анодом — гидрат закиси кадмия Cd(OH)2 или металлический кадмий Cd (в виде порошка). ЭДС никель-кадмиевого аккумулятора — около 1,37 В, удельная энергия — порядка 45–65 Вт·ч/кг. В зависимости от конструкции, режима работы (длительные или короткие разряды) и чистоты применяемых материалов, срок службы составляет от 100 до 900 циклов заряда-разряда. Современные (ламельные) промышленные никель-кадмиевые батареи могут служить до 20–25 лет. Никель-кадмиевые аккумуляторы (NiCd) наряду с никель-солевыми аккумуляторами могут храниться разряженными, в отличие от никель-металл-гидридных (NiMH) и литий-ионных аккумуляторов (Li-ion), которые нужно хранить заряженными.

В 1899 году Вальдмар Юнгнер (Waldmar Jungner) из Швеции изобрёл никель-кадмиевый аккумулятор, в котором в качестве положительного электрода использовался никель, а в качестве отрицательного — кадмий. Двумя годами позже Эдисон (Edison) предложил альтернативную конструкцию, заменив кадмий железом. Из-за высокой (в сравнении с сухими или свинцово-кислотными аккумуляторами) стоимости, практическое применение никель-кадмиевых и никель-железных аккумуляторов было ограниченным.

После изобретения в 1932 году Шлехтом (Shlecht) и Акерманом (Ackermann) спрессованного анода было внедрено много усовершенствований, что привело к более высокому току нагрузки и повышенной долговечности. Хорошо известный сегодня герметичный никель-кадмиевый аккумулятор стал доступен только после изобретения Ньюманом (Neumann) полностью герметичного элемента в 1947 году.

Принцип действия никель-кадмиевых аккумуляторов основан на обратимом процессе:

2NiOOH + Cd + 2H2O ↔ 2Ni(OH)2 + Cd(OH)2 E0 = 1,37 В.

Никелевый электрод представляет собой пасту гидроксида никеля, смешанную с проводящим материалом и нанесенную на стальную сетку, а кадмиевый электрод — стальную сетку с впрессованным в неё губчатым кадмием. Пространство между электродами заполнено желеобразным составом на основе влажной щелочи, который замерзает при -27°С[1]. Индивидуальные ячейки собирают в батареи, обладающие удельной энергией 20–35 Вт*ч/кг и имеющие большой ресурс — несколько тысяч зарядно-разрядных циклов.

  • Теоретическая энергоёмкость: 237 Вт·ч/кг
  • Удельная энергоёмкость: 45–65 Вт·ч/кг
  • Удельная энергоплотность: 50–150 Вт·ч/дм³
  • Удельная мощность: 150…500 Вт/кг
  • ЭДС = 1,37 В
  • Рабочее напряжение = 1,35…1,0 В (MIN допустимое для большинства бытовых аккумуляторов — 0,8В! Разряжать ниже = гарантированно уничтожить батарею)
  • Нормальный ток зарядки = 0,1…1 C, где С — ёмкость
  • Срок службы: около 100—900 циклов заряда/разряда.
  • Саморазряд: 10% в месяц
  • Рабочая температура: −50…+40 °C

В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно — в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за пять минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор полностью зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки. Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает внутреннее давление газов в тяжёлых условиях эксплуатации.

Цикл разряда начинается с 1,35 В и заканчивается на 1,0 В (соответственно 100% ёмкости и 1% оставшейся ёмкости)

Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды более технологичны, дешевле в производстве и обладают более высокими показателями рабочей ёмкости, в связи с чем все аккумуляторы бытового назначения имеют прессованные электроды. Однако прессованные системы подвержены так называемому «эффекту памяти». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится. В электрохимической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0,1 В. Типичный контроллер устройства, использующего аккумулятор, интерпретирует это снижение напряжения как полный разряд батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование ёмкости аккумулятора. Тем не менее, в типичном случае контроллер побуждает пользователя выполнять всё новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от «эффекта беспамятства» недорогих контроллеров.

Бытовой никель-кадмиевый аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость, и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя его напряжение будет правильным. То есть использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.

При хранении NiCd-аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумуляторов с хранения, рекомендуется хранить их в разряженном виде — тогда после первой же зарядки аккумуляторы будут полностью готовы к использованию. Для полной разрядки батареи и выравнивания напряжений на каждом разряжаемом элементе можно подключить цепочку из двух кремниевых диодов и резистора на каждый элемент, тем самым ограничив напряжение на уровне 1-1.1 В на элемент. При этом падение напряжения на каждом кремниевом диоде составляет 0,5–0,7 В, поэтому выбирать диоды для цепочки необходимо вручную, используя, например, мультиметр. После длительного хранения батареи необходимо провести два-три цикла заряд/разряд током, численно равным номинальной ёмкости (1C), чтобы она вошла в рабочий режим и работала с полной отдачей.

Иногда в сети Интернет можно встретить такую фразу «Необходимо полностью разрядить аккумулятор перед его зарядкой». Это означает, что аккумулятор надо разрядить до некоторого минимального значения напряжения. Для большинства бытовых аккумуляторов оно находится в диапазоне 0,9-0,8В. Конкретную величину надо уточнять в документации на аккумулятор. Разрядка ниже данного минимального напряжения ведёт к необратимому изменению характеристик аккумулятора, его «смерти».

Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента, особенно если аппаратура потребляет большой ток. Так как внутреннее сопротивление никель-кадмиевого аккумулятора на один-два порядка ниже, чем у обычных марганцево-цинковых и марганцево-воздушных батарей, мощность выдаётся стабильнее и без перегрева.

Никель-кадмиевые аккумуляторы применяются на электрокарах (как тяговые), трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолётов и вертолётов. Используются как источники питания для автономных шуруповёртов/винтовёртов и дрелей, однако здесь намечается тенденция к вытеснению их высокотоковыми батареями различных литиевых систем.

Несмотря на развитие других электрохимических систем и ужесточение экологических требований, никель-кадмиевые аккумуляторы остаются основным выбором для высоконадёжных устройств, потребляющих большую мощность, например фонарей для дайвинга.

Длительный срок хранения, относительная нетребовательность к постоянному уходу и контролю, способность стабильно работать на морозе до -40 °C и отсутствие возможности возгорания при разгерметизации в сравнении с литиевыми, малый удельный вес в сравнении со свинцовыми и дешевизна в сравнении с серебряно-цинковыми, меньшее внутренне сопротивление, большая надёжность и морозостойкость в сравнении с NiMH обуславливают по-прежнему широкое применение никель-кадмиевых аккумуляторов в военной технике, авиации и портативной радиосвязи.

Дисковые никель-кадмиевые аккумуляторы[править | править код]

Малогабаритные дисковые никель-кадмиевые аккумуляторы Д-0,03 и зарядное устройство к ним. СССР, 1980-е годы Magnify-clip.pngМалогабаритные дисковые никель-кадмиевые аккумуляторы Д-0,26Д и Д-0,06 с зарядным устройством к аккумулятору Д-0,06

Никель-кадмиевые аккумуляторы выпускаются также в герметичном «таблеточном» конструктиве, наподобие батареек для часов. Электроды в таком аккумуляторе — две прессованные тонкие таблетки из активной массы, сложенные в пакет с сепаратором и плоской пружиной и завальцованные в никелированный стальной корпус диаметром с монету. Используются для питания различных, в основном маломощных, нагрузок (током C/10-C/5). Допускают только небольшие зарядные токи, не более С/10, так как внутри корпуса должна успевать происходить рекомбинация выделяющихся газов. Благодаря замкнутой конструкции допускают длительный перезаряд с непрерывной рекомбинацией и выделением избыточной энергии в виде тепла. Напряжение такого аккумулятора ниже, чем у негерметичного, и мало изменяется в процессе разряда вследствие избытка активной массы катода, создаваемого с целью ускорения рекомбинации кислорода.

Дисковые аккумуляторы (как правило, в батареях по 3 шт. в общей оболочке, типоразмера аналогичного советскому Д-0,06) широко применялись в персональных компьютерах выпуска 1980–90 годов, в частности PC-286/386 и ранних 486, для питания энергонезависимой памяти настроек (CMOS NVRAM) и часов реального времени при отключенном сетевом питании. Срок службы аккумуляторов в таком режиме составлял несколько лет, после чего батарея, в большинстве случаев — впаянная в материнскую плату, подлежала замене. С развитием CMOS-технологии и уменьшением потребляемой мощности NVRAM и RTC аккумуляторы были вытеснены одноразовыми литиевыми элементами ёмкостью порядка 200 мА·ч (CR2032 и др.), устанавливаемыми в гнёзда-защёлки и легко заменяемыми пользователем, с аналогичным сроком непрерывной работы.

В СССР дисковые аккумуляторы были практически единственными доступными в широкой продаже аккумуляторами (кроме автомобильных и, позднее, NiCd размера AA на 450 мА·ч). Помимо отдельных элементов, предлагалась 9-вольтовая батарея из семи аккумуляторов Д-0,1 с разъёмом, аналогичным «Кроне», которая, однако, входила в отсек питания не у всех радиоприёмников, для которых предназначалась. Поставлялись только простейшие зарядные устройства с током С/10, заряжавшие аккумулятор или батарею примерно за 14 часов (время контролировалось пользователем).

