Чем измеряют плотность электролита аккумулятора: какая должна быть, как проверить, как поднять?

Содержание

Измерение плотности ареометром

   Любой автолюбитель, который ответственно относится к уходу за своим авто, должен обращать тщательное внимание на электрическую составляющую машины, а в частности на аккумулятор. Мы не устанем повторять о том, что периодически контролируя состояние Вашей батареи, Вы продливаете её срок службы в разы! Одной из важнейших характеристик, по которой можно судить о состоянии АКБ является плотность его электролита. Итак, давайте сегодня разберем измерение плотности ареометром. Вы убедитесь что это совсем не сложно и возможно станете чаще уделять этому внимание в будущем.

Следует так же отметить, что существует два типа стартерных аккумуляторных батарей: обслуживаемые и необслуживаемые АКБ. Подробно различия между ними мы рассматривали в этой статье. Сейчас же хочу обратить Ваше внимание, что измерение плотности электролита ареометром возможно произвести только в обслуживаемых аккумуляторах.

Рекомендую все процедуры связанные с электролитом проводить в защитной одежде и очках.

Уровень электролита в аккумуляторе

Итак, мы имеем обслуживаемую батарею. Перед тем как измерять плотность, нам нужно проверить уровень жидкости в секциях АКБ. Сначала открутим крышки каждой банки аккумулятора (предварительно нужно протереть верхнюю крышку корпуса батареи, что бы внутрь секций не попала грязь). Далее нам понадобится прозрачная трубка что бы измерить уровень электролита. Как это делается описывалось уже не однократно. Напомню, что уровень должен быть на 10-15 мм выше пластин батареи. Если в каких то секциях он ниже, доливаем до уровня только дистиллированной водой.

Измерение плотности электролита

Производить измерение плотности следует при температурах 20-25°С. Такое показание считается более точным, в замеры при других температурах необходимо вносить поправки. Также диагностика проводится только когда АКБ

полностью заряжена.

Итак, когда уровень электролита доведен до нормы и температура аккумулятора близка к комнатной, можно измерять плотность ареометром.

Для измерения плотности используется специальный прибор – ареометр. Ареометр – это такая стеклянная колба, внутри которой есть поплавок со шкалой, а на конце трубки имеется груша для всасывания электролита.

Вставляем наш измерительный прибор в каждую из секций аккумулятора поочередно и измеряем плотность жидкости. Поплавок внутри ареометра будет всплывать и по шкале вдоль линии жидкости мы должны зафиксировать результат. Нормальной считается плотность 1,27 г/см

3. Ну конечно в процессе эксплуатации аккумуляторной батареи плотность может немного снижаться, так как происходит некий износ свинцовых пластин АКБ. Но она не должна быть ниже 1,24 г/см3 во всех секциях для старого заряженного аккумулятора.

Также, важнейший момент – это равномерность показаний. При измерении плотности ареометром показатели в каждой отдельной секции не должны отличатся более чем на 0,01 г/см3. Это крайне важно! Если в какой-то из банок аккумулятора показание плотности ниже на 0,02, 0,03 и т.д. от остальных это первый знак, что эта банка «отстает».

Если Вы произвели измерение плотности ареометром и показания, полученные Вами, указывают на проблему: низкая плотность, чрезмерно высокая плотность или неравномерная плотность во всех банках, не рекомендуется самостоятельное устранение такого рода неполадок. Для решения подобных проблем следует обратиться к специалистам в области аккумуляторных батарей. Попытки самостоятельно выровнять или поднять плотность электролита, скорее всего, закончатся плачевно для Вашей батареи.

Проводите плановое измерение плотности электролита ареометром и общую диагностику аккумулятора каждые 3 месяца. При необходимости ремонта сразу обратитесь в сервисный центр. Эти нехитрые советы смогут реально продлить срок службы Вашего аккумулятора и сэкономить Вам деньги.

Также на эту тему:

О чем расскажет ареометр

10.05.2018

Описание ареометра

Ареометр состоит из стеклянной (пластиковой) трубки, внутрь которой помещен герметичный стеклянный поплавок. Поплавок имеет шкалу по уровню погружения в жидкость которой можно снимать показания. Нижняя часть поплавка заполнена металлическими шариками, количество шариков позволяет довольно точно откалибровать прибор при его производстве.

Нижний конец трубки ареометра снабжен гибким носиком для удобства использования. В верхней части трубки установлена пластичная помпа «груша». Общий вид ареометра соответствует большой пипетке.

Измерение плотности электролита

Для того чтобы измерить плотность электролита в аккумуляторе, необходимо для начала получить доступ к его содержимому, а именно к электролиту внутри. Большинство АКБ имеют отвинчивающиеся пробки, по одной для каждой банки аккумулятора. Возможно эти пробки скрываются под защитной пластиковой пластиной, в таком случае ее необходимо снять.

    

Есть также необслуживаемые АКБ, пробки в которых запаяны на заводе изготовителе. В таких аккумуляторах не получиться измерить емкость электролита, не повредив аккумулятор. Так что перед покупкой ареометра первое что необходимо сделать, это убедиться в том, что аккумулятор обслуживаемый и имеет возможность демонтажа пробок электролита.

После того, как все пробки сняты можно переходить к измерению плотности. Следует отметить, что для наиболее точного измерения необходимо чтобы до момента измерения аккумулятор находился в состоянии «покоя» при комнатной температуре, то есть его не разряжали и не заряжали в течении 12 часов.

    

Вооружившись ареометром поочередно производим измерения в банках. Так же как пипеткой набирают лекарства, набираем раствор электролита из банки в ареометр до тех пор, пока внутренний поплавок ареометра не окажется на плаву. Отметка на поплавке, на границе с жидкостью и воздухом будет являться измеренным значением плотности электролита в конкретной банке.
Полученное значение можно сравнить с таблицей:

Для еще более точной диагностики рекомендуется производить совместные измерения напряжения на клеммах АКБ при помощи мультиметра или вольтметра.

В случае если плотность слишком большая, необходимо добавить дистиллированную воду. Если же плотность низкая, нужно добавить кислоту.


Ареометр, это довольно простой и поэтому дешевый инструмент который можно найти в арсенале практически у любого автолюбителя.

Ареометр АР-02 НПП Орион сделан из стекла, для большей долговечности и химической стойкости при контакте с кислотой.


Как проверить плотность электролита в аккумуляторе?

Диагностика и ремонт4 марта 2018

Если на машине установлен источник питания обслуживаемого типа, снабженный откручивающимися пробками, автолюбитель может в любой момент проверить плотность электролита в аккумуляторе. Периодические замеры позволяют контролировать работоспособность батареи и поддерживать ее в нормальном техническом состоянии. Отсюда задача данной публикации – рассказать о процедуре измерения и способах корректировки плотности.

Условия проведения замеров

Показателем «здоровья» кислотно-свинцовых аккумуляторов является плотность электролита, измеряемая в граммах на кубический сантиметр (г/см3). Последний представляет собой раствор обессоленной (дистиллированной) воды с концентрированной серной кислотой. Когда источник питания отдает энергию бортовой сети автомобиля, данный параметр снижается, в процессе зарядки и восстановления – повышается.

Благодаря описанному свойству электролитической жидкости техническое состояние обслуживаемого аккумулятора можно контролировать. Когда в одной из секций (в просторечии – банок) плотность раствора остается низкой, невзирая на длительную подзарядку, встает вопрос о работоспособности батареи и необходимости ее замены. Превышение нормы указывает на испарение воды из электролита вследствие постоянного кипения – жидкость становится плотнее.

Справка. В процессе кипения электролита испаряется только вода, серная кислота остается в растворе, но ее концентрация возрастает. Водяной пар выходит наружу через специальный клапан.

Замер плотности производится в определенных условиях:

  • температура электролитической жидкости находится в пределах 20–22 °С;
  • источник питания должен быть полностью заряжен;
  • температура окружающей среды – 20–25 °С.

При соблюдении перечисленных условий нормальный показатель для всех банок исправного аккумулятора составит 1,27–1,29 г/см3, минимально допустимый – 1,25 г/см3. Если не выдержать указанные требования и измерить плотность электролита при более низкой температуре либо на разряженной батарее, то результаты не отразят реальной картины. Полученные значения будут заметно ниже нормы.

Подготовка к проверке

Чтобы добиться максимально точных результатов замеров, выполните ряд подготовительных действий:

  1. Очистите от пыли и грязи поверхность корпуса, где расположены пробки. Задача – избежать попадания мусора внутрь после выкручивания крышек.
  2. Зарядите аккумуляторную батарею до максимума.
  3. В холодный период года аккумулятор придется снять с автомобиля, занести в теплое место и дать корпусу прогреться до комнатной температуры.
  4. Перед подзарядкой выверните пробки и убедитесь, что пластины каждой секции полностью погружены в кислотный раствор. При необходимости долейте дистиллированную воду и произведите зарядку.

Оптимальный уровень электролита над пластинами – 15 мм, минимальный – 1 см. Проверить несложно: опустите в колодец тонкую стеклянную трубку, закройте с другого конца пальцем и вытащите наружу. Высота столба жидкости в трубке покажет реальный уровень над банками.

Из инструментов потребуется специальный прибор для измерения плотности – ареометр. Представляет собой стеклянную колбу с грушей для всасывания жидкости, внутрь помещен прозрачный поплавок с цифровой шкалой. Нехитрый прибор действует по закону Архимеда – чем плотнее раствор, тем сильнее он выталкивает погруженное тело.

Справка. Некоторые необслуживаемые источники питания оснащаются пластиковым глазком, позволяющим наблюдать за состоянием жидкости. Аккуратно демонтировав эту деталь, вы получите доступ хотя бы к одной секции батареи.

Перед измерениями установите источник питания на ровную поверхность либо закрепите в штатном кронштейне автомобиля. Выкрутите все крышки – поскольку секции разделены глухими стенками и не сообщаются между собой, мерить придется в каждом колодце отдельно. Правильно проверить плотность кислотного раствора поможет шкала ареометра – большинство производителей ставят на ней минимальную и максимальную отметку.

Как правильно измерять?

Процесс замера сложности не представляет и выполняется в следующем порядке:

  1. Опустите наконечник в первый открытый колодец, сдавите резиновую грушу и втяните электролит внутрь колбы.
  2. Удерживая ареометр вертикально и не вынимая из отверстия, добейтесь, чтобы поплавок не касался стенок колбы.
  3. Запомните показания и выдавите кислотный раствор обратно в аккумулятор.
  4. Операцию повторите на оставшихся банках.

Совет. Держите под рукой ветошь, чтобы обтирать наконечник от электролита после извлечения из очередного колодца. Используйте резиновые перчатки – жидкость агрессивна и способна разъесть кожу при попадании.

Выполняя измерение плотности электролита в аккумуляторе, записывайте показания по каждой секции. Чтобы освободить руки, аккуратно откладывайте ареометр на ветошь. По окончании замеров хорошенько промойте стеклянные детали прибора проточной водой и переходите к анализу результатов.