Название
аккумулятора
Диаметр,
мм
Высота,
мм
Напряжение,
В
Ёмкость,
А*ч
Рекомендуемый
ток разряда, мА
Применение
Д-0,0311,65,51,20,033фотоаппараты,
слуховые аппараты
Д-0,0615,66,41,20,0612фотоаппараты, фотоэкспонометры,
слуховые аппараты, дозиметры
Д-0,125206,61,20,12512,5аккумуляторные электрические фонарики[уточнить], миниатюрные радиоприёмники
Д-0,2625,29,31,20,2626аккумуляторные электрические фонарики, фотовспышки, калькуляторы (Б3-36)
Д-0,5534,69,81,20,5555прицел ночного видения 1ПН58 (блок из пяти Д-0.55С), фотовспышки, аккумуляторные электрические фонарики, калькуляторы (Б3-34)[1]
7Д-0,1258,40,12512,5замена батарее Крона

NiCd-аккумуляторы производят множество фирм, в том числе такие крупные интернациональные компании, как GP Batteries, Samsung (под брендом Pleomax), VARTA, GAZ, Konnoc, Metabo, EMM, Advanced Battery Factory, Panasonic/Matsushita Electric Industrial, Ansmann и др. Среди отечественных производителей можно назвать НИАИ (создан на базе Центральной аккумуляторной лаборатории, 1946 г.), «Космос», ЗАО «Опытный завод НИИХИТ», НИИХИТ (АО).

Плавка продуктов утилизации NiCd-аккумуляторов происходит в печах при высоких температурах, кадмий в этих условиях становится чрезвычайно летучим, и в случае, если печь не оборудована специальным улавливающим фильтром, токсичные вещества (например пары кадмия) выбрасываются во внешнюю среду, отравляя окружающие территории. Вследствие этого оборудование для утилизации — более дорогое, чем для утилизации свинцовых батарей.

  • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.
  • Федотов Г. А. Электрические и электронные устройства для фотографии. Л.: Энергоатомиздат, 1984.
  • ГОСТ 15596-82. Источники тока химические. Термины и определения.
  • Описание заряда NiCd-аккумуляторов.
  1. Под ред. акад. Ю.Д. Третьякова. Неограническая химия. Том 3. Химия переходных элементов.. — Москва: Академия, 2004. — 368 с. — ISBN 5-7695-1436-1.

АККУМУЛЯТОРЫ НИКЕЛЕВЫЕ

   Краткий обзор никель-кадмиевых аккумуляторов фирмы GP – Golden Power. Такие никелевые (Ni-MH) батареи, одни из самых распространеных, и выпускаются в формате AA и AAA батареях – в народе их называют пальчиковые и минипальчиковые батарейки. Ресурс у многих свыше 1000 циклов разряд заряд, да и ёмкости впечатляют — сейчас ёмкость в 2500 мА уже в пределах нормы считатеся!

АККУМУЛЯТОРЫ НИКЕЛЕВЫЕ GP

   Никель-металлогидридные (Ni-MH) аккумуляторы по своей конструкции являются аналогами никель-кадмиевых (Ni-Cd) аккумуляторов, а по электрохимическим процессам — никель-водородных аккумуляторов. Удельная энергия Ni-MH аккумулятора существенно выше удельной энергии Ni-Cd и водородных аккумуляторов. Их разработка началась еще в 50-х годах, но в современной технике они нашли большее применение в виду необходимой портативности и того, что техника уже не ламповая и требует питания низкими напряжениями при значительной нагрузке, обычно это 3-4.5-6-9 или же 12 вольт.

Аккумуляторы GP - параметры

   Для обзора возьму никелевые аккумуляторы, которыми чаще всего в быту и пользуюсь — это аккумуляторы марки GP. Их легко можно найти в продаже, цены низкие и параметры впечатляют. Аккумуляторы GP долговечны, надежны, и температурный режим радует. Хорошая замена и экономия обычных незаряжаемых пальчиковых батареек. Существует несколько их модификаций и типоразмеров, которые вместе с кодовыми обозначениями показаны на рисунке ниже:

Аккумуляторы GP - типоразмеры

   Преимущества никелевых аккумуляторов

— Высокая емкость. Никель-металлгидридные аккумуляторы обладают высокой емкостью и плотностью энергии. Они прекрасно работают в современных цифровых устройствах с большими токами потребления.

— Мощный разряд. Продолжительный ток разряда до трёх значений паспортной емкости.

— Длительный срок службы. В зависимости от условий эксплуатации срок службы аккумуляторов составляет 500-1000 циклов заряд-разряд. (на год активного использования вполне хватает).

— Безопасный перезаряд. Аккумуляторы способны длительное время (до 6 месяцев) выдерживать заряд током 0,1С.

— Широкий температурный интервал. Температура окружающей среды при разряде аккумуляторов от -20 до +50 С.(на морозе не разрядится и на солнце не закипит!)

— Быстрый заряд. Аккумуляторы могут быть заряжены менее, чем за 1 час. Это существенный плюс, так как старые батареи значительной емкости можно было заряжать сутками!

— Отсутствие эффекта памяти. Нет необходимости разряжать аккумуляторы перед зарядом.

   Итого, мы имеем хоть и несколько устаревшие, но в некоторых случаях достойные замены для современных литиевых аккумуляторов. А отсутствие контроллера, который часто сгорает при неправильных подключениях при зарядке, становится большим плюсом в схемах с нестабильным зарядным током. Да и срок службы никелевых АКБ больше чем у литиевых раз в 5. До сих пор с успехом эксплуатирую два Ni-Cd аккумулятора АА фирмы Panasonic, которым по 10 лет! Автор материала: vanesex.

   Форум по источникам питания

   Обсудить статью АККУМУЛЯТОРЫ НИКЕЛЕВЫЕ


Что такое никель─железные аккумуляторы? | AUTO-GL.ru

Никель─железные аккумуляторы относятся к группе щелочных и по объёму выпуска в нашей стране занимают второе место после свинцовых батарей. В основном они используются в качестве тяговых АКБ. Этот тип батарей имеет длительный срок службы (до 3 тысяч циклов заряд-разряд), быстро заряжаются и они стоят дешевле никель─кадмиевых.

Содержание статьи

Железно — никелевый аккумулятор

Поэтому в отечественной промышленности они широко используются в электровозах и другом железнодорожном транспорте, складской технике, электрокарах. Один из недостатков – высокий саморазряд. Но при эксплуатации их в режиме тяговых – это не критично.

Сегодня мы рассмотрим устройство никель─железных аккумуляторов, особенности их эксплуатации и перспективы использования.

Процессы, происходящие в никель─железном аккумуляторе

Электрохимическая система никель─железного аккумулятора состоит из оксидно-никелевого электрода NiOOH (положительный электрод), железной губки (отрицательный) и едкой щелочи KOH (электролит). В процессе работы в аккумуляторе протекают следующие электрохимические процессы.

На оксидно-никелевом электроде идёт реакция:

2NiOOH + 2h3O + 2e— ⇒ 2Ni(OH)2 + 2OH—

На железном электроде протекает реакция:

Fe + OH— ⇒ Fe(OH)2 + 2e—

Реакции протекают обратимо. При разряде они идут слева направо, а при заряде – в обратном направлении.

  1. При протекании электрохимической реакции могут также образовываться оксиды Fe2O3 и FeOOH. Изменение физических и химических свойств оксидной плёнки приводит к торможению реакции на аноде.
  2. При этом происходит пассивация электрода.
  3. Причём пассивация становится сильнее при снижении температуры KOH и росте разрядного тока. Пассивации также способствует присутствие таких примесей, как сурьма, мышьяк, магний, никель и марганец.
  4. В роли депассиватора на железном электроде выступает сульфид-ион.

Он ослабляет и подавляет пассивацию, протекающую из-за примесей. При адсорбции на железном электроде сульфид-ион активирует его поверхность.

Сульфид-ион также способствует увеличению переходного омического сопротивления. В результате этого разрядная характеристика никель─железного аккумулятора с депассивирующим сульфид-ионом имеет большую длительность разряда и лежит в границах менее отрицательного потенциала.

Во время заряда отрицательного электрода идёт побочная реакцией с выделением водорода. Она становится более интенсивной при перемещении реакции в глубину электрода.

Это происходит из-за низкого водородного напряжения на губчатом железе, а также близкие равновесные потенциалы. Выход железа по току во время зарядки составляет не выше 70 процентов.

Эффективность заряда во многом зависит выделения на поверхности электрода h3.

Конструкция

Стандартный никель─железный аккумулятор – это блок плоских электродов, в прямоугольном стальном корпусе с никелированным покрытием. На верхней крышке находятся борны (токосъёмники) и пробка для заливки электролита. Эта конструкция, за исключением материалов электродов, полностью повторяет ламельные никель─кадмиевые аккумуляторы.

Параметры Ni─Fe аккумуляторов во многом определяются их конструкцией и технологии производства электродов. Последние отличаются видами токоведущих каркасов.

Ламельная конструкция подразумевает помещение активной массы в перфорированную оболочку их стали. В аккумуляторах безламельной конструкции активная масса напрессовывается или навальцовывается на сетку из стали.

Чаще всего использует ламельная конструкция.

  • Есть разновидности с плоскими и трубчатыми ламелями.
  • Отечественные производители делают в основном никель─железные аккумуляторы с плоскими ламелями.
  • Они представляют собой коробочки, ширина которых 13 миллиметров.
  • Высота может быть 2,8 (отрицательный электрод) или 4 миллиметра (положительный).

Длина ламелей определяется размерами самого аккумулятора. Примерно 15 процентов площади поверхности электрода занимает перфорация. Ламель производится из 2 стальных лент. Их толщина составляет 0,1 миллиметра. Положительные ламели выполняются никелированными.

Одна пластина сделана в форме желоба, а вторая в виде крышки.

Ламели расположены горизонтально и собраны в ряды. Они плотно собираются одна к другой, а по краям к ним закрепляются рёбра, служащие токоотводами.

Наверху сваркой прикрепляется контактная планка, имеющая ушко для сборки группы пластин. Полублоки различной полярности представляют собой блок электродов.

Сепараторами для разделения противоположных пластин в нём служат эбонитовые палочки. Вместо эбонитовых палочек могут использоваться резиновые жгуты, сетки из полиэтилена с крупными ячейками.

В качестве сепараторов могут использоваться и другие материалы, которые способны обеспечить расстояние 2 миллиметра между электродами.

Производство плоских ламелей довольно простое и может выполняться в больших объёмах на высокопроизводительном оборудовании.

К недостаткам ламельных никель─железных электродов стоит отнести их малую механическую прочность. Оксидно-никелевая масса в них набухает, и они могут увеличиваться в толщине на 35—40 процентов.

Начальная плотность активной массы положительного электрода составляет 1,7 грамма на кубический сантиметр. Этого сказывается на удельной ёмкости в процессе функционирования. Сопротивление электрода в процессе эксплуатации растёт из-за того, что окисляется контактная поверхность графита.

Эта добавка играет роль электропроводящего элемента. В активную массу вместе с графитом попадают и различные вредные примеси.

Эксплуатация

Никель─железные аккумуляторы выпускаются с ёмкостью 8─1150 Ач. Как уже говорилось выше, в основном они используются в качестве тяговых. Номинальная ёмкость Ni─Fe батареи определяется электрическим зарядом, который она отдаёт за 10 часов при температуре 20 градусов Цельсия до величины напряжения 1 вольт.

После зарядки никель─железный аккумулятор без подключённой нагрузки имеет напряжение 1,48 вольта. Постепенно при переходе в равновесное состояние плюсового электрода оно падает до 1,35 вольта. Номинал разрядного напряжения составляет 1,2 вольта.

На разрядных характеристиках можно видеть зависимость ёмкости с напряжением аккумулятора от разрядного тока. Основной причиной снижения ёмкости и напряжения является большое внутреннее сопротивление, а также пассивация губчатого железного электрода.

Заряд

Заряд никель─железных аккумуляторов, как одного из видов щелочных аккумуляторов, производится любым источником постоянного тока. При заряде изменяется ЭДС и напряжения внутри батареи.

Производителями батарей предусмотрено несколько режимов заряда. Есть те, что предназначены для введения в строй новой АКБ. Также есть параметры для нормальной, ускоренной зарядки.

Кроме того, есть режим тренировки, который пригодиться при потере ёмкости. Время зарядки во всех этих режимах не больше 10─12 часов.

В реальных условиях эксплуатации используют токи, заниженные по сравнению с рекомендуемыми режимами. Это делается, чтобы не завышать мощность зарядных устройств.

Естественно, что это приводит к росту времени зарядки. При зарядке небольшими токами предельное напряжение и газовыделение в процессе зарядки будут меньшими, чем при стандартном режиме заряда.

Для кислотных и серебряно─цинковых аккумуляторов заряд небольшими токами очень подходит. Но для никель─железный батарей зарядный ток должен укладываться в определённый интервал. Тогда зарядка будет проходить эффективно.

Если зарядный ток снижается, то коэффициент его использования для Ni─Fe аккумуляторов уменьшается. В результате, когда зарядный ток слишком мал, АКБ перестаёт заряжаться. При этом подаваемый ток просто расходуется на выделение водорода.

Это явление происходит потому, что снижается величина перенапряжения водорода на губчатом железном электроде. Заряд аккумулятор принимает при величине тока до 1/3 от нормального зарядного тока. При дальнейшем снижении эффективность падает.

Подробнее о том, как зарядить щелочной аккумулятор, можете прочитать по указанной ссылке.

Разряд

В инструкциях производителя для никель─железных аккумуляторов указывается номинальный ток разряда. На практике разрядный ток редко соответствует тому, что там написано.

Чтобы оценить процессы, происходящие при разряде, строятся кривые разряда Ni─Fe аккумуляторов и сравниваются с эталонными. Зависимость ЭДС от ёмкости при разряде выстраивается по 2 точкам. Они показывают ЭДС разряженной и заряженной АКБ.

Эталоном для сравнения служит разрядная кривая при разряде в течение 20 часов.

Не вдаваясь в подробности можно сказать, что никель─железные аккумуляторы не подходят для обеспечения питания аппаратуры сразу после того, как были заряжены. Причиной тому служит существенное отклонение напряжения от номинала. А отклонение реальных разрядных кривых от эталонных могут составлять до 10 процентов.

Саморазряд

Саморазряд увеличивается при повышении температуры. Согласно ГОСТ 9240-71 ёмкость заряженного Ni─Fe аккумулятора через 30 суток (хранение при температуре 20 градусов Цельсия) не должна снизиться больше, чем на 50 процентов.

Явление саморазряда щелочного аккумулятора обуславливается физико-химическими процессами и зависит от природы материала электролита и электродов. Потенциал оксидно-никелевого электрода в заряженном состоянии выше, чем у кислородного электрода, формирующегося в растворе щелочи.

В результате между ними идёт реакция окисления воды и выделения кислорода. Процесс продолжается до того момента, пока их потенциалы не сравняются. Дальнейшее продолжение саморазряда оксидно-никелевого происходит из-за химического взаимодействия NiOOH с h3O. В результате выделяется кислород и гидрат закиси Ni.

Но этот процесс идёт значительно медленнее и саморазряд существенно снижается.

На другом электроде железо растворяется в KOH. В результате этой реакции чего выделяется водород. Эта реакция является главной причиной саморазряда на железном электроде при хранении. Этот процесс довольно интенсивно при комнатной температуре.

Влияние на этот процесс оказывает чистота железа и технология производства. Он может достигать величин 40─100 процентов за 30 суток. Поэтому уменьшение саморазряда на Fe электроде является ключевым для никель─железных аккумуляторов.

Саморазряд значительно снижается при добавлении в состав электрода или электролита химических соединений мышьяка.

Можно сделать вывод, что для Ni─Fe аккумуляторов саморазряд можно понизить, если хранить их при низких температурах. Ещё одно направлением – это частичный разряд полностью заряженной батареи. В результате этого снижается потенциала оксидно-никелевого электрода.

Срок службы

Никель─железные АКБ имеют длительный срок эксплуатации, который превышает многие батареи прочих видов. Он зависит в основном от температуры и состава электролита. И также влияние оказывают режимы зарядки и разрядки.

Ускоренный заряд может сократить срок службы Ni─Fe аккумулятора до 1,5─2 раз. При ускоренном заряде увеличивается интенсивность вымывания из аккумулятора активной массы.

Кроме того, при увеличении тока растёт и температура, отрицательно сказывающаяся на сроке службы.

В основном, срок эксплуатации зависит от состояния оксидно-никелевого электрода. Часто железный электрод и оснастка ещё находятся в рабочем состоянии, а аккумулятор уже выходит из строя.

Срок также уменьшается при использовании АКБ в режиме длительного и глубокого разряда. Согласно требованиям ГОСТ 9240-71, срок эксплуатации никель─железный аккумуляторов не должен быть меньше 750 циклов.

При этом ёмкость в течение всего срока службы не должна быть меньше 90 процентов от номинала.

Нередко на практике при правильном обслуживании и эксплуатации никель─железные аккумуляторы служат по 25 лет. Для сравнения, у свинцово-кислотных батарей этот срок равен 5 годам.

Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию сайта. Голосуйте в опросе ниже и оценивайте материал.

Преимущества и недостатки

Железо-никелевый аккумулятор — это вторичный химический источник тока, в котором железо — анод, электролитом является водный раствор гидроксида натрия или калия (с добавками гидроксида лития), катод — гидрат окиси никеля.

Активный материал содержится в никелированных стальных трубках или перфорированных карманах.

С точки зрения стоимости и удельной энергоемкости, они близки к литий-ионным аккумуляторам, а с точки зрения саморазряда, эффективности и напряжения — к NiMH аккумуляторам.

Это достаточно выносливые аккумуляторы, стойкие к грубому обращению (перезаряд, глубокий разряд, короткое замыкание и термические удары) и имеющие очень длинный срок службы.