Показатель выше нормы

Если в одной либо нескольких банках электролит оказался плотнее нормы, есть повод проверить исправность регулятора напряжения и электрогенератора. Что происходит в батарее: концентрация кислоты в растворе повышается из-за недостатка воды, которая испаряется вследствие кипения. Значит, имеет место так называемая перезарядка – напряжение на клеммах аккумулятора слишком велико.

Восстановить требуемую плотность электролита довольно просто – необходимо добавить в нужные секции дистиллированную воду пользуясь инструкцией:

  1. Измерьте уровень электролита в банке. Если он оказался недостаточным, долейте нужное количество воды и повторите замер плотности.
  2. В случае когда уровень жидкости соответствует норме, доливать дистиллят нельзя. Пользуясь грушей ареометра, отсосите часть раствора и слейте его в стеклянную закрывающуюся емкость.
  3. Доливая порции чистой воды и электролита, добейтесь оптимальной концентрации кислоты в растворе – 1,27 г/см3.

После восстановления нормальной плотности во всех банках аккумулятор рекомендуется дополнительно зарядить малым током – до 3 ампер.

Пониженная плотность раствора

Если проверка ареометром выявила низкую концентрацию кислоты в одной секции, за батареей придется наблюдать. Вполне вероятно, что между пластинами произошло замыкание и срок службы источника питания исчерпан. Вариант второй – сульфатация пластин, возникающая из-за глубокого разряда либо недостаточного напряжения зарядки на автомобиле.

Сделать электролитическую жидкость плотнее можно тремя проверенными способами:

  • испарение лишней воды путем длительной зарядки и медленного кипячения;
  • замещение части кислотного раствора более концентрированным;
  • добавление серной кислоты.

Примечание. Существует способ полной замены жидкости, предусматривающий промывку батареи. Не применяйте его без крайней нужды – в процессе опорожнения свинцовые крошки, осевшие на дне аккумулятора, могут попасть между пластин и устроить замыкание, ведущее к разрушению банки и непригодности источника питания к дальнейшей эксплуатации.

Для реализации первого способа понадобится зарядное устройство, чей ток регулируется вручную. Порядок действий выглядит так:

  1. Определите ток зарядки, взяв 3% от начальной емкости батареи. Пример: аккумулятор на 60 А*ч нужно заряжать силой тока 60 х 0,03 = 1,8 А.
  2. Поставьте автономный источник питания на зарядку и дождитесь появления пузырьков.
  3. Отрегулируйте ток заряда и по мере испарения воды измеряйте плотность. Когда она достигнет нормы, отключите «зарядник».

Если в процессе кипения уровень жидкости сильно понизился, придется купить готовый электролит нормативной плотности 1,27 г/см3 и долить нужное количество в банки.

Замещение кислотного раствора производится по аналогии с доливкой дистиллированной воды. Жидкость отсасывается из колодца грушей, на ее место заливается более плотный раствор, купленный в магазине. В продаже имеются электролиты с показателями 1,34–1,41 г/см3. Затем делается проверка плотности, при необходимости – корректировка и полная зарядка батареи.

Трудность третьего варианта заключается в отсутствии раствора серной кислоты высокой концентрации – отыскать и купить его практически невозможно. Если вам удалось достать указанное химическое вещество, добавляйте его в банки маленькими порциями, буквально по 1 см3, с помощью шприца. Действуйте осторожно и пользуйтесь средствами индивидуальной защиты – серная кислота весьма агрессивна.

Плотность электролита в аккумуляторе: 2 простых способа проверки

Содержание статьи

Неисправности батареи

Большинству водителей знаком надрывный вой стартера или щёлканье, а то и вовсе тишина под капотом машины во время запуска двигателя. Этот неприятный момент связан со следующими неисправностями.

  1. Неисправность электропроводки автомобиля. Возможно, где-то пропал контакт, чаще всего это объясняется частичным отсутствием «массы».
  2. Неисправность втягивающего реле стартера.
  3. Предельный износ втулок стартера.
  4. Неисправность обмоток стартера.
  5. Низкое напряжение в цепи из-за разряженного аккумулятора.

Последняя причина, как правило, наиболее вероятная. Самым логичным ходом станет проверка плотности электролита в аккумуляторе. От чего она зависит?

  1. От климатической зоны.
  2. От времени года.

Для того чтобы правильно проверить плотность электролита в аккумуляторе, нужно знать её значение и иметь прибор, который называется ареометр.

Узнать правильную плотность просто — существуют специальные нормы. Средний их показатель составляет 1,24 — 1,29 кг/дм 3. Более точно:

  • холодные регионы — 1,27 — 1, 29 г/дм 3, летом и зимой;
  • средняя полоса — 1,25 — 1, 27 г/ дм 3;
  • тёплые районы — 1,23 — 1, 25 г/ дм 3.

Следует не реже одного раза в три месяца производить проверку плотности аккумулятора. Даже небольшое отклонение от нормы требует немедленного дозаряда батареи.

За показателями нужно внимательно следить — для того, чтобы АКБ проработала как можно дольше и не подводила владельца в самый ответственный момент. Особенно она «не прощает» халатного к себе отношения в зимний период. Дело в том, что на морозе теряется её ёмкость, и порой даже один неудачный пуск двигателя ведёт к разрядке АКБ.

Имея простейший прибор, проверить плотность аккумулятора в домашних условиях не представляет особого труда.

Плотность — плотностью, но и за уровнем электролита надо следить не с меньшим вниманием, особенно летом, когда аккумулятор выкипает более интенсивно.

Очень много мнений относительно уровня электролита в батарее:

  1. Одни считают, что достаточно покрыть сетки сепараторов этой жидкостью.
  2. Другие полагают, что чем больше уровень электролита, тем лучше.
  3. Третьи вообще не заглядывают под пробки аккумулятора — до того самого момента, когда перестаёт крутить стартер, что частенько вызывает у таких горе-владельцев неподдельное удивление.

Плотность электролита в аккумуляторе: 2 простых способа проверки

Содержание статьи

Неисправности батареи

Большинству водителей знаком надрывный вой стартера или щёлканье, а то и вовсе тишина под капотом машины во время запуска двигателя. Этот неприятный момент связан со следующими неисправностями.

  1. Неисправность электропроводки автомобиля. Возможно, где-то пропал контакт, чаще всего это объясняется частичным отсутствием «массы».
  2. Неисправность втягивающего реле стартера.
  3. Предельный износ втулок стартера.
  4. Неисправность обмоток стартера.
  5. Низкое напряжение в цепи из-за разряженного аккумулятора.

Последняя причина, как правило, наиболее вероятная. Самым логичным ходом станет проверка плотности электролита в аккумуляторе. От чего она зависит?

  1. От климатической зоны.
  2. От времени года.

Для того чтобы правильно проверить плотность электролита в аккумуляторе, нужно знать её значение и иметь прибор, который называется ареометр.

Узнать правильную плотность просто — существуют специальные нормы. Средний их показатель составляет 1,24 — 1,29 кг/дм 3. Более точно:

  • холодные регионы — 1,27 — 1, 29 г/дм 3, летом и зимой;
  • средняя полоса — 1,25 — 1, 27 г/ дм 3;
  • тёплые районы — 1,23 — 1, 25 г/ дм 3.

Следует не реже одного раза в три месяца производить проверку плотности аккумулятора. Даже небольшое отклонение от нормы требует немедленного дозаряда батареи.

За показателями нужно внимательно следить — для того, чтобы АКБ проработала как можно дольше и не подводила владельца в самый ответственный момент. Особенно она «не прощает» халатного к себе отношения в зимний период. Дело в том, что на морозе теряется её ёмкость, и порой даже один неудачный пуск двигателя ведёт к разрядке АКБ.

Имея простейший прибор, проверить плотность аккумулятора в домашних условиях не представляет особого труда.

Плотность — плотностью, но и за уровнем электролита надо следить не с меньшим вниманием, особенно летом, когда аккумулятор выкипает более интенсивно.

Очень много мнений относительно уровня электролита в батарее:

  1. Одни считают, что достаточно покрыть сетки сепараторов этой жидкостью.
  2. Другие полагают, что чем больше уровень электролита, тем лучше.
  3. Третьи вообще не заглядывают под пробки аккумулятора — до того самого момента, когда перестаёт крутить стартер, что частенько вызывает у таких горе-владельцев неподдельное удивление.

Есть аккумуляторы, у которых имеется метка на корпусе, указывающая уровень электролита. Пользоваться ею не очень удобно, да и на точные показатели надеяться не приходится. Здесь поможет проверенный «дедовский» метод: стеклянная трубка с наружным диаметром 5 − 6 мм. На её корпус в нижней части следует нанести риски, указывающие правильный уровень электролита (согласно паспортным данным батареи). Трубка опускается в каждую банку поочерёдно, до упора в сетку сепаратора. Далее пальцем затыкается верхняя сторона трубки, и приспособление вынимается из банки, не отпуская пальца. Жидкость останется в трубке, и будет виден точный её уровень.

Если уровень низкий, следует понемногу наливать дистиллированную воду в банку, производя после каждой доливки контрольный замер. Если уровень слишком высок, что тоже не является правильным показателем, то с помощью ареометра лишняя жидкость откачивается. Этот способ является самым надёжным.

Необходимость зарядного устройства

Этот очень нужный прибор для содержания батареи в исправности, его необходимо иметь каждому автовладельцу. С помощью этого прибора можно всегда дозарядить АКБ, не прибегая к услугам СТО или местных «умельцев».

Имея правильный прибор с амперметром, водитель прекрасно сделает это сам. Порядок действий зарядки батареи таков.

  1. Нужно подключить зарядное устройство к батарее.
  2. Включить устройство.
  3. Установить зарядный ток. Его величина должна соответствовать десяти процентам от ёмкости АКБ. Например: если ёмкость батареи составляет 60 а/ч, то ток должен быть 6 ампер, 63 — то 6, 3 а/ч.

Время зарядки напрямую зависит от степени разряда, который определяется проверкой плотности аккумулятора ареометром. На шкале обозначен процент разрядки. К примеру, батарея разряжена на 50% и имеет паспортную ёмкость 50 а/ч. Из этого следует, что надо дозарядить недостающие 25 а/ч. Если заряжать батарею током в два ампера, то на это понадобится двенадцать с половиной часов, а если показатель тока четыре ампера — шесть часов 15 мин. и т. д.

Принцип прост и понятен, если бы не одно «но»: каждая АКБ имеет свой неповторимый «норов», особенно когда она уже далеко не новая. Она берёт зарядку по-разному: быстрее или медленнее.

Доливка жидкости

Многие «светлые головы» горячо советуют в случае сильной разрядки батареи доливать в неё серную кислоту, что является недопустимым. Кислота не сразу смешается с оставшейся жидкостью, и для этого надо заряжать АКБ. Тем временем агрессивная жидкость будет интенсивно разъедать пластины, «съедая» заодно и активную массу — порошок, нанесённый на них.

Если же долить электролит, то последствия не будут такими плачевными, но такая жидкость также плохо повлияет на состояние аккумулятора.