Использование стало снижаться с момента остановки производства из-за пожара на заводе/лаборатории Эдисона в 1914 году проверить ссылку, по причине плохих показателей работы батарей при низких температурах, плохого удержания заряда (как у NiMH аккумуляторов) и высокой стоимости производства, сравнимой с лучшими герметизированными свинцово-кислотными аккумуляторами и до 1/2 стоимости NiMH аккумуляторов.

Однако в связи с ростом стоимости свинца в последние годы, цена свинцовых аккумуляторов значительно поднялась, и цены практически сравнялись.

При сравнении аккумуляторов со свинцово-кислотными следует помнить, что допустимый эксплуатационный разряд свинцово-кислотного аккумулятора значительно меньше, чем теоретическая полная ёмкость, а железоникелевого — очень близок к ней.

  1. Поэтому реальная эксплуатационная ёмкость железоникелевого аккумулятора, при равной теоретической полной ёмкости, может быть в несколько раз (в зависимости от режима) больше, чем у свинцово-кислотного.
  2. Существует несколько видов щелочных аккумуляторов.
  3. По устройству электродов их делят на ламельные и безламельные, по составу активной массы пластин на никель-железные, никель-кадмиевые, серебряно-цинковые, по способу исполнения  — на герметичные и негерметичные.

В скорпусе ламельного никель-железного (НЖ) аккумулятора (см. рис.) расположены блоки положительных и отрицательных пластин. Разноименные пластины изолируют друг от друга эбонитовыми палочками.

На верхней крышке корпуса размещены полюсные выводы и отверстие для заливки электролита, закрываемое пробкой. Пробка имеет Т-образный канал для выхода газов, закрываемый резиновым пояском и прокладку.

Полюсные выводы положительных и отрицательных пластин изолированы от крышки корпуса.

Пластины аккумулятора состоят из стальных перфорированных ламелей (оболочек), внутри которых находится активная масса. Для повышения электропроводности в активную массу добавляют графит или никель.

В аккумуляторах типа НЖ число отрицательных пластин на одну больше, чем положительных, причем крайние отрицательные пластины касаются корпуса (если он железный никелированный).

Положительные пластины с торцов изолируют от корпуса (если он железный никелированный) листовым эбонитом.

Активной массой положительных пластин аккумуляторов типов НЖ является гидрат окиси никеля Ni(OH)3. Активная масса отрицательных пластин у аккумуляторов типа НЖ состоит из губчатого железа.

Электролитом служит водный раствор едкого кали КОН или едкого натра NaOH плотностью 1,19—1,21 г/см3 с добавкой 20 г едкого лития на 1 л электролита, который препятствует изменению структуры активных масс положительных пластин в условиях высоких температур.

При разряде гидрат окиси никеля переходит в гидрат закиси никеля, а губчатое железо — в гидрат его закиси. На образование этих веществ не затрачивается едкий натр или едкое кали, поэтому плотность электролита во время разряда остается постоянной.

Однако в аккумуляторы периодически доливают чистую воду, так как часть ее разлагается зарядным током на кислород и водород и испаряется.

При заряде аккумуляторов типов НЖ и НК все химические процессы протекают в обратном порядке и пластины восстанавливаются до первоначального химического состава.

Электроды ламельные: они состоят из никелевой сетки, в которой упакованы брикеты активной массы. В качестве сепаратора применена капроновая ткань. Основные характеристики. Э.д.с. заряженного щелочного аккумулятора типа НЖ — 1,5 В. При разряде э.д.с. снижается до 1,3 В. Напряжение щелочных аккумуляторов не является постоянным.

  1. При разряде оно сначала быстро уменьшается до напряжения 1,3 В, а затем медленно до напряжения 1,15 В, при котором разряд прекращают.
  2. Дальнейший разряд нецелесообразен, так как напряжение быстро падает и становится недостаточным для нормальной работы приемника энергии.
  3. Среднее напряжение аккумулятора при разряде принимают равным 1,25 В.
  4. Очередной заряд щелочных аккумуляторов проводят током, равным 0,25Q и в течение 6 ч.

Окончание заряда определяется тем, что напряжение на каждом элементе становится равным 1,75—1,8 В и наступает интенсивное «кипение» электролита во всех элементах.

Во время заряда нужно следить за тем, чтобы температура электролита не превышала 40 °С. Для снижения температуры уменьшают зарядный ток. Батареи щелочных аккумуляторов заряжают при вывернутых пробках во всех элементах.

В отличие от кислотных щелочные аккумуляторы могут отдать полную емкость при различных режимах разряда. Для этого щелочные аккумуляторы следует разряжать до различного конечного напряжения. Чем больше разрядный ток, тем меньше конечное напряжение, при котором аккумулятор отдает полную емкость.

Например, при 8-часовом режиме разряда аккумулятор отдает номинальную емкость при конечном напряжении 1,1 В, а при 5-часовом режиме разряда при конечном напряжении 0,8 В.

  • Большое изменение напряжения щелочных аккумуляторов требует установки специальных устройств, стабилизирующих напряжение электропитающей установки.
  • Поэтому при 1, 3 и 5-часовом режимах разряда используется только часть номинальной емкости щелочных аккумуляторов.
  • Нормальной температурой электролита щелочного аккумулятора считается 25°С.
  • При снижении температуры емкость аккумулятора уменьшается, при повышении — увеличивается.
  • Однако увеличение температуры электролита выше 40 град. резко увеличивает саморазряд аккумулятора.
  • Внутреннее сопротивление щелочных аккумуляторов приблизительно в 2 раза больше, чем свинцовых аккумуляторов такой же емкости.

Вследствие этого они менее чувствительны к коротким замыканиям, но имеют более низкий к.п.д. Внутреннее сопротивление заряженного щелочного аккумулятора r0 = 0,35/QН, где QH — номинальная емкость аккумулятора.

Внутреннее сопротивление разряженного аккумулятора в 1,5—2 раза больше, чем заряженного.

Щелочные никель-железные аккумуляторы подвержены значительному саморазряду.

Так, за 30 сут хранения при температуре электролита +20°С эти аккумуляторы теряют от 30 до 50% номинальной емкости, а при температуре электролита +40°С— всю емкость. Саморазряд никель-кадмиевых аккумуляторов в 2—2,5 раза меньше, чем никель-железных. Отдача у щелочных аккумуляторов меньше, чем у кислотных, и составляет 0,65 по емкости и 0,5 по энергии.

Долговечность

Способность этих аккумуляторов выносить частые циклы разряд/заряд связана с низкой растворимостью реагентов в электролите.

Длительное формирование металлического железа в процессе зарядки обусловлено низкой растворимостью Fe3O4.

Длительный процесс образования кристаллов железа сохраняет электроды, но также лимитирует скорость работы: данные аккумуляторы заряжаются медленно и так же медленно разряжаются.

Основные факторы ограничивающие долговечность железо-никелевых аккумуляторов — выгорание графита токопроводящей добавки из-за выделения кислорода при разложении воды, коррозия никелированых железных корпусов и ламелей с последующим высыпанием активных масс в шлам, осаждение железа на сепараторах и увеличение саморазряда.

Железо-никелевые элементы производства заводов Эдисона в начале 19хх годов имели трубчатую конструкцию положительного окисно-никелевого электрода с токопроводящей добавкой никелевых лепестков вместо графита и улучшеную технологию никелирования железных конструкционных материалов (запекание многослойного никелевого покрытия, полученого из водного раствора никелевой соли, в печах с водородной защитной атмосферой).

При этом назначеный срок службы составлял 100 лет и рекомендованый интервал замены электролита — один раз в 5..10 лет.

В более дешевых конструкциях железо-никелевых аккумуляторов со сроком службы в начальные десятки лет из-за выгорания графитной токопроводящей добавки в процессе эксплуатации элемента быстрее загрязняется электролит карбонатами и уменьшаются интервалы между заменами электролита (рекомендованый интервал замены электролита в исполнениях никелевых аккумуляторов с графитом — от 100 циклов или 1 раз в год).

  1. Также после выгорания существенного количества графита ухудшается отдаваемая емкость и увеличивается эквивалентное внутренее сопротивление элемента из-за ухудшения контакта активной массы с электродами.
  2. Окончательное разрушение аккумулятора и полный выход из строя происходят при сквозной коррозии конструкционных элементов (ламелей и/или стального корпуса) из-за ограниченого качества никелирования дешевых вариантов исполнения аккумулятора.
  3. Никель-железные аккумуляторы долгое время использовались в европейской горной промышленности благодаря их способности выносить вибрацию, высокие температуры и другие стрессовые воздействия.

Повторно к ним возрос интерес в солнечных и ветрогенераторах, современном электротранспорте.

Особенности использования

Никель-железные аккумуляторы формируют в растворе, содержащем 190 — 230 кг / м3 NaOH и 4 кг / м3 Li ( ОН), никель-кадмиевые аккумуляторы — в растворе КОН с ЫОН.

После формирования электролит выливают, аккумуляторы моют снаружи и сушат на су — шильно-моечном конвейере. Аккумуляторы, выпускаемые в стальных сосудах, после сушки обычно лакируют на конвейере.

На некоторые типы аккумуляторов одевают резиновые изоляционные чехлы.

Никель-железные аккумуляторы используются в тех областях применения, где такие их недостатки, как узкий температурный интервал работоспособности, значительный саморазряд и несколько более сложное эксплуатационное обслуживание по сравнению с ламельными никель-кадмиевыми аккумуляторами, не имеют существенного значения.  [2]

Никель-железный аккумулятор по своему устройству, внешнему виду и размерам похож на никель-кадмиевый.  [3]

Никель-железный аккумулятор емкостью от 250 до 11 50 А — ч занимает ведущее положение в качестве автономного источника электроэнергии разнообразных технических средств передвижения — электрокар, рудничных электровозов, электропогрузчиков.

Этому способствует большой срок службы ГОК аккумулятора, превышающий 1000 циклов, и высокая механическая прочность, надежность в работе, работоспособность в широком интервале токовой нагрузки, сравнительно невысокая стоимость ( хотя они в 3 — 4 раза дороже аналогичных по назначению свинцовых аккумуляторов), простота в эксплуатации.

Недостатком НЖ аккумулятора является низкая сохранность в заряженном состоянии. Однако для тяговых аккумуляторных батарей, эксплуатируемых весьма интенсивно, это не существенно.  [4]

Никель-железные аккумуляторы дешевле никель-кадмиевых ЭА, но имеют несколько худшие характеристики ( 8 — 30 Вт — ч / кг и 300 Вт / кг), особенно при низких температурах.  [5]

Никель-железный аккумулятор представляет собой железный сосуд ( бак), внутри которого размещены положительные и отрицательные пластины, выполненные в виде коробок из плоских перфорированных лент, заполненных активной массой.

Активная масса положительных пластин состоит из смеси гидрата окиси ( гидрок-сида) никеля и графита, отрицательных пластин — из специально приготовленного железного порошка.  [6]

Никель-железные аккумуляторы благодаря высокой прочности пластин и корпуса не боятся толчков и сотрясений, а их электролит не выделяет при заряде вредно действующих паров, удовлетворительно работают при температурах от — 20 до 40 С,

  1. Способны выносить короткие замыкания и перегрузки, не требуют тщательного ухода при эксплуатации, не подвержены явлениям сульфата-ции и имеют срок службы больше, чем у свинцовых.
  2. Некоторыетяговые никель-железные аккумуляторы после сборки отправляют потребителю, у которого они проходят формирование, но большинство аккумуляторов проходит один или два цикла формирования на производстве.
  3. Дляникель-железных аккумуляторов на перезарядных циклах заряд должен проводиться током нормального режима в течение 12 ч, на прогоночных циклах заряд проводится нормальным режимом.

Разряд на перезарядных и прогоночных циклах должен проводиться током 5-часового режима в течение 5 ч, но до напряжения не ниже конечного напряжения нормального режима разряда у каждого аккумулятора или у каждой батареи.

Сопротивлениеникель-железных аккумуляторов переменному току, в отличие от сопротивления никель-кадмиевых, имеет тенденцию только к возрастанию, что свидетельствует о преобладании во внутреннем сопротивлении этих аккумуляторов индуктивной составляющей над емкостной.

  • Главными недостаткаминикель-железных аккумуляторов являются большой саморазряд и быстрая пассивация при низких температурах. Указанные недостатки препятствуют полной замене ими более дорогого кадмий-никелевого аккумулятора.
  • На крышкеникель-железного аккумулятора у отрицательного полюса и а боковых сторонах ставится клеймо, с обозначением типа данного источника тока. Кроме того, на крышке батарейного ящика с никель-железными аккумуляторами проведена голубая полоса.
  • Плотность электролитаникель-железных аккумуляторов не измеряется в процессе заряда и разряда. Поэтому при правильном выборе плотности электролита в соответствии с температурными условиями эксплуатации опасность замерзания исключена.

Никель-железные батареи могут находиться в течение нескольких дней в разряженном состоянии. Это не вызывает каких-либо вредных последствий.

Поэтому в процессе эксплуатации степень заряженности никель-железных аккумуляторных батарей не контролируется.

Как правильно заряжать никель — железные аккумуляторы

В США разработкой НЖА для электромобиля занимаются фирмы «Вестингауз (Westinghause Electric Corp.) и «Игл-Пичер»

Окисно-никелевый электрод (ОНЭ) фирмы «Игл-Пичер» представляет собой безламельный электрод металлокерамической конструкции.

Технология изготовления такого электрода состоит из следующих стадий: получение высокопористой (до 80 %) никелевой основы путем прессования никелевого порошка на никелевую или железную никелированную решетку с летучим наполнителем, например карбамидом, и спекание нанесенной массы в водородной атмосфере при t = 700-900 °С.

Далее следует пропитка полученных основ в растворе азотнокислого никеля, кристаллизация соли в порах электрода, защелачивание для перевода соли азотнокислого никеля в гидроксид никеля (II) с последующей отмывкой от щелочи, сушкой и формированием.

Специфика электрохимической пропитки в противоположность обычной химической, применяемой в технологии изготовления ОНЭ фирмы «Игл-Пичер», состоит в пропитке электродов при катодной поляризации основы; последний прием позволяет получать основы более однородно заполненные гидроксидом никеля (II) при меньшей коррозии собственно никелевой основы в условиях пропитки.

Удельная емкость металлокерамических ОНЭ составляет 0,9- 1,1 А.ч/г и 0,35-0,45 А.ч/см3.

Фирма «Игл-Пичер» использует моноблочную конструкцию батареи. Каждый модуль включает шесть аккумуляторов. При заряде действует принудительное воздушное охлаждение. Сравнительные испытания НЖА, изготовленных фирмами «Вестингауз» и «Игл-Пичер», проведенных Аргонской Национальной лабораторией, показали практическую идентичность характеристик.

Из серьезных технических достижений в разработке НЖА для электромобиля следует упомянуть (кроме железного электрода фирмы СНДК) ОНЭ металлокерамической конструкции фирмы «Даймлер-Бенц» (Deimler-Benz, ФРГ).

При новой технологии изготовления ОНЭ осуществляется наполнение вспененного полимерного материала сухим никелевым порошком с размером частиц 2-4 мкм и нагреванием при 450 °С для выплавления полимерной основы с последующим спеканием в атмосфере водорода при

t =700-1000 °С. Полученная высокопористая коррозионно-стойкая основа подвергается электрохимической пропитке. Выходные характеристики электрода: 0,1-0,12 А. ч/г и 0,45-0,50 А. ч/см3.

Если рассматривать перспективы развития НЖА для электромобилей, то необходимо отметить следующее. Возможно за счет набора технологических мероприятий довести удельную энергию НЖА до 60 Вт. ч/кг. Стоимость 1 А-ч можно довести до 10- 5 коп., однако увеличение плотности энергии усиливает интенсивность тепловыделения.

Показатель1980г.200 А*ч1983г. 6 В,230 А*ч1990г.
РезультатЦельРезультатЦель
Удельная весовая энергия Вт*ч/кг50606070
Удельная объемная энергияВт*ч/дм390110116130
Пиковая мощность (15с, 50% заряженности)125150153175
Эффективность по энегии, %55606265
Срок службы, циклы150015002000
Эквивалент пробега, км120000120000160000

При заряде теплоотвод можно интенсифицировать системой циркуляции электролита, масса которой составляет 7 % от массы батареи.

  1. Кроме того, необходима разработка режима заряда, обеспечивающего, с одной стороны, приемлемую для практики скорость заряда 6-12 ч, а с другой, хорошее использование тока.
  2. В качестве датчика полной заряженности целесообразно использовать жидкостной сигнальный электрод, реагирующий на поток кислорода, поступающего с положительного электрода.
  3. В целом НЖА является единственным промышленным аккумулятором, который на данном этапе можно рассматривать основным кандидатом для применения в электромобилях.

На международной конференции по электромобилям в июне . в Париже французской фирмой САФТ была представлена конструкция НЖА, в значительной степени повторяющая конструкцию фирмы «Вестингауз», однако с более высокими энергетическими показателями.

Базовым элементом батареи является 5-аккумуляторный моноблочный модуль емкостью 230 А-ч. Создание энергомодуля явилось этапом реализации программы, приведенной в табл. 2.4.

Окончанием срока службы (табл. 2.4) считался цикл, при котором терялось 20 % начальной емкости. Батарея снабжена системой централизованной доливки водой.

Применен сдвоенный химически пропитанный металлокерамический ОНЭ с габаритными размерами 190x175x2x0,9 мм.

Безламельный отрицательный электрод получен прессованием окиси железа с пластмассовым связующим материалом на стальную ленту.

Каждый аккумулятор содержит 10 отрицательных электродов с габаритными размерами 19x175x1,5 мм. Массовая раскладка на один аккумулятор приведена в табл. 2.5.

Массовая раскладка НЖА фирмы САФТ

Элементы аккумулятораКилограммы%
Положительный электрод11.3045.0
Отрицательный -//-5.9523.7
Сепаратор0.652.6
Сосуд и уплотнения1.255.0
Токоотводы и межэлементные соединения0.10.4
Общая масса25.10100

Зависимость удельной энергии от температуры для различных токов разряда приведена на рис. 2.9, из которого следует, что в режиме электромобиля энергомодуль надежно функционирует при температуре, от О °С.