Доливать рекомендуется только воду. Исключения представляют те случаи, когда нужно менять весь электролит, поскольку имеющийся в батарее уже не подлежит зарядке из-за крайне низкой плотности.

Если плотность чересчур велика, нужно откачать ареометром жидкость, а потом долить дистиллированную воду. Далее производить зарядку малым током, не забывая о периодическом контроле плотности электролита.

Если электролит подлежит замене, нужно приготовить новый. Для правильного приготовления в стеклянную или кислотостойкую пластиковую ёмкость вначале наливается дистиллированная вода, а потом, тонкой струёй, кислота.

Добавляя кислоту малыми порциями, нужно часто проверять плотность электролита, доведя её до нужной величины, в зависимости от региона проживания и сезона.

Техника безопасности

Во время работы с кислотой или проверки плотности аккумулятора нужно соблюдать осторожность.

  1. Работать только в спецодежде, которую не жалко выбросить. Даже электролит, не говоря уже о концентрированной кислоте, легко приводит любую одежду и обувь в плачевное состояние.
  2. Работать нужно в резиновых перчатках, чтобы предотвратить возможные химические ожоги. Даже измерять плотность аккумулятора не стоит без них.
  3. Защитные очки тоже не помешают, особенно при приготовлении электролита, когда опасность попадания этой агрессивной жидкости в глаза особенно велика. Некоторые люди по неопытности льют воду в кислоту, а не наоборот, как это положено, и в результате может произойти её всплеск.
  4. Перед зарядкой АКБ следует правильно подключить её к устройству, не путая полярность.
  5. Не стоит забывать и об эффективной вентиляции. Если нет принудительной вытяжки, то вполне подойдёт хорошо проветриваемое помещение.

Во время подобных работ курить запрещается. Важно помнить о том, что кислота состоит из водорода, который взрывоопасен, и это особенно вероятно тогда, когда проводится обслуживание большого числа АКБ.

Заряжая батарею, нужно обязательно проверить чистоту вентиляционных отверстий в пробках всех банок, а ещё лучше — вывернуть их полностью.

Батарею нужно беречь от ударов.

Нельзя переворачивать АКБ вверх дном, особенно если батарея уже «в возрасте». Осыпавшаяся активная масса, доселе мирно покоившаяся на дне корпуса, замкнёт пластины. Прикрепляя аккумулятор к его штатному месту, следует помнить о том, что он не любит коротких замыканий, которые возникают вследствие неосторожной работы с ним.

Вывод

Проверка плотности электролита в аккумуляторе — залог долгой и надёжной эксплуатации батареи. Проводя регулярные измерения, водитель заботится не только о надёжности своего автомобиля, но и состоянии своего кошелька.

Пожалуйста, оцените этот материал!

Загрузка…

Если Вам понравилась статья, поделитесь ею с друзьями!

Плотность электролита в аккумуляторе — способы повышения плотности электролита

Аккумуляторная батарея – один из основных элементов автомобиля, отвечающих за пуск двигателя. Значение аккумулятора сложно переоценить, ведь без него невозможно завести мотор, а, значит, машина своим ходом передвигаться не сможет. Именно поэтому АКБ требует к себе особого внимания, исключающего возникновение неприятных ситуаций в виде невозможности совершить запланированную поездку. При этом стоит отметить, что для поддержания работоспособности это важного источника питания не требуется предпринимать каких-то сверхусилий, а достаточно выполнять лишь небольшой комплекс профилактических мер.

Свинцовая аккумуляторная батарея представляет собой гальванический элемент, внутри которого химическая энергия в результате протекающих реакций преобразуется в электрическую. Этот процесс невозможен без электролита – раствора кислоты, обеспечивающего движение заряженных частиц между погруженными в него электродами. Как правило, электролит представляет собой водный раствор серной кислоты определенной плотности. Именно такой параметр как плотность электролита оказывает значительное влияние на работоспособность аккумулятора, поэтому периодически его нужно контролировать.

Измерение плотности электролита в аккумуляторе

Измерить плотность залитого в свинцовый аккумулятор электролита не так уж сложно, однако есть определенные нюансы, связанные с особенностями устройства и принципом работы АКБ. Перечислим некоторые важные моменты, которые надо учесть:

  • Осуществить процедуру измерения плотности получится только в случае с так называемым обслуживаемым аккумулятором, который предоставляет доступ к банкам (секциям) с электролитом посредством закрытых крышками заливных отверстий. Как раз через эти отверстия (обычно их число равно шести, как и количество секций) и осуществляется забор состава для замера плотности.
  • В процессе своей работы автомобильная аккумуляторная батарея постоянно заряжается и разряжается. Разряд происходит при прокручивании стартера, а заряд – при уже заведенном двигателе от генератора. В зависимости от степени заряженности меняется и плотность электролита. Значения могут колебаться в пределах 0.15-0.16 г/см3. Важно отметить, что автомобильный генератор не способен полностью зарядить аккумуляторную батарею. При штатной работе на машине потенциал АКБ используется только на 80-90%. Полный заряд может обеспечить только внешнее зарядное устройство, к которому обязательно придется прибегнуть перед осуществлением замера плотности электролита.
  • Плотность электролита зависит от его температуры. Обычно замер производится при температуре +25 °С, в противном случае делаются поправки.

Допустим, все вышеперечисленные условия приняты во внимание, и есть возможность приступить непосредственно к замеру плотности. Для этого понадобится специальный прибор – денсиметр, который состоит из ареометра, резиновой груши и стеклянной трубки с наконечником. Прибор вводится в банку аккумулятора через заливное отверстие, а затем осуществляется засасывание электролита с помощью резиновой груши. Оно происходит до тех пор, пока ареометр не всплывет. Показания считываются после того, как прекратятся колебания ареометра и появится возможность определения точного значения. Отсчет показаний производится по шкале, при этом взгляд должен находиться на уровне поверхности жидкости.

Полученное значение должно входить в диапазон 1.25-1.27 г/см3, если автомобиль эксплуатируется в средней полосе. В холодной климатической зоне (средняя месячная температура января ниже -15 °С) показатель должен находиться в интервале 1.27-1.29 г/см3. Проверять плотность электролита на соответствие этим числам нужно в каждой из шести банок аккумулятора. Показания не должны отличаться более чем на 0.01 г/см3, иначе потребуется их корректировка.

Как мы уже говорили, плотность электролита изменяется в зависимости от температуры. Это значит, что зимой и летом жидкость в одном и том же полностью исправном аккумуляторе будет иметь разную плотность. О том, насколько будут разниться показания, дает представление приведенная ниже таблица.

Температура электролита, °СПоправка к показанию денсиметра, г/см3Температура электролита, °СПоправка к показанию денсиметра, г/см3
-55…-41-0.05+5…+19-0.01
-40…-26-0.04+20…+300
-25…-11-0.03+31…+45+0.01
-10…+4-0.02+46…+60+0.02

Зависимость температуры замерзания электролита от его плотности демонстрирует еще одна таблица. На основе этих данных можно установить оптимальную плотность электролита для конкретных климатических условий. Нижняя граница подобранного интервала должна гарантировать, что электролит не замерзнет даже при самых сильных холодах и обеспечит требуемое для прокручивания стартера усилие. В то же время чрезмерно завышать плотность тоже нельзя, так как на положительных электродах аккумулятора начинают ускоряться коррозионные процессы, приводящие к сульфатации пластин.

Плотность электролита при 25 °С, г/см3Температура замерзания, °СПлотность электролита при 25 °С, г/см3Температура замерзания, °С
1.09-71.22-40
1.10-81.23-42
1.11-91.24-50
1.12-101.25-54
1.13-121.26-58
1.14-141.27-68
1.15-161.28-74
1.16-181.29-68
1.17-201.30-66
1.18-221.31-64
1.19-251.32-57
1.20-281.33-54
1.21-341.40-37

Причины изменения плотности электролита

Зафиксированные в результате измерения плотности значения не всегда соответствуют требуемым показателям. Расхождения могут касаться как отдельных банок аккумулятора, так и всех вместе. Если плотность завышена, то нужно обратить в первую очередь внимание на уровень электролита. Низкий уровень в большинстве случае является последствием электролиза, приводящего к разложению входящей в состав электролита воды на водород и кислород. Этот процесс выражается в появлении на поверхности жидкости пузырьков, что обычно происходит при зарядке аккумулятора. Частое «кипение» может приводить к снижению концентрации воды, и этот вопрос решается ее простым добавлением. Доливать в аккумулятор стоит только дистиллированную воду, контролируя при этом уровень электролита. Подробнее о корректировке плотности электролита поговорим ниже.

Если с повышенной плотностью все ясно, то с пониженной ситуация несколько сложнее. В теории, одной из причин понижения плотности, может быть то, что по какой-то причине в электролите уменьшилась доля серной кислоты. Однако на практике это маловероятно, так как сама по себе она обладает высокой температурой кипения, исключающей испарение даже при интенсивном нагреве, который происходит, например, при зарядке аккумуляторной батареи. Более распространенной причиной снижения плотности электролита является так называемая сульфатация пластин, заключающаяся в образовании на электродах сульфата свинца (PbSO4). На самом деле, это естественный процесс, происходящий при каждом разряде АКБ. Но дело в том, что при нормальном режиме работы после разряда аккумулятора обязательно происходит его заряд (на автомобиле аккумулятор постоянно подзаряжается от генератора). Заряд сопровождается обратным преобразованием сульфата свинца в свинец (на катоде) и двуокись свинца (на аноде) – в те активные вещества, которые составляют основу электродов и непосредственно участвуют в химическом процессе внутри аккумуляторной батареи. Если АКБ находится длительное время в разряженном состоянии, сульфат свинца кристаллизуется, безвозвратно теряя способность участвовать в химических реакциях. Это очень неприятный процесс, в результате которого аккумулятор уже не получится зарядить полностью даже при использовании внешнего зарядного устройства ввиду того, что не вся площадь пластин задействована в работе. Так как аккумулятор не заряжается до конца, то и плотность электролита не восстанавливается до своих исходных значений. По сути, здесь уже идет разговор об устранении нарушений в нормальном функционировании аккумулятора.

Частичную сульфатацию пластин можно устранить с помощью контрольно-тренировочных циклов, заключающихся в заряде и последующем разряде батареи до определенного уровня. Большинство современных зарядных устройств имеют такую функцию, поэтому имеет смысл ей воспользоваться, особенно если аккумулятор по какой-то причине долго находился в разряженном состоянии. Процедура десульфатации весьма длительная и может занять до нескольких дней. Если она не принесла результата, то крайней мерой является увеличение плотности с помощью добавления корректирующего электролита (плотность около 1.40 г/см3). Такой способ можно рассматривать только как временное решение проблемы, потому что причина как таковая не устраняется.

Как поднять плотность электролита

Понизить или повысить плотность электролита в аккумуляторе можно путем откачивания его определенного количества, и долива взамен дистиллированной воды или электролита с повышенной плотностью (корректирующего). Данная процедура требует больших временных затрат, так как цикл откачки-долива может повторяться несколько раз, пока не будет достигнуто требуемое значение. После каждой корректировки необходимо поставить аккумулятор на зарядку (минимум на 30 минут), а затем дать ему постоять (0.5-2 часа). Эти действия необходимы для лучшего перемешивания электролита и выравнивания плотности в банках.