При окружающей температуре 25 °С при непрерывном разряде током 1С имеет место разогрев энергомодуля до 60 °С (рис. 2.10).

Понятно, что в системе электромобиля это значение температуры существенно повысится, поэтому необходима организация принудительного охлаждения; так как при использовании пластмассовых сосудов конвективная теплоотдача окажется недостаточной, необходимо жидкостное охлаждение по типу, используемому фирмой «Вестингауз».

Эксплуатационные испытания электромодулей проводились на модели «Пежо 104 И» (Peugeot 104 I) типа фургон.

Рис. 2.9. Зависимость удельной энергии от температуры никель-железной батареи фирмы САФТ (цифры на кривых — токи разряда)

  • Электромобиль был снабжен 16 энергомодулями описанного типа. При весе незагруженного электромобиля ИЗО кг масса батареи составила .
  • Пробег в условиях городского движения составил при полном заряде и средней скорости . Общая энергоемкость батареи — 22,9 кВт-ч, что соответствовало удельной энергии 57 Вт.ч/кг.
  • Оценивая данные, представленные фирмой САФТ, необходимо отметить следующее. По существу конструкция энергомодуля повторяет конструкцию фирмы «Вестингауз».
  • Рекламируемый ресурс работы завышен, поскольку приводятся данные по отдельному энергомодулю, а не по батарее в целом.

При эксплуатации в электромобиле необходимо будет решить проблему принудительного жидкостного охлаждения по типу, используемому фирмой «Вестингауз».

Никель-солевой аккумулятор — Википедия

Материал из Википедии — свободной энциклопедии

никель-солевой аккумулятор

Аккумуляторная батарея FIAMM SoNick 48TL200 (48 В, 200 А • ч)
Удельная энергоёмкость 140 Вт/ч/кг
Удельная энергоплотность 280 Вт/л
Электродвижущая сила 2,58 В
Рабочая температура от 270°С до 350°С °С

Никелево-солевой аккумуля́тор (Ni-NaCl, он же никелево-натриево-хлоридный аккумулятор, он же натриево-никелево-хлоридный аккумулятор) — вторичный химический источник тока, в котором катодом является металлический натрий, электролитом — керамический стакан-сепаратор из корунда (бета-глинозёма) и расплавленная соль, анодом — никелевая проволока. ЭДС никелево-солевого аккумулятора равен 2,56 В, удельная плотность энергии около 140 Вт·ч/кг в элементах и свыше 90 Вт·ч/кг в готовых батареях с системой управления. В зависимости от режима работы (буферный или циклический режим) срок службы составляет от 3000 до 9000 циклов заряда-разряда или же свыше 20-25 лет в буферном режиме. Никель-солевые аккумуляторы могут храниться разряженными, в отличие от свинцово-кислотных и никель-металлогидридных аккумуляторов, которые нужно хранить полностью заряженными, и от литий-ионных аккумуляторов, которые необходимо хранить при 40%-ом заряде от ёмкости аккумулятора.

Никелево-солевые аккумуляторные батареи (2NaCl-Ni) — аккумуляторы с высокими показателями удельной энергоёмкости, цикличности и стойкости к высоким температурам (рабочая температура от 270 до 350°С). Производятся из обыкновенной поваренной соли, керамики и никеля. Аккумуляторы абсолютно герметичные, относительно компактные в сравнении с традиционными свинцовыми аккумуляторами и экологически чистые.

Исследования по изучению перезаряжаемых аккумуляторных батарей на основе натрия в качестве отрицательного электрода начались ещё в 60-х годах прошлого века. Натрий привлек внимание учёных в первую очередь из-за своего большого электрического потенциала -2,71 В, лёгкого веса, нетоксичности и дешевизны.
Наиболее известный аккумулятор на основе натрия — это натрий-серный аккумулятор, выпускаемый японской корпорацией NGK. Никелево-солевые аккумуляторы являются логическим продолжением натриево-серной технологии, при этом они лишены недостатков, присущих натриево-серным батареям, а именно не содержат в своем составе едкой серы, которая ввиду своих свойств способствует быстрой коррозии керамики и тем самым сокращает срок службы аккумулятора.
Никелево-солевые батареи были впервые испытаны в 1970-х годах группой учёных в рамках проекта Zeolite Battery Research Africa (ZEBRA) в Претории, ЮАР под руководством доктора Йохана Котзера. По сокращённому названию проекта батарея и получила название Zebra. В течение 1980-х группой Beta Research and Development of Derby, Великобритания были полностью описаны химия элементов, электрохимические процессы, а также описан производственный цикл.
В течение 20 лет группа учёных доводила технологию до совершенства, испытывая в активном веществе присадки из разных металлов для достижения наибольших показателей производительности.
Серийное производство никелево-солевых батарей для разных отраслей промышленности было налажено в 1998 году в Швейцарии в г. Стабио на заводе MES-DEA. Сегодня данное предприятие входит в группу FIAMM и выпускает батареи для энергетики, связи, систем накопления энергии.

Особенностью работы никелево-солевого аккумулятора является расплавленное состояние электролита (NaAlCl4) и отрицательного электрода (Na), точка плавления которых составляет 157 °C и 98 °C соответственно. Именно по этой причине все аккумуляторы, в основе которых лежит применение натрия, например натриево-серные, относятся к разряду высокотемпературных и работают в температурном режиме около +250 °C.
Отрицательный электрод выполнен из натрия и в процессе работы также находится в расплавленном состоянии. Электрический потенциал натрия (-2,71 В) сделал его крайне привлекательным для применения в системах аккумулирования энергии, плюс ко всему он лёгок, безвреден, а главное — это вещество недорого.
Положительный электрод выполнен из никеля и в заряженном состоянии переходит в хлорид никеля.
Положительный и отрицательный электроды отделяются друг от друга керамическим сепаратором-мембраной. Он выполнен из β-глинозема (корунд), и обеспечивает протекание электро-химической реакции, пропуская через себя ионы натрия.

Устройство элемента, основные компоненты[править | править код]

Molten Salt Battery (Zebra).JPG Рис. 2 Устройство элемента Никель-Солевой батареи
  • Никель — положительный токосъемник (проволока), вспомогательное вещество (порошок).
  • Поваренная соль (2NaCl) — активное вещество в виде порошка.
  • β-глинозем — сепаратор.
  • Алюминий — вспомогательное вещество (в виде порошка).
  • Железо — вспомогательное вещество (в виде порошка).
  • Прочие присадки, в основном металлические пудры, для обеспечения высоких показателей по цикличности и сроку службы.
  • Нержавеющая сталь — стальной контейнер ячеек.

При заряде Соль вступает в реакцию с никелем, образуя хлорид никеля, в результате чего высвобождается 2 иона натрия, которые, проходя через керамический сепаратор, накапливаются на внешней его стенке.
В ходе разряда во внутренней полости керамического сепаратора восстанавливается поваренная соль и никель.
Процесс заряда/разряда полностью обратный, без образования каких-либо побочных продуктов, что позволяет достигать высоких показателей по срокам службы как в буферном, так и в циклическом режиме.

2NaCl+Ni <=========> NiCl2+2Na 
Разряженная          Заряженная

Технические характеристики никель-солевых элементов[править | править код]

  • Напряжение: 2.2-2.7 В (2.58 В в разомкнутой цепи)
  • Полезная ёмкость: 40 А·ч
  • Полная ёмкость: 48-50 А·ч
  • Габариты ячейки (Д × Ш × В): 36 × 36 × 220 мм
  • Вес элемента: 695 г
  • Показатели удельной энергоёмкости:
  • 140 Вт·ч/кг (для сравнения в свинцовых АКБ: 25-35 Вт·ч/кг)
  • 280 Вт·ч/лит (для сравнения в свинцовых АКБ: 70-100 Вт·ч/лит)

В собранной батарее показатели плотности энергии немного ниже (>90 Вт·ч/кг) ввиду наличия теплоизоляции и электронного модуля управления.

  • Требуют прогрева как минимум до 270°С.
  • Высокие показатели цикличности: расчётный ресурс службы — около 4500 циклов (>3000 циклов @ 80% DoD).
  • Снижение ёмкости имеет прямолинейную нисходящую характеристику (то есть они не подвержены внезапному падению ёмкости как, например, свинцово-кислотные батареи).
  • Очень высокие показатели удельной энергоёмкости (140 Вт·ч/кг и 280 Вт·ч/лит).
  • Очень низкая совокупная стоимость владения в период эксплуатации и хранения.
  • Длительный срок службы и практически неограниченный срок складского хранения: батареи не стареют и не утрачивают своих характеристик даже через 10-20 лет складского хранения.
  • Батарея абсолютно герметичная: отсутствует газовыделение в окружающую среду.
  • Изготавливаются не из высокотоксичных материалов, таких как свинец, кадмий.
  • На 100 % пригодны к переработке: сталь, никель, железо, соль и керамика.
  • На 70 % легче и на 30 % меньше свинцово-кислотных батарей.
  • Автомобильный транспорт
  • Ж\Д транспорт
  • Связь
  • Энергетика, в том числе альтернативная
  • Системы накопления энергии (СНЭ)

Никель─железные аккумуляторы

Никель─железные аккумуляторы

Никель─железные аккумуляторы относятся к группе щелочных и по объёму выпуска в нашей стране занимают второе место после свинцовых батарей. В основном они используются в качестве тяговых АКБ. Этот тип батарей имеет длительный срок службы (до 3 тысяч циклов заряд-разряд), быстро заряжаются и они стоят дешевле никель─кадмиевых. Поэтому в отечественной промышленности они широко используются в электровозах и другом железнодорожном транспорте, складской технике, электрокарах. Один из недостатков – высокий саморазряд. Но при эксплуатации их в режиме тяговых – это не критично. Сегодня мы рассмотрим устройство никель─железных аккумуляторов, особенности их эксплуатации и перспективы использования.

 

Содержание статьи

Процессы, происходящие в никель─железном аккумуляторе

Электрохимическая система никель─железного аккумулятора состоит из оксидно-никелевого электрода NiOOH (положительный электрод), железной губки (отрицательный) и едкой щелочи KOH (электролит). В процессе работы в аккумуляторе протекают следующие электрохимические процессы.

Никель─железный аккумулятор


На оксидно-никелевом электроде идёт реакция:

2NiOOH + 2H2O + 2e ⇒ 2Ni(OH)2 + 2OH

На железном электроде протекает реакция:

Fe + OH ⇒ Fe(OH)2 + 2e

Реакции протекают обратимо. При разряде они идут слева направо, а при заряде – в обратном направлении.

При протекании электрохимической реакции могут также образовываться оксиды Fe2O3 и FeOOH. Изменение физических и химических свойств оксидной плёнки приводит к торможению реакции на аноде. При этом происходит пассивация электрода. Причём пассивация становится сильнее при снижении температуры KOH и росте разрядного тока. Пассивации также способствует присутствие таких примесей, как сурьма, мышьяк, магний, никель и марганец. В роли депассиватора на железном электроде выступает сульфид-ион. Он ослабляет и подавляет пассивацию, протекающую из-за примесей. При адсорбции на железном электроде сульфид-ион активирует его поверхность.

Но ёмкость железного электрода при разряде, кроме пассивации, ещё ограничивается увеличивающимся сопротивлением активной массы. При разряде образуется Fe(OH)2. Он способствует образованию в губчатом электроде изолирующих прослоек. В результате происходит неравномерное распределение плотности тока по электроду. На некоторых участках разряд проходит неэффективно, что приводит к снижению коэффициента использования активной массы.

Сульфид-ион также способствует увеличению переходного омического сопротивления. В результате этого разрядная характеристика никель─железного аккумулятора с депассивирующим сульфид-ионом имеет большую длительность разряда и лежит в границах менее отрицательного потенциала.

Тяговые щелочные аккумуляторы


Во время заряда отрицательного электрода идёт побочная реакцией с выделением водорода. Она становится более интенсивной при перемещении реакции в глубину электрода. Это происходит из-за низкого водородного напряжения на губчатом железе, а также близкие равновесные потенциалы. Выход железа по току во время зарядки составляет не выше 70 процентов. Эффективность заряда во многом зависит выделения на поверхности электрода h3.
Вернуться к содержанию
 

Конструкция

Стандартный никель─железный аккумулятор – это блок плоских электродов, в прямоугольном стальном корпусе с никелированным покрытием. На верхней крышке находятся борны (токосъёмники) и пробка для заливки электролита. Эта конструкция, за исключением материалов электродов, полностью повторяет ламельные никель─кадмиевые аккумуляторы.

Конструкция никель─железного аккумулятора


Параметры Ni─Fe аккумуляторов во многом определяются их конструкцией и технологии производства электродов. Последние отличаются видами токоведущих каркасов. Ламельная конструкция подразумевает помещение активной массы в перфорированную оболочку их стали. В аккумуляторах безламельной конструкции активная масса напрессовывается или навальцовывается на сетку из стали. Чаще всего использует ламельная конструкция.

Есть разновидности с плоскими и трубчатыми ламелями. Отечественные производители делают в основном никель─железные аккумуляторы с плоскими ламелями. Они представляют собой коробочки, ширина которых 13 миллиметров. Высота может быть 2,8 (отрицательный электрод) или 4 миллиметра (положительный). Длина ламелей определяется размерами самого аккумулятора. Примерно 15 процентов площади поверхности электрода занимает перфорация. Ламель производится из 2 стальных лент. Их толщина составляет 0,1 миллиметра. Положительные ламели выполняются никелированными. Одна пластина сделана в форме желоба, а вторая в виде крышки.

Ламели расположены горизонтально и собраны в ряды. Они плотно собираются одна к другой, а по краям к ним закрепляются рёбра, служащие токоотводами. Наверху сваркой прикрепляется контактная планка, имеющая ушко для сборки группы пластин. Полублоки различной полярности представляют собой блок электродов. Сепараторами для разделения противоположных пластин в нём служат эбонитовые палочки. Вместо эбонитовых палочек могут использоваться резиновые жгуты, сетки из полиэтилена с крупными ячейками. В качестве сепараторов могут использоваться и другие материалы, которые способны обеспечить расстояние 2 миллиметра между электродами. Производство плоских ламелей довольно простое и может выполняться в больших объёмах на высокопроизводительном оборудовании.

К недостаткам ламельных никель─железных электродов стоит отнести их малую механическую прочность. Оксидно-никелевая масса в них набухает, и они могут увеличиваться в толщине на 35—40 процентов. Начальная плотность активной массы положительного электрода составляет 1,7 грамма на кубический сантиметр. Этого сказывается на удельной ёмкости в процессе функционирования. Сопротивление электрода в процессе эксплуатации растёт из-за того, что окисляется контактная поверхность графита. Эта добавка играет роль электропроводящего элемента. В активную массу вместе с графитом попадают и различные вредные примеси.

В результате электрод имеет сниженные эксплуатационные и электрические параметры. Трубчатые ламели имеют более совершенную конструкцию и лучшие эксплуатационные параметры. Диаметр трубчатых ламелей составляет 4,5 или 6,4 миллиметров. Их делают из перфорированной ленты путём скручивания. Трубки наполняют активной массой и сглаживают соединительный шов. Для увеличения прочности трубки дополнительно окольцовывают. Перфорация ламелей делается в виде отверстий круглой формы. Диаметр 0,2 миллиметра не ослабляет прочность ламели. В то же время достигается большая степень открытия электрода.

Вернуться к содержанию
 

Эксплуатация

Никель─железные аккумуляторы выпускаются с ёмкостью 8─1150 Ач. Как уже говорилось выше, в основном они используются в качестве тяговых. Номинальная ёмкость Ni─Fe батареи определяется электрическим зарядом, который она отдаёт за 10 часов при температуре 20 градусов Цельсия до величины напряжения 1 вольт.

Ёмкость никель─железного аккумулятора

После зарядки никель─железный аккумулятор без подключённой нагрузки имеет напряжение 1,48 вольта. Постепенно при переходе в равновесное состояние плюсового электрода оно падает до 1,35 вольта. Номинал разрядного напряжения составляет 1,2 вольта. На разрядных характеристиках можно видеть зависимость ёмкости с напряжением аккумулятора от разрядного тока. Основной причиной снижения ёмкости и напряжения является большое внутреннее сопротивление, а также пассивация губчатого железного электрода.

 

Заряд

Заряд никель─железных аккумуляторов, как одного из видов щелочных аккумуляторов, производится любым источником постоянного тока. При заряде изменяется ЭДС и напряжения внутри батареи. Производителями батарей предусмотрено несколько режимов заряда. Есть те, что предназначены для введения в строй новой АКБ. Также есть параметры для нормальной, ускоренной зарядки. Кроме того, есть режим тренировки, который пригодиться при потере ёмкости. Время зарядки во всех этих режимах не больше 10─12 часов.

Кривые заряда и разряда аккумуляторов


В реальных условиях эксплуатации используют токи, заниженные по сравнению с рекомендуемыми режимами. Это делается, чтобы не завышать мощность зарядных устройств. Естественно, что это приводит к росту времени зарядки. При зарядке небольшими токами предельное напряжение и газовыделение в процессе зарядки будут меньшими, чем при стандартном режиме заряда.

Для кислотных и серебряно─цинковых аккумуляторов заряд небольшими токами очень подходит. Но для никель─железный батарей зарядный ток должен укладываться в определённый интервал. Тогда зарядка будет проходить эффективно.

Если зарядный ток снижается, то коэффициент его использования для Ni─Fe аккумуляторов уменьшается. В результате, когда зарядный ток слишком мал, АКБ перестаёт заряжаться. При этом подаваемый ток просто расходуется на выделение водорода. Это явление происходит потому, что снижается величина перенапряжения водорода на губчатом железном электроде. Заряд аккумулятор принимает при величине тока до 1/3 от нормального зарядного тока. При дальнейшем снижении эффективность падает.