В процессе поднятия (или понижения) плотности электролита не стоит забывать и о контроле его уровня. Он осуществляется стеклянной трубкой с двумя отверстиями по краям. Один край погружается в электролит до тех пор, пока не упрется в предохранительную сетку. Далее верхний конец закрывается пальцем, а сама трубка осторожно поднимается вместе со столбиком жидкости внутри. Высота этого столбика указывает на расстояние от верхней кромки пластин до поверхности залитого электролита. Оно должно составлять 10-15 мм. Если аккумулятор имеет индикатор (тубус) или прозрачный корпус с нанесенными метками минимума и максимума, то контролировать уровень значительно проще.

Не стоит забывать, что все операции с электролитом необходимо выполнять осторожно, используя защитные перчатки и очки.

Как измерить плотность электролита – видео

как проверить и повысить плотность электролита

Плотность электролита в аккумуляторе является важнейшим параметром для кислотных АКБ. От плотности электролита напрямую зависит срок службы и общая работоспособность батареи, емкость аккумулятора, способность накапливать и удерживать с заряд, а также работать под нагрузкой.

При этом в процессе эксплуатации  плотность в аккумуляторе может меняться, что указывает на необходимость проверки. Далее мы рассмотрим, какая должна быть плотность электролита в аккумуляторе, как проверить плотность аккумулятора, а также как повысить плотность в аккумуляторе при такой необходимости в рамках обслуживания АКБ.

Содержание статьи

Какая плотность должна быть в аккумуляторе автомобиля

Итак, прежде чем рассматривать, какая должна быть плотность электролита и как правильно поднять плотность аккумулятора, важно понимать, что под самой такой плотностью следует понимать удельный вес кислоты в растворе, который залит в банки АКБ. 

Прежде всего, проверка плотности является важным этапом в рамках обслуживания АКБ. Так вот, в свинцовых батареях плотность измеряется в граммах на см3. Показатель плотности пропорционален концентрации раствора, а также зависит от температуры. Чем сильнее нагрет раствор, тем меньшей будет плотность.

При этом плотность электролита указывает на то, в каком состоянии находится АКБ. Как правило, если аккумулятор теряет способность держать заряд, необходимо проверять уровень и состояние электролита в банках. Такая проверка осуществляется ареометром, при этом температура должна быть около 25 градусов Цельсия. Если температура другая, необходимо внести отдельные поправки (можно использовать таблицу).

Идем далее. В процессе эксплуатации АКБ важно, чтобы показатель плотности электролита соответствовали норме, причем с учетом климатических условий.  Это значит, что плотность электролита зимой и летом отличается. Если климат умеренный (нет большой жары и холода), плотность электролита должна быть 1.25-1.27 г/см3. Если в регионе морозы больше -30, тогда значение повышают на 0,01 г/см3 больше, если же стоит сильная жара выше +30, тогда показатель уменьшают на 0,01 г/см3.

Если же морозы сильные (температура опускается до -50 °С), чтобы электролит в АКБ не замерз, в таком случае нужно повышать плотность электролита в аккумуляторе зимой до 1.29 г/см3.

Для наглядности, таблица плотности электролита в аккумуляторе позволяет понять, какой должна быть плотность аккумулятора зимой или летом, в условиях сильной жары или холода, в умеренном климате и т.д. При этом важно учитывать, что чем меньшей будет плотность, тем большим оказывается общий срок службы аккумулятора автомобиля. Это значит, что без необходимости повышать плотность не рекомендуется.

Еще нужно учитывать, что АКБ, установленная на машину, заряжена не на 100%, а на 85-90% от номинальной ёмкости. Это значит, что плотность электролита при замерах зачастую оказывается ниже по сравнению с полностью заряженной АКБ. По указанным выше причинам нужно выбрать значение, которое немного выше (на 0.01), чем приведено в таблице плотности. Такой подход  будет означать, что аккумулятор не замерзнет зимой.

Однако если речь идет о лете, слишком высокая плотность может привести к закипанию электролита в АКБ. Важно соблюдать баланс, так как повышение плотности сокращает срок службы батареи, тогда как понижение приводит к снижению напряжения, аккумулятор хуже крутит стартер, быстрее разряжается и т.д.

Еще добавим, что если зимой температура не падает ниже -30 и летом не повышается выше + 30, тогда изменять стандартное значение плотности аккумулятора не следует. Главное, следить, чтобы это значение постоянно сохранялось.

Плотность электролита в аккумуляторе зимой и летом

Итак, номинальная плотность электролита в аккумуляторе зимой составляет 1,27. Если температуры ниже -35, тогда плотность повышается до 1.28 г/см3. При этом дальнейшее увеличение плотности  также не рекомендуется.

Если же плотность снижена, например, до 1.09, тогда электролит замерзнет уже при -7 градусах по Цельсию. Однако, если зимой обнаружено, что плотность понизилась, вместо того, чтобы сразу ее поднимать, нужно сначала хорошо зарядить АКБ от зарядного устройства.

На деле, зимой часто во время коротких поездок аккумулятор не успевает зарядиться, плохо накапливает заряд и т.д. В результате снижается заряд АКБ, а также падает и плотность. При этом плотность  путем доливки кислоты изменять самостоятельно не рекомендуется.

Допускается изменение разве что путем использования дистиллированной воды для коррекции уровня (норма 1.5 см над пластинами в АКБ легковых авто или 3 см. в грузовых авто). При этом если АКБ новая или полностью работоспособная, изменение плотности электролита при  полном разряде и полном заряде должно быть на отметке 0.15-0.16 г/см3.

Еще важно учесть, что нельзя использовать разряженный аккумулятор при минусовой температуре, так как электролит замерзает и разрушаются свинцовые пластины.  На практике, если аккумулятор разряжен на половину зимой и больше чем на четверть летом, АКБ нужно подзарядить.

Что касается плотности аккумулятора летом, обычно банки пересыхают и плотность повышается. С учетом того, высокая плотность плохо влияет на пластины, лучше держать показатель на 0.02 г/см3 ниже оптимального значения в регионах с жарким климатом.

На деле, летом вода из банок АКБ активно испаряется, так как наружная температура воздуха и нагрев под капотом (где зачастую и стоит батарея) также приводят к сильному повышению температуры аккумулятора. В результате аккумулятор «кипит».

При этом понижение плотности не сказывается на качестве отдачи тока при нагреве АКБ. Например, даже при 1,22 г/см3 батарея будет хорошо крутить стартер. Получается, если на улице жарко, уровень электролита понижается и повышается плотность. В свою очередь, высокая плотность «убивает» батарею.

Чтобы этого не произошло, нужно проверять уровень электролита и доливать воду в аккумулятор, понижая плотность и поддерживая нужный уровень раствора в банках, чтобы предотвратить перезаряд и осыпание пластин. При этом следует помнить, что постоянные доливки воды в аккумулятор приводят к тому, что плотность падает.  При низкой плотности дальше пользоваться батареей нельзя, так как требуется повысить плотность электролита в аккумуляторе.

Как проверить плотность в аккумуляторе

Разобравшись с тем, на что влияет плотность в АКБ и какой она должна быть, перейдем к тому, как проверяется плотность в аккумуляторе. Такую проверку нужно выполнять каждые 20-25 тыс. км. пробега, а также  перед наступлением лета и зимы.

Для замера нужен прибор, который называется ареометр (денсиметр). Фактически, это стеклянная трубка с ареометром внутри. На одном конце есть наконечник из резины, а на другом груша.

Для проверки следует поочередно выкручивать крышки банок обслуживаемого аккумулятора, затем погрузить резиновый наконечник в раствор, грушей втянуть электролит. Далее ареометр со шкалой покажет, какова плотность раствора. Чем меньше плотность, тем ниже заряд батареи.

Кстати, еще добавим, что необслуживаемые АКБ проверить данным способом не удается, так как нет прямого доступа к банкам. При этом на таких АКБ есть особый цветовой индикатор  заряда (индикатор плотности) необслуживаемого аккумулятора.

Фактически, если индикатор зеленый, тогда это указывает, что АКБ заряжена на 65 или 100%. Если же плотность низкая и батарею нужно заряжать, тогда индикатор будет черным. Более того, если цвет, например, красный,  тогда это указывает на выкипание воды и необходимость долива. Кстати, на самой АКБ должна быть наклейка, указывающая, о чем говорит цвет индикатора в том или ином случае. 

Теперь вернемся к проверке. Проверка плотности электролита должна производиться на полностью заряженном аккумуляторе. При этом заряжать АКБ можно только тогда, когда уровень в банках в норме.  Другими словами, порядок следующий:

  • сначала корректируется уровень электролита, затем АКБ заряжается полностью;
  • после окончания зарядки и отключения ЗУ также следует дать батарее «устояться» около 2-3 часов.
  • после выполняется проверка плотности электролита в аккумуляторе.

Если долить воду или зарядить АКБ и сразу мерить плотность, данные будут не точными. Также важно измерять плотность при оптимальной температуре воздуха. Если имеют место отклонения, тогда  нужно сверяться с приведенной выше таблицей и вносить поправки.

Когда делается забор электролита, ареометр должен быть в покое и плавать, при этом не касаться стенок. Замеры из каждой банки АКБ следует записать. Важно, чтобы плотность электролита была приблизительно одинаковой во всех банках.

Если замечено, что плотность сильно понизилась в одной банке или нескольких, но не во всех, тогда это указывает на дефекты. Как правило, речь идет о коротком замыкании пластин аккумулятора. Если же плотность упала во всех банках, это указывает на то, что АКБ в глубоком разряде, пластины осыпались или старая батарея отработала свой ресурс.

Для точного определения причины нужно проверить напряжение аккумулятора мультиметром и с нагрузочной вилкой. В случае, когда плотность высокая, это также говорит о проблемах. Как правило, плотность повышается, когда электролит закипает.

Так или иначе, нужна корректировка с использованием корректирующего раствора или дистиллированной воды, после чего выполняется зарядка АКБ номинальным током (около 30 мин), а также затем батарея выдерживается нескольких часов в состоянии покоя. Это нужно, чтобы выровнять плотность в банках. Давайте рассмотрим,  как повысить плотность электролита в аккумуляторе, более подробно.

Как поднять плотность аккумулятора

Прежде всего, важно знать, как правильно поднимать плотность в аккумуляторе. Прежде всего, при работе с электролитом нужно быть предельно осторожным, так как в составе раствора есть серная кислота.

Кислота может вызывать ожоги кожи, слизистых и дыхательных путей. Работать с электролитом нужно в хорошо проветриваемом помещении, надевать перчатки, маску и т.д. Еще нужно учитывать все нюансы и знать, как поднять плотность в аккумуляторе.

Обратите внимание, необходимость это делать возникает в том случае, когда уровень электролита в банках несколько раз корректировался водой  или замеры плотности указывают, что плотность слишком низкая для зимы.

Также повышать плотность нужно после длительных перезарядок аккумулятора. Как правило, поднимать плотность нужно, если интервал заряда и разряда заметно сократился. Для понятия плотности АКБ можно использовать концентрированный электролит (корректирующий раствор электролита) или просто добавить кислоты.

В любом случае, нужно иметь ареометр, мерный стакан, емкость для разведения электролита, корректирующий  раствор электролита или кислоту, дистиллированную воду.

  • В общих чертах, из банки аккумулятора грушей откачивается немного электролита, затем в таком же количестве добавляется корректирующий электролит для поднятия плотности или дистиллированная вода для понижения;
  • Затем АКБ на 30 минут ставится на зарядку от ЗУ, заряжать нужно номинальным током, чтобы жидкость смешалась;
  • Далее батарея отключается от ЗУ, выдерживается пауза около 2-3 часов, чтобы за это время плотность во всех банках выровнялась, вышли пузырьки газов, снизалась температура;
  • Теперь можно снова проверить плотность электролита, при необходимости, повторить процедуру, уменьшая или увеличивая количество;
  • При замерах разница плотности во всех банках не должна быть больше 0,01 г/см3. Если такой плотности не удается добиться, тогда нужно снова делать так называемую выравнивающую зарядку, причем током, который в 2-3 раза меньше номинального тока заряда.

Чтобы было удобнее, рекомендуется заранее изучить, какой объем в см3 в каждой банке конкретного АКБ. Сам электролит имеет состав в следующих пропорциях: 40% серной кислоты на 60% дистиллированной воды. Кстати, пропорции и плотность можно рассчитывать и по формуле, однако на практике проще воспользоваться таким методом:

  • из банки откачивается жидкость и сливается в мерный стакан, что позволяет определить объем;
  • затем сливается половина от полученного количества, а другая заполняется электролитом (стакан нужно покачать для перемешивания).

Если значения плотности все равно низкие, тогда можно долить еще ¼  электролита от выкачанного из банки объема. Такой долив можно производить неоднократно, уменьшая количество в два раза.

При этом, если плотность в аккумуляторе слишком низкая (ниже 1.18), в этом случае недостаточно обычной доливки электролита. В подобной ситуации нужно добавлять кислоту (1.8 г/см3).

Сама процедура аналогична добавке электролита. Единственное, добавлять кислоту в раствор нужно шаг за шагом, так как можно сразу залить большое количество и превысить необходимые показатели. Обратите внимание, во время приготовления раствора в обязательном порядке нужно заливать кислоту в воду. Вливать воду в кислоту запрещается!

Советы и рекомендации

Как показывает практика, срок службы  АКБ (средних по цене) составляет 3-4 года, дорогие аналоги могут  прослужить на 1-2 года больше. При этом такие показатели возможны только в том случае, если соблюдаются правила эксплуатации  и обслуживания, а также оборудование исправно.

Прежде всего, важно не допускать перезаряда аккумулятора или, наоборот, глубокого разряда батареи. Как правило,  сильно посадить аккумулятор может сам владелец. Также к разряду приводят неисправности электрооборудования или ошибки при подключении. Так или иначе, потребители «тянут» заряд даже тогда, когда машина не используется, АКБ садится.  Что касается перезаряда, это может происходить в результате поломок реле-регулятора и т.д.

В любом случае, если аккумулятор необслуживаемый и/или старый (отработал больше 3-х или 4-х лет), тогда пытаться восстановить его работоспособность путем замены электролита не стоит.  Зачастую, в этом случае в банках уже осыпались пластины (частично или полностью). Результат- батарея не будет работать нормально даже со свежим электролитом.

Зачастую, если электролит в аккумуляторе стал коричневым или бурым, в морозы такая батарея если и будет работать, то плохо. Если же электролит почернел,  это указывает на то, что произошло осыпание  пластин и частицы попали в раствор. На деле, площадь поверхности пластин стала меньше. Получается, даже после обслуживания и зарядки получить  необходимые характеристики АКБ не представляется возможным. В таком случае  батарею лучше сразу поменять.

Что в итоге

Как видно, плотность электролита, уровень и его состояние в аккумуляторе  является важнейшими показателями. По этой причине даже не нормально работающих батареях нужно следить за уровнем электролита в банках АКБ, а также  проверять и корректировать плотность при  отклонении от нормы, с учетом климатических условий в регионе и т.д.

Напоследок отметим, что только правильное обслуживание, зарядка и соблюдение правил эксплуатации позволяет максимально повысить эффективность работы и увеличить срок службы аккумулятора автомобиля.

Читайте также

Инструкция по эксплуатации автомобильных аккумуляторных батарей.

 

Для безопасного и максимально длительного срока службы Вашей аккумуляторной батареи, мы рекомендуем ознакомиться с рядом простых правил по ее эксплуатации:

1. БЕЗОПАСНОСТЬ.
Первое, на что стоит обратить внимание, это безопасность. Категорически запрещается использование батареи вблизи открытых источников огня и замыкать между собой полюсные клеммы аккумулятора. Старайтесь не наклонять батарею больше чем на 45 градусов, во избежание вытекания ее содержимого (электролита). При попадании электролита на открытые участки кожи следует незамедлительно промыть их обильным количеством воды, после чего обезвредить пораженный участок 5% раствором соды и аммиака, при необходимости показать пораженный участок врачу.

2. СНЯТИЕ И УСТАНОВКА АКБ.
Перед снятием или установкой батареи убедитесь, что все потребители электроэнергии выключены. При отключении аккумуляторной батареи, первой отключается отрицательная клемма (-), после чего положительная (+). Подключение аккумулятора производится в обратном порядке, сначала подключается положительная, затем отрицательная клеммы. После установки АКБ (аккумуляторной батареи) необходимо удостовериться, что батарея надежно закреплена на площадке, а высоковольтные провода четко зафиксированы на клеммах.

3. ЭКСПЛУАТАЦИЯ АКБ.
Немаловажными в процессе использования аккумуляторной батареи являются условия, в которых она содержится. Рекомендуется раз в три месяца протирать батарею, особенно ее верхнюю часть, на которой могут быть следы электролита, влажной тряпкой, во избежание возникновения нежелательной электрической связи. Обязательно выкиньте тряпку сразу после протирки. Плюсовые и минусовые клеммы аккумулятора должны быть закрыты специальными коробами или смазаны густой нейтральной смазкой во избежание их окисления и последующей коррозии. Чтобы не разрядить аккумулятор, пуск двигателя автомобиля в условиях минусовых температур рекомендуется производить короткими (до 10 секунд) включениями стартера, с интервалом не менее полминуты. Допускается использование аккумуляторных батарей, если напряжение разомкнутой цепи батареи (без нагрузки) составляет не менее 12,6 Вольт, напряжение под нагрузкой должно быть не ниже 11 Вольт. Напряжение измеряется датчиками автомобиля или нагрузочной вилкой. Плотность электролита во всех аккумуляторах (ячейках АКБ) должна быть не ниже 1,26г/см3. В случае, если произошел глубокий разряд батареи, необходимо как можно скорее произвести ее заряд. В условиях низких температур снижение плотности электролита может привести к замерзанию АКБ, что влечет за собой разрушение пластин и корпуса. Заряд АКБ может производиться двумя способами — при постоянном токе или при постоянном напряжении. При постоянном токе равном 1/10 емкости 12 Вольтовой батареи, АКБ заряжают до тех пор, пока напряжение не достигнет 14,4 Вольт, далее сила зарядного тока снижается вдвое и заряд продолжается до постоянства напряжения и плотности электролита в ячейках в течение двух часов. При этом в конце заряда наблюдается бурное выделение газа, приводящее к кипению электролита. Заряд при постоянстве напряжения производится в течение суток зарядными устройствами, обеспечивающими зарядное напряжение не менее 16 Вольт. Не допускается перезаряд аккумуляторной батареи. Перезаряд АКБ снижает срок службы и приводит к неисправности.

4.СРОК СЛУЖБЫ АКБ

Гарантийные сроки эксплуатации АКБ установлены ГОСТом не менее 18 месяцев. Однако, практически все виды производственных дефектов, если таковые имеются, выявляются в течение первых 6 месяцев регулярной эксплуатации. Величина срока реальной службы АКБ зависит от условий эксплуатации, качества электрооборудования, режима работы автомобиля, условий контроля и ее своевременного обслуживания. Снижает срок жизни АКБ работа в режиме «такси», глубокий разряд или перезаряд АКБ. Максимальный срок надежной безотказной работы АКБ достигается регулярным контролем ее состояния и работы электрооборудования.

5. УТИЛИЗАЦИЯ АКБ.
По истечении своего срока службы, аккумуляторная батарея подлежит утилизации. Стоит помнить, что аккумуляторная батарея относится к 1 классу опасности и ее содержимое, по сути, является ядом. На сегодняшний день, в рамках Правительственной программы по сбору и утилизации отработавших свинцово-кислотных аккумуляторных батарей, на территории Москвы и Московской области, работает ряд лицензированных компаний, которые занимаются приемом АКБ как у юридических, так и у физических лиц. Участие в этой программе, поможет сохранить природу! Стоит отметить, что компании не берут денег за утилизацию аккумулятора, а в некоторых случаях даже выкупают их.

 

 

Как использовать аккумуляторный ареометр

Как использовать аккумуляторный ареометр (никогда не вставляйте металлический термометр в аккумулятор!)

Аккумуляторный ареометр используется для проверки состояния заряда аккумуляторной ячейки. Это выполняется путем измерения плотности электролита, что достигается путем измерения удельного веса электролита. Чем больше концентрация серной кислоты, тем плотнее становится электролит. Чем выше плотность, тем выше уровень заряда.
Удельный вес — это измерение жидкости, которое сравнивается с базовой линией. Базовый уровень — вода, которой присвоено базовое число 1.000. Концентрация серной кислоты в воде в новом аккумуляторе гольф-кара составляет 1,280, что означает, что электролит весит в 1,280 раза больше веса того же объема воды. Полностью заряженная батарея будет показывать от 1,275 до 1,280, в то время как разряженная батарея будет показывать в диапазоне 1,140.
! ПРИМЕЧАНИЕ !

Не выполняйте проверку ареометром батареи на батарее, которая только что была полита.Аккумулятор должен пройти по крайней мере один цикл зарядки и разрядки, чтобы вода должным образом смешалась с электролитом.
Температура показания ареометра должна быть скорректирована до 80 ° F (27 ° C). Важно понимать, что температура электролита значительно отличается от температуры окружающей среды, если транспортное средство эксплуатировалось.
Процедура проверки ареометра: Внимание! Батареи содержат серную кислоту
Всегда используйте средства индивидуальной защиты от контакта с серной кислотой

Защита глаз.Резиновые перчатки. Резиновый фартук. Обувь с закрытым носком.
Избегайте ношения любых хлопчатобумажных материалов, так как кислота аккумулятора растворяет ткань.

1. Наберите электролит в ареометр несколько раз, чтобы термометр приспособился к температуре электролита, и запишите показания. Изучите цвет электролита. Коричневый или серый цвет указывает на проблему с аккумулятором и является признаком того, что срок службы аккумулятора приближается к концу.

2. Наберите полную пробу электролита в ареометр, чтобы поплавок свободно плавал.

3. Удерживая ареометр в вертикальном положении на уровне глаз, обратите внимание на то, где электролит встречается со шкалой поплавка.

4. Добавьте или вычтите четыре точки (0,004) из показаний на каждые 10 ° F (6 ° C), когда температура электролита выше или ниже 80 ° F (27 ° C). Отрегулируйте показания в соответствии с температурой электролита, например, если показания показывают удельный вес 1,250, а температура электролита составляет 90 ° F (32 ° C), значение 1,250 дает скорректированное показание 1.254. Точно так же, если температура была 70 ° F (21 ° C), вычтите показание 1,246. четырех точек (0,004) из 1,250, чтобы получить скорректированный

  • 5. Проверьте каждую ячейку и запишите показания (с поправкой на 80 ° F или 27 ° C). Разница в пятьдесят пунктов между любыми двумя показаниями ячеек (пример 1.250 — 1.200) указывает на проблему с ячейками с низким показателем.
  • от 12,60 до 12,74 = от 85 до 100% заряда
  • от 12,40 до 12,59 = от 75 до 85% заряда
  • от 12,20 до 12,39 = от 50 до 75% заряда
  • 12.От 00 до 12,19 = от 25 до 50% заряжен
  • 12,00 и ниже = полностью разряжен

По мере старения батареи удельный вес электролита будет уменьшаться при полной зарядке. Это не повод для замены батареи, если все элементы находятся в пределах пятидесяти точек друг от друга.

Поскольку проверка ареометра проводится в ответ на проблемы с производительностью транспортного средства, необходимо зарядить транспортное средство и повторить проверку. Если результаты указывают на слабый элемент, батарею или батареи следует извлечь и заменить на исправную батарею той же марки, типа и приблизительного возраста.

Тестирование аккумуляторов (автомобиль)

13.9.

Тестирование батарей

Аккумуляторы необходимо проверять, чтобы предотвратить проблемы с автомобилем, возникающие в результате отказа аккумулятора. Батарея проверяется на предмет ее состояния заряда и того, насколько хорошо она вырабатывает или принимает ток. Если напряжение полностью заряженной батареи низкое во время разряда или если оно слишком высокое или слишком низкое во время зарядки, батарея неисправна.
13.9.1. Тест на относительную плотность (удельный вес) или тест на состояние заряда
Химическая реакция в свинцово-кислотном аккумуляторном элементе происходит в основном между активной пастой и электролитом. Серную кислоту сначала разбавляют водой до тех пор, пока электролит не приобретет относительную плотность (удельный вес) примерно 1,28.
Когда элемент полностью заряжен, активные пасты не содержат сульфатов, а электролит достигает максимальной прочности. Когда элемент разряжается, активные пасты реагируют с серной кислотой в электролите, образуя сульфат свинца в пластинах.Поэтому серная кислота постепенно переходит из электролита в активную пасту, из-за чего прочность раствора пропорционально уменьшается. Поскольку относительная плотность электролита напрямую зависит от концентрации раствора, ее можно использовать для оценки степени заряда каждого элемента батареи. Ареометр (рис. 13.66) используется для измерения относительной плотности.
Шприц для ареометра имеет стеклянный пластинчатый корпус с грушей из мягкой резины на одном конце и резиновой пробоотборной трубкой на другом конце.Стеклянный поплавок с вертикальной шкалой относительной плотности помещен внутри стеклянного корпуса, и шкала откалибрована с помощью свинцовой дроби, расположенной в основании поплавка.
Для измерения относительной плотности погрузите пробоотборную трубку ареометра в электролит аккумуляторного элемента, сожмите резиновую грушу и отпустите ее, чтобы взять пробу электролита. Позвольте поплавку подняться в жидкости, а затем снимите показания шкалы на уровне поверхности, которая указывает значение относительной плотности.Если показания отдельных ячеек

Рис. 13.65. Скамья для зарядки.
отличаются более чем на 0,040, одна или несколько ячеек могут быть неисправны. В таблице 13.6 представлена ​​зависимость относительной плотности электролита от состояния заряда.


Рис. 13.66. Измерение прочности электролита.

Таблица 13.6. Относительная плотность и состояние заряда.
Состояние заряда Относительная плотность
Нормальный тропический
Полностью заряжена (100%) 1.28 1,23
Наполовину заряжен (50%) 1,20 1,16
Разряжено (0%) 1,12 1,08

Относительная плотность электролита зависит от температуры. Следовательно, необходимо использовать стандартную температуру в качестве эталона при считывании ее значения с ареометра.Этот стандарт обычно составляет 288 К, поэтому на каждые 1,5 К выше или ниже 288 К добавьте или вычтите 0,001 соответственно из показаний ареометра. Ареометр
не следует использовать для проверки батареи сразу после добавления воды в электролит элемента, потому что вода остается на верхней части пластин, из-за чего ареометр показывает более низкое значение, чем фактический уровень заряда.
Показания шкалы ареометра, в качестве первого шага, обеспечивают хорошее представление о состоянии заряда батареи при условии, что элементы первоначально заполнены растворами равной силы и после этого не произошло разлива.Однако показания относительной плотности не могут правильно указывать на то, закорачиваются ли некоторые из пластин ячеек или на них выделяется активная паста, из-за чего пластины не могут выдерживать большой ток, например, при проворачивании двигателя.
13.9.2.

Испытание на высокоскоростной разряд или испытание емкости

Для испытания на высокоскоростной разряд электрическая нагрузка прикладывается к клеммам батареи с помощью либо постоянного резистора, обычно сделанного из марганцево-эврикового сплава, либо переменного резистора, состоящего из кучи углерода.Эти два материала сохраняют свою стойкость в широком диапазоне температур. Это важная особенность, поскольку во время разряда рассеивается значительное количество тепловой энергии.
В одной из версий тестера для тяжелых разрядов (рис. 13.67) используется стопка угольных дисков или пластин, скрепленных вместе гайкой и болтом. Пластиковая ручка, прикрепленная к головке болта, используется для регулировки степени сжатия между пластинами. Амперметр подключается последовательно с угольным стержнем для измерения тока разряда, а шунтирующий резистор подключается параллельно амперметру для защиты амперметра от протекания сильного тока.На выходных клеммах установлен вольтметр для измерения падения напряжения при разряде аккумулятора.
Для начала испытания углеродный ворс сначала ослабляют, откручивая болт на один или два оборота, а затем тяжелые кабельные зажимы помещают на клеммы аккумуляторной батареи. Ручка регулировки вращается, чтобы сжать кучу угля вместе, так что электрическое сопротивление угля уменьшается, и батарея разряжается через уголь, шунтирующий резистор и амперметр.
Ток разряда увеличивается до тех пор, пока он не достигнет значения (показанного на амперметре), в три раза превышающего емкость аккумулятора в ампер-часах. Таким образом, батарея на 60 Ач должна иметь испытательный ток разряда 3 x 60 = 180 ампер. Этот ток следует удерживать всего 10 секунд, наблюдая за показаниями вольтметра. Аккумулятор на 12 В в хорошем состоянии должен выдерживать напряжение выше 9,6 В. Если напряжение падает чуть ниже этого значения, батарею следует перезарядить, а если напряжение быстро падает ниже 6 вольт, это указывает на то, что одна или несколько ячеек могут быть неисправны.Этот тест не следует проводить на разряженной батарее.

Мониторинг состояния заряда батареи (SOC)

Мониторинг состояния заряда батареи (SOC), вероятно, является самой важной задачей, которую нужно выполнять с солнечной системой. К сожалению, это трудно оценить с высокой степенью точности, особенно для новичков. Существует три основных метода определения SOC аккумулятора.

Напряжение SOC
12.57 100%
12,36 80%
12,15 60%
11,94 40%
11,73 20%

1. Напряжение: Напряжение необходимо измерять, когда батарея находится в состоянии покоя. Это означает, что аккумулятор не заряжается и нагрузка не выходит. В идеале батарея должна находиться в состоянии покоя в течение 20-30 минут перед измерением напряжения.Приблизительные значения для 12-вольтовой батареи:

Как видите, диапазон напряжений довольно узок, поэтому для измерения этих значений вам понадобится неплохой цифровой мультиметр.

2. Удельный вес. Вы можете использовать ареометр для измерения плотности электролита, чтобы определить SOC. Это также подвержено интерпретации и оценке. Когда батарея разряжается, электролит становится светлее. Когда вы заряжаете аккумулятор, этот более легкий электролит будет плавать сверху и давать очень пессимистичные показания.Это называется расслоением электролита и преодолевается только тогда, когда электролит снова перемешивается под действием пузырьков хорошего заряда. Добавление в аккумулятор дистиллированной воды также повлияет на показания. Также существуют проблемы с чтением ареометров и качеством ареометров. Грязный ареометр может загрязнить аккумулятор. Чтобы получить точные показания, вам необходимо откорректировать значения температурной компенсации. Различные производители аккумуляторов могут использовать в своих аккумуляторах кислоты разной концентрации.Итак, в заключение, оценка SOC батареи по показаниям ареометра также сопряжена со многими трудностями и присущими неточностями.

Регулятор Plasmatronics PL: последний метод включал мониторинг ампер-часов на входе и выходе из вашей батареи. Цитата из Руководства по плазматронике:

SOC (State of Charge) следует читать как процентную оценку того, насколько полная батарея.

Оценка основана на счетчике баланса ампер-часов. Этот счетчик поддерживает текущий баланс ампер-часов в ампер-часах по сравнению с ампер-часами в отключенном состоянии.Дисплей SOC показывает этот баланс в процентах от емкости батареи. Обратите внимание, что размер батареи должен быть введен установщиком с настройкой BCAP (емкость батареи), прежде чем SOC станет значимым.

Со временем счетчик баланса в ампер-часах будет отклоняться от реального состояния заряда батареи. Для перенастройки счетчика PL выполняет две корректировки:

1. Когда состояние регулятора изменяется с Absorb на Float И рабочий цикл заряда меньше 25%, SOC сбрасывается на 100%.

2. SOC может считывать более 100%, однако, как только будет записан 1 Ач разрядки, он снова будет установлен на 100%.

Примечание. К цифре SOC следует относиться с осторожностью, поскольку она может быть неточной по нескольким причинам:

* PL автоматически не получает информацию обо всей системе. Чтобы SOC вообще работал, PL должен измерять весь заряд (Ah in) и разряд (Ah out). Если аккумулятор может заряжаться или разряжаться без знания PL, SOC не будет иметь смысла.

* Различия в эффективности заряда означают, что SOC будет немного оптимистичным.

* Эффективная емкость аккумулятора уменьшается с возрастом. В старых батареях необходимо уменьшить BCAP, чтобы приспособиться к этому.

* Саморазряд и колебания температуры также вызывают некоторую неточность.

Неэффективность батареи и потери на саморазряд проявляются, когда SOC показывает более 100%. Так что нет ничего необычного в том, чтобы увидеть SOC на уровне, скажем, 112%, когда ваша батарея переходит в состояние плавающего режима.12% представляют собой дополнительную мощность, которую ваши источники зарядки должны были вложить, чтобы компенсировать потери батареи.

Если ваша батарея находится в разряженном состоянии — скажем, показывает 112% — она ​​упадет до 99% после разрядки одного ампер-часа. Скажем, она снижается до 80%, а на следующий день поднимается только до 90%. К сожалению, потраченные 10% не учитывают потери при зарядке аккумулятора. Так что, вероятно, он заряжен только на 89%, а не на 90%. Это довольно мелочь. Однако при продолжительной пасмурной погоде или при зарядке в течение нескольких дней подряд без достижения поплавка ошибка становится накопительной.Таким образом, подобная зарядка на второй день приведет к заряду только до 88% и т. Д. Пару недель в пасмурную погоду легко могут привести к ошибке в 15-20% (с оптимистичной стороны). Неэффективность зарядки уменьшается по мере того, как батарея разряжается, поэтому эта ошибка в некоторой степени уменьшается по мере разряда батареи.

Итак, в заключение, мы считаем, что отображение% SOC чрезвычайно полезно. В большинстве случаев мы считаем, что это более точно, чем измерение напряжения или удельного веса батареи. Однако через несколько дней, когда аккумулятор не переходит в плавающее положение, дисплей может ввести в заблуждение.В этом случае мы также рекомендуем вам взглянуть на минимальное и максимальное напряжение, чтобы лучше оценить состояние заряда аккумулятора.

Гидрометры и удельный вес — Generation Solar

Последнее изменение 25 марта 2020 г.

Залитые свинцово-кислотные батареи содержат раствор жидкой кислоты, который имеет решающее значение для работы батареи. Концентрация кислоты определяется с помощью прибора, называемого ареометром; ареометр измеряет плотность или удельный вес.

Удельный вес (SG) очень важен, потому что это самый прямой индикатор состояния заряда аккумулятора. Состояние заряда (SoC) прямо пропорционально удельному весу, поэтому, если мы можем измерить SG, мы можем мгновенно определить SoC. Кроме того, мониторинг SG с течением времени и в различных условиях даст нам хорошее представление об общем состоянии аккумуляторной батареи. Измерение и мониторинг SG имеют решающее значение для обслуживания батарей FLA и увеличения их срока службы.

Удельный вес — это плотность материала, выраженная по отношению к плотности воды. Таким образом, удельная плотность воды = 1.000. Жидкость с удельной массой 1,2 на 20% плотнее воды. Материалы с удельной массой> 1 тонут в воде; материалы с удельной массой <1 будут плавать. Материалы с SG = 1 будут нейтрально плавучими в воде. Вот некоторые удельные веса некоторых материалов:

Материал Удельный вес
Дистиллированная вода 1.000
Дизельное топливо 0,85
Золото 19
Рапсовое масло 0,91
Этиловый спирт 95% 0,81
Сухой воздух 0,0013 900 Алюминий 2,70
Чистая серная кислота 1,84
Серная кислота, содержащаяся в затопленных свинцово-кислотных аккумуляторах 1,100 к 1.300

Для измерения плотности ареометр использует калиброванный поплавок или «колбу», обычно сделанную из стекла, с градуированными отметками. Колба будет плавать выше или ниже в жидкости в зависимости от ее удельной плотности.

Ареометры с грушей для аккумуляторов имеют цилиндр и сжимаемую резиновую камеру, которая используется для всасывания достаточного количества электролита, как в случае с индейкой, чтобы лампочка свободно покачивалась. Показание производится на пересечении уровня электролита и градуированной отметки:

. Считывание ареометра с лампочкой

Мы используем грушу-ареометры с пластмассовым корпусом.Ареометры со стеклянной бочкой используются в лабораторных условиях и не подходят для полевых работ, где стеклянная бочка может быть разбита.

Ареометр с лампочкой

Это поплавковый ареометр без груши: плавающие элементы сделаны из пластика, и они объединяются, чтобы сделать ареометр намного легче читаемым, чем традиционный ареометр с грушей. По нашему опыту, этот тип ареометра требует некоторой практики, чтобы получить стабильные показания, и он имеет более короткий срок службы, чем ареометр с шариковой головкой.

Поплавковый ареометр без лампы
Изображение: Midnite Solar

Рефрактометр — это другой вид прибора для измерения удельного веса. Вместо того, чтобы опускать баллончик в кислоту, на инструмент помещают одну каплю кислоты, и измеряют удельную плотность на основе того, как свет преломляется через жидкость. Считывание производится путем направления инструмента на источник света, просмотра через линзу и считывания показанной там градуированной шкалы. Рефрактометры являются наиболее точными и простыми в использовании, но они будут работать медленнее при измерении большого количества ячеек.Рефрактометры доступны для множества различных применений и с разными градуированными шкалами; убедитесь, что у вас есть прибор для измерения удельного веса кислоты в аккумуляторной батарее.

Рефрактометры

Удельный вес зависит от температуры кислоты. В зависимости от типа имеющегося у вас ареометра может потребоваться применение поправочных коэффициентов для точности. Обратитесь к руководству по эксплуатации вашего устройства. Некоторые из них имеют встроенные термометры для легкой компенсации, а некоторые имеют автоматическую компенсацию температуры. При этом коэффициент температурной компенсации, применяемый для температур, близких к комнатной (от 20 ° C до 30 ° C), будет очень мал, и во многих случаях им можно пренебречь.Если ваши батареи очень горячие или холодные, следует обратиться к температурной компенсации. Вот таблица значений температурной компенсации удельного веса. Предполагается, что ваш ареометр откалиброван на 25 ° C. Это кислотные температуры, а не температура окружающей среды.

Коэффициенты температурной поправки на удельный вес

Помните, что аккумуляторная кислота опасна! Каждый раз, когда вы работаете с кислотой, вы должны носить защитные перчатки и маску для лица и обязательно носить резиновый фартук или одноразовую одежду.Синтетика более прочна, чем натуральные волокна.

Инструменты после использования тщательно промыть дистиллированной водой, просушить и хранить в сухом прохладном месте.

Независимо от типа ареометра, который вы выберете, важно научиться его использовать, как при необходимости применять коэффициенты температурной компенсации и что делать с данными, которые он дает. Сохраняйте свои показания SG в бортовом журнале для справки; это может быть полезно для устранения неполадок в будущем и является обязательным требованием для предъявления претензии по гарантии на аккумулятор, если в этом возникнет необходимость.

Как использовать ареометр для измерения удельного веса

Вы можете измерить удельный вес с помощью ареометра, если вы залиты свинцово-кислотные батареи, у которых наверху крышки вы можете удалить, чтобы добраться до жидкости (электролита) внутри. Затем найдите удельный вес в следующей таблице, чтобы найти Глубина разряда (DOD) аккумуляторной батареи, которую вы взяли электролит от. Если у вас запаянные батареи то там нет съемных колпачков, и вы не можете этого сделать.

DOD Аккумулятор 2 В Аккумулятор 12 В Аккумулятор 24 В Аккумулятор 48 В удельный вес
0% 2,10 12,70 25,40 50,80 1,265
10% 2,09 12,58 25.16 50,32 1,249
20% 2,08 12,46 24,92 49,84 1,233
30% 2,06 12,36 24,72 49,44 1,218
40% 2,05 12,28 24.56 49,12 1,204
50% 2,03 12,20 24,40 48,80 1,190
60% 2,02 12,12 24,24 48,48 1,176
Разряжено 1,75 11,90 23.80 47,60 1,120

Электролит содержит смесь серной кислоты и дистиллированной воды.

Предупреждение: эти батареи содержат серную кислота. Всегда надевайте защитные очки и резиновые или ПВХ перчатки при работе с их.

Показания не будут точными, если вы только что добавили воды. Подожди пока перед тестированием, чтобы новая вода успела смешаться с имеющийся электролит.

Каждая батарея состоит из одной или нескольких ячеек. На фото ниже есть три клетки. Чтобы получить доступ к электролиту, просто удалите колпачок, обычно откручивая его. Убедитесь, что вы не уронили что-нибудь в камеру.

Ячейки аккумулятора.

Колпачок снят.

Самый лучший, самый простой в использовании и доступный по цене тип ареометра — это тот, который представляет собой герметичный цилиндр с грушей на одном конце и маленькая гибкая трубка на другом конце (см. схему ниже.) Внутри есть поплавок, что-то похожее на то, что вы видели бы в ртути термометр. Убедитесь, что у вас есть тот, который сообщает вам значения для удельный вес, и на нем не только цвета. Следующие диаграмма показывает, как его использовать.

Использование поплавкового ареометра.

Если на поплавке ареометра есть числовые значения для конкретных гравитации, запишите значение и аккумулятор, который вы хотите измеряется.Если значений нет, зеленый цвет означает, что аккумулятор заряжен, белый цвет означает, что он нуждается в зарядке, а красный означает, что он сильно разряжен и нуждается в зарядке, но это очень приблизительные показатели. Желательно иметь фактические значения. так как вы можете сравнивать значения для разных ячеек и лучше контролировать здоровье каждой клетки.

Коэффициенты поправки на температуру

Удельный вес будет варьироваться в зависимости от температуры внутри батареи.В инструкции к вашим батареям вы узнаете, какое исправление применять. Например, так написано в мануале Surrette / Rolls. для температур в диапазоне от 0 до 130 ° F или от -17,8 до 54,4 ° C. Используйте приведенные ниже уравнения или для температур ниже 70 ° F (21 ° C) отнимите 0,03 на каждые 10 ° F (5 ° C) температуры ниже 70 ° F, а для температур выше 70 ° F добавьте 0,03 для каждые 10 ° F выше 70 ° F.

  • Поправочный коэффициент (по Фаренгейту) = (0,331 x Температура_батареи_в_F — 23) / 100
  • Поправочный коэффициент (по Цельсию) = (0.595 x Температура_батареи_в_C — 12,5) / 100

Многие инверторы или контроллеры заряда имеют температуру батареи датчик, который вы прикрепляете к аккумуляторной батарее где-нибудь, чтобы контролировать температура. Обычно у них есть ЖК-дисплей, который можно запросить. выясни это. Направляя инфракрасный термометр сбоку от одна из батарей в середине вашего батарейного блока также будет дать температуру.

Ареометр с круговой шкалой для измерения удельного веса

Ниже представлен ареометр другого типа с циферблатом вместо поплавка.Это немного менее надежно, потому что циферблат может немного заедать, когда превращение.

Циферблатный ареометр.

Крупный план циферблата.

Всасывание электролита в ареометр.

Чтение циферблата.

Пористость катода является отсутствующим ключевым параметром для оптимизации плотности энергии литий-серной батареи

Морфология серного электрода с разной пористостью

Морфология композитных электродов S / C с различной пористостью наблюдалась с помощью сканирующей электронной микроскопии (SEM), так как показано на рис.1. При пористости 70% наблюдается большое пустое пространство с частицами, перекрывающимися и неравномерно распределенными по поверхности. При пористости 60% или 50% расстояние между частицами было значительно уменьшено, а пустое пространство также было менее заметным из-за процесса каландрирования. Между тем, частицы упакованы более конденсированными по поверхности электрода, и агрегация также очевидна. Морфология серного электрода с пористостью 40 и 50% после циклирования наблюдалась с помощью изображений поперечного сечения SEM (дополнительный рис.1 во вспомогательной информации, SI). Толщина обоих электродов увеличивается из-за объемного расширения во время цикла. Поверхность углерода также покрыта осажденными материалами, вероятно, изолирующим Li 2 S.

Рис. 1

Изображения, полученные с помощью сканирующего электронного микроскопа (SEM). СЭМ-изображения серного электрода с пористостью 70, 60 и 50%

Электрохимические характеристики ячеек с разной пористостью

Для серного катода важна высокая доля объема пор, чтобы обеспечить пространство как для окислительно-восстановительных реакций, так и для объема расширение серы (~ 80%) 40,43 .В то же время требуется некоторый избыток электролита для полного заполнения пор и обеспечения взаимосвязанных путей переноса ионов лития между частицами. Начальная пористость электрода с покрытием составляет 70%. Посредством процесса каландрирования были подготовлены электроды с различной пористостью для оценки электрохимических характеристик.

На рис. 2а показаны профили заряда – разряда Li – S ячеек с содержанием серы 2,5 мг / см –2 при пористости 70, 65, 60, 55, 50 и 45%.Типичное поведение двухплато при разряде Li – S батареи наблюдалось, когда пористость превышала 55%. Первое плато при ~ 2,4 В обычно приписывается реакциям превращения элементарной S в растворимый Li-PS (включая Li 2 S 8 , Li 2 S 6 и Li 2 S 4 ), а второе плато 2,1 В указывает на дальнейшее преобразование растворимого Li-PS в нерастворимый Li 2 S 2 и Li 2 S. , а общая начальная разрядная емкость была выше 1000 мАч. -1 для ячеек с пористостью выше 50%, что означает, что степень использования серы не сильно пострадала, когда пористость находилась в определенном диапазоне.При дальнейшем уменьшении пористости до 50% точка поворота плато сместилась назад до 260 мАч г -1 , и наблюдалась значительная депрессия второго плато. Общая начальная емкость снизилась до 910 мАч g −1 . Это явление было еще более серьезным для ячейки с меньшей пористостью 45%. Точка поворота была дополнительно уменьшена до емкости 200 мАч г -1 , а общая емкость резко снизилась до всего 299 мАч г -1 . Аналогичную тенденцию можно наблюдать и для электродов с содержанием серы 5 мг / см -2 , как показано на рис.2b. Электроды с пористостью 70 и 60% показали идентичную емкость, близкую к 1100 мАч г -1 со вторым плато разряда выше 2,0 В. Хотя электрод с пористостью 50% обеспечивал относительно более высокую начальную емкость по сравнению с электродом с более низкой нагрузкой при той же пористости. , по-прежнему наблюдалось значительно пониженное второе плато разряда. Когда пористость была дополнительно уменьшена до 40%, начальная разрядная емкость составила всего 255 мАч / г -1 , а плато разрядки 2 и было сильно сжато.Эти результаты показали, что электроды с более высокой пористостью могут обеспечивать больше реакционных центров и, таким образом, иметь более высокую степень использования серы.

Рис. 2

Электрохимические характеристики ячеек с различной массовой загрузкой серы. a , b Зарядно-разрядные профили литий-серных (Li-S) элементов с содержанием серы 2,5 мг см −2 и 5 мг см −2 при различной пористости. c Циклические характеристики ячеек с содержанием серы 5 мг / см –2 при пористости 70, 60, 50 и 40%. d Спектр электрохимического импеданса серного электрода с пористостью 70, 60 и 50% (содержание серы 2,5 мг / см −2 ). e , f Li – S аккумулятор с электролитом, состоящим из диметоксиэтана (DME) и диоксолана (DOL) в качестве растворителя с 0,4 M бис (трифторметансульфонил) имидом лития (LiTFSI) −0,6 M LiNO 3 и 3 M LiTFSI– 0,2 M LiNO 3 (загрузка серы 2,5 мг / см -2 )

Циклические характеристики ячеек с загрузкой серы 5 мг / см -2 при различной пористости представлены на рис.2c. Электроды с пористостью 70, 60 и 50% показывают очень близкие начальные емкости 1104, 1116 и 1040 мАч г -1 соответственно. Емкость электрода с пористостью 70% уменьшилась в течение первых 12 циклов, а затем восстановилась и оставалась относительно стабильной. Ячейка с пористостью 60% показала несколько более высокую емкость в течение первых 10 циклов по сравнению с электродом с пористостью 70%, но емкость уменьшилась более значительно в следующих циклах. Ячейка с пористостью 50% показала более стабильную циклическую производительность по сравнению с ячейками с более высокой пористостью, но емкость внезапно упала после 34 циклов, что может быть вызвано коротким замыканием.Что касается ячейки с пористостью 40%, она быстро вышла из строя после двух циклов с начальной емкостью 255 мАч g -1 . Хотя небольшие поры углеродной матрицы благоприятны для использования активных материалов 40 , электрод с пористостью 70% по-прежнему демонстрирует лучшие характеристики по сравнению с электродами с более низкой пористостью. При низком содержании серы (дополнительный рисунок 2) ячейка с пористостью 70% показала стабильную работу цикла, хотя начальная разрядная емкость была ниже, чем у ячеек с более низкой пористостью (65, 60 и 55%).В то время как начальная емкость ячейки с пористостью 60% была самой высокой среди всех ячеек, она продолжала снижаться и почти сравнялась с емкостью с пористостью 65% после 10 циклов. Обе ячейки с пористостью 70 и 55% испытали быстрое разрушение емкости после 20 циклов по сравнению с ячейками с пористостью 60 и 65%. Емкость ячейки с пористостью 65% постепенно увеличивалась до 80 циклов, а затем внезапно упала до даже меньшей емкости, чем у ячейки с пористостью 60 и 55%.Ячейка с пористостью 70% показала наиболее стабильную производительность цикла в течение 100 циклов по сравнению с другими, за которыми следовали 60 и 55%. Кулоновская эффективность всех клеток сохранялась около 98%, что можно отнести к ингибированию эффекта челнока за счет использования LiNO 3 35,44 . На разложение LiNO 3 также указывает небольшой дополнительный прирост емкости, когда напряжение ниже 1,8 В для пористости более 50% на рис. 2b, что согласуется с наблюдениями в литературе 35 .

На рис. 2d показана спектроскопия электрохимического импеданса для ячеек с пористостью электродов 70, 60 и 50% после 5 циклов при 50% -ном состоянии заряда. Когда пористость уменьшилась на 10%, сопротивление переносу заряда элемента уменьшилось почти вдвое, в то время как сопротивление электролита осталось прежним, что указывает на то, что процесс каландрирования может улучшить проводимость за счет улучшения контакта между частицами 45 . Однако процесс каландрирования также оказал отрицательное влияние на электрохимические характеристики ячеек в результате значительного уменьшения пустот и объема пор, как обсуждалось в вышеупомянутом контексте.

Плохие электрохимические характеристики серного электрода с пониженной пористостью демонстрируют, что доля объема пор имеет решающее значение как для скорости использования серы, так и для стабильности циклирования. В отличие от обычных литий-ионных аккумуляторов с интеркаляцией, механизм реакции Li-S аккумуляторов включает процессы растворения и осаждения Li-PS, которые сильно зависят от свойств электролита. Как показано на рис. 2e, при низкой концентрации электролита ячейка имела длинное плато разряда 2 и в точке 2.1 В, который, однако, заметно сжимается, если концентрацию увеличивать до 3 моль л -1 (M, см. Рис. 2f). Было очевидно, что на электрохимические характеристики Li-S батареи сильно влияет наличие свободных растворителей в электролите, что, вероятно, связано с растворением Li-PS. Если концентрация лития Li-PS в элементе превышает предел его растворимости (~ 8 M), производительность аккумулятора будет отрицательно сказываться 46 .

Аналитическая модель

Согласно экспериментальным наблюдениям, на общие характеристики Li – S батареи сильно повлияла пористость композитного катода S / C.Сообщалось, что площадь поверхности углерода катодов S / C оказала значительное влияние на второе плато разряда 47 . Наши экспериментальные данные показали, что уменьшение пористости вызвало не только пониженное второе плато, но также укороченное первое плато, как показано на рис. 2a, b. Чтобы понять основные механизмы, была построена унифицированная аналитическая модель для количественной оценки влияния пористости катода, p , на плотность энергии на уровне ячеек. В экспериментах мы выбрали залитые монетные элементы с базовым электролитом, чтобы отделить влияние пористости катода от других экспериментальных факторов, таких как расход электролита из-за образования SEI на поверхности Li-металла.Из-за конструкции плоского круглого элемента не весь электролит был использован. Наша аналитическая модель рационализирует количество электролита, участвующего в работе ячейки и растворении Li-PS. Это послужит основой для оценки предела отношения E / S в практической конструкции пакета без избытка электролита.

Ограниченные емкости на первом плато разряда

После сборки ячейки поры электродов, показанные на рис. 1, будут заполнены электролитом. Таким образом, количество электролита, необходимое для полного смачивания электрода, будет зависеть от пористости электрода, p .С учетом пористого полимерного сепаратора и непористого литиевого анода, используемых для изготовления ячейки, общий объем пор ячейки, V поры , включая поры в сепараторе и катоде, как

$$ V _ {{\ mathrm {pore}}} = V _ {{\ mathrm {pore}}} ({\ mathrm {sep}}) + V _ {{\ mathrm {pore}}} \ left ({{\ mathrm {cat}}} \ справа) $$

(1)

V поры (sep) были рассчитаны как 2,5 мм 3 на основе общего объема (6.3 мм 3 ) и пористость (40%) сепаратора Celgard 2500, использованного в эксперименте. V pore (cat) включает микропоры внутри углерода и пустое пространство между частицами углерода. Он масштабируется с учетом пористости, p как

$$ V _ {{\ mathrm {pore}}} \ left ({{\ mathrm {cat}}} \ right) = p \ ast V \ left ({{\ mathrm {cat}}} \ right) = p (V _ {{\ mathrm {density}}} \ left ({{\ mathrm {cat}}} \ right) + V _ {{\ mathrm {pore}}} \ left ({{\ mathrm {cat}}} \ right)) $$

(2)

Исходя из экспериментально измеренного компактного объема катода, объем плотного композитного катода S / C без какой-либо пористости V плотный (cat) был около 5.3 мм 3 (Дополнительная таблица 1). Во-первых, мы можем предположить, что весь электролит можно утилизировать. Коэффициенты диффузии наименьшего Li-PS, Li 2 S 4 , в типичном растворителе диметоксиэтане (DME) были рассчитаны как функция концентраций Li 2 S 4 с помощью классической молекулярной динамики (MD). моделирование. Хотя коэффициент диффузии Li 2 S 4 уменьшался с увеличением концентрации, расстояние диффузии Li 2 S