Подробнее о том, как зарядить щелочной аккумулятор, можете прочитать по указанной ссылке.
Вернуться к содержанию
 

Разряд

В инструкциях производителя для никель─железных аккумуляторов указывается номинальный ток разряда. На практике разрядный ток редко соответствует тому, что там написано. Чтобы оценить процессы, происходящие при разряде, строятся кривые разряда Ni─Fe аккумуляторов и сравниваются с эталонными. Зависимость ЭДС от ёмкости при разряде выстраивается по 2 точкам. Они показывают ЭДС разряженной и заряженной АКБ. Эталоном для сравнения служит разрядная кривая при разряде в течение 20 часов.

Не вдаваясь в подробности можно сказать, что никель─железные аккумуляторы не подходят для обеспечения питания аппаратуры сразу после того, как были заряжены. Причиной тому служит существенное отклонение напряжения от номинала. А отклонение реальных разрядных кривых от эталонных могут составлять до 10 процентов.
Вернуться к содержанию
 

Саморазряд

Саморазряд Ni─Fe аккумуляторных батарей – это процесс аналогичный их разряду малым током. Только никакой полезной работы при этом не совершается. Практические измерения показывают, что саморазряд интенсивнее всего идёт в первые несколько дней, а затем замедляется. Никель─железные аккумуляторы обладают значительно большим саморазрядом, чем прочие виды аккумуляторов. Это объясняется свойствами железного электрода.

Саморазряд увеличивается при повышении температуры. Согласно ГОСТ 9240-71 ёмкость заряженного Ni─Fe аккумулятора через 30 суток (хранение при температуре 20 градусов Цельсия) не должна снизиться больше, чем на 50 процентов.

Саморазряд Ni─Fe аккумуляторов


Явление саморазряда щелочного аккумулятора обуславливается физико-химическими процессами и зависит от природы материала электролита и электродов. Потенциал оксидно-никелевого электрода в заряженном состоянии выше, чем у кислородного электрода, формирующегося в растворе щелочи. В результате между ними идёт реакция окисления воды и выделения кислорода. Процесс продолжается до того момента, пока их потенциалы не сравняются. Дальнейшее продолжение саморазряда оксидно-никелевого происходит из-за химического взаимодействия NiOOH с H2O. В результате выделяется кислород и гидрат закиси Ni. Но этот процесс идёт значительно медленнее и саморазряд существенно снижается.

На другом электроде железо растворяется в KOH. В результате этой реакции чего выделяется водород. Эта реакция является главной причиной саморазряда на железном электроде при хранении. Этот процесс довольно интенсивно при комнатной температуре. Влияние на этот процесс оказывает чистота железа и технология производства. Он может достигать величин 40─100 процентов за 30 суток. Поэтому уменьшение саморазряда на Fe электроде является ключевым для никель─железных аккумуляторов. Саморазряд значительно снижается при добавлении в состав электрода или электролита химических соединений мышьяка.

Можно сделать вывод, что для Ni─Fe аккумуляторов саморазряд можно понизить, если хранить их при низких температурах. Ещё одно направлением – это частичный разряд полностью заряженной батареи. В результате этого снижается потенциала оксидно-никелевого электрода.
Вернуться к содержанию
 

Срок службы

Никель─железные АКБ имеют длительный срок эксплуатации, который превышает многие батареи прочих видов. Он зависит в основном от температуры и состава электролита. И также влияние оказывают режимы зарядки и разрядки. Ускоренный заряд может сократить срок службы Ni─Fe аккумулятора до 1,5─2 раз. При ускоренном заряде увеличивается интенсивность вымывания из аккумулятора активной массы. Кроме того, при увеличении тока растёт и температура, отрицательно сказывающаяся на сроке службы.

В основном, срок эксплуатации зависит от состояния оксидно-никелевого электрода. Часто железный электрод и оснастка ещё находятся в рабочем состоянии, а аккумулятор уже выходит из строя. Срок также уменьшается при использовании АКБ в режиме длительного и глубокого разряда. Согласно требованиям ГОСТ 9240-71, срок эксплуатации никель─железный аккумуляторов не должен быть меньше 750 циклов. При этом ёмкость в течение всего срока службы не должна быть меньше 90 процентов от номинала.

Срок службы Ni─Fe аккумуляторов

Что касается срока хранения, то он для Ni─Fe должен быть не меньше 3,5 лет. Примерно после 1,5 тысячи циклов заряд-разряд ёмкость снижается на 25 процентов. Срок хранения на практике значительно выше гарантированного.

Нередко на практике при правильном обслуживании и эксплуатации никель─железные аккумуляторы служат по 25 лет. Для сравнения, у свинцово-кислотных батарей этот срок равен 5 годам.


Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию сайта. Голосуйте в опросе ниже и оценивайте материал. Исправления и дополнения к статье оставляйте в комментариях.
Вернуться к содержанию

Никель-водородный аккумулятор — Википедия

Nickel-hydrogen battery NASA.gif

Никель-водородный аккумулятор (NiH2 или Ni–H2) — это обратимый химический источник тока, состоящий из никелевого и водородного электродов [1]. Он отличается от никель-металл-гидридного аккумулятора использованием водорода в газообразной форме, хранящегося в сжатом состоянии в ячейке при давлении в 82,7 бар[2].

NiH2 ячейки с использованием 26% раствора гидроксида калия (KOH) в качестве электролита достигают срока эксплуатации в 15 лет или более при 80% глубине разряда [3]. Плотность энергии составляет 75 Вт•ч/кг, 60 Вт•ч/дм3[4][5]. Напряжение на контактах составляет 1,55 В, среднее напряжение на протяжении разряда — 1,25 В [6].

Несмотря на то, что плотность энергии составляет только около одной трети аналогичного показателя литиевой батареи, специфическим свойством никель-водородного аккумулятора является продолжительность срока эксплуатации: ячейки выдерживают более чем 20000 циклов разряда[7] при 85% эффективности.

NiH2аккумуляторы обладают хорошими электрическими свойствами, делающими их привлекательными для хранения электрической энергии на космических аппаратах [8]. Например, МКС [9], Messenger[10], Марс Одиссей[11], Mars Global Surveyor[12] и MRO оборудованы никель-водородными аккумуляторами. Телескоп Хаббла, когда его оригинальные батареи были заменены в мае 2009 года спустя 19 лет после запуска, достиг наибольшего числа циклов разряда среди NiH2 батарей на низких опорных орбитах [13].

Развитие никель-водородных аккумуляторов началось в 1970 году в COMSAT[14] где впервые были использованы в 1977 году на борту спутника NTS-2 военно-морских сил США.[15]

Никель-водородный аккумулятор объединяет положительный никелевый электрод никель-кадмиевого элемента и отрицательный электрод, включающий катализатор и газ-диффузионную часть топливного элемента. В ходе разряда водород, содержащийся в сосуде под давлением взаимодействует с кислородом никельоксихлоридного электрода. Вода потребляется на никелевом электроде и высвобождается на водородном, таким образом концентрация гидроксида калия в электролите не изменяется. По мере разряда аккумулятора давление водорода падает, обеспечивая надёжную индикацию степени разряда. В батарее одного из коммуникационных спутников давление при полном заряде было свыше (3,4 МПа), падая практически до (0,1 МПа) при полном разряде.

Если заряженный аккумулятор продолжить заряжать, вода, образуемая на никелевом электроде диффундирует в водородный электрод и там диссоциирует; как следствие, аккумуляторы могут выдерживать перезаряд до тех пор, пока рассеивается выделяющееся тепло.

Аккумуляторы имеют недостаток в виде относительно высокого саморазряда, который пропорционален давлению водорода в ячейке; в некоторых конструкциях 50% ёмкости могут быть потеряны после нескольких дней хранения. Саморазряд снижается при снижении температуры. [16]

В сравнении с другими аккумуляторами никель-водородные обладают хорошей плотностью энергии в 60 Вт•ч/кг, и очень длительным сроком эксплуатации на спутниках. Ячейки могут выдерживать перезарядку, случайное нарушение полярности, давление водорода в ячейке обеспечивает хорошую индикацию степени разряда. Однако, газообразная природа водорода означает, что объёмная эффективность достаточно низка, а требуемое высокое давление приводит к необходимости использовать дорогие сосуды под давлением. [16]

Положительный электрод изготавливают из спечённого [17] пористого никелевого диска, который содержит гидроксид никеля. В отрицательном водородном электроде используют связанный тефлоном платиновый катализатор с сепаратором из циркониевых нитей [18].[19]

Конструкция аккумулятора с индивидуальным сосудом (IPV) состоит из NiH2 ячейки и сосуда под давлением. [20]

Конструкция аккумулятора с общим сосудом (CPV) состоит из двух последовательных NiH2 ячеек и общего сосуда под давлением. CPV обеспечивает несколько большую плотность энергии, чем IPV.

SPV конструкция объединяет до 22 ячеек в общем сосуде.

В биполярной конструкции достаточно толстый электрод является общим: положительным для одной и отрицательным для соседней ячейки в SPV. [21]

Конструкция с зависимым сосудом (DPV) обеспечивает большую плотность энергии при меньших затратах.[22]

Конструкция с общим/зависимым сосудом (C/DPV) является гибридом CPV и DPV с высокой объёмной эффективностью.[23]

  • Albert H. Zimmerman (ed), Nickel-Hydrogen Batteries Principles and Practice, The Aerospace Press, El Segundo, California. ISBN 1-884989-20-9.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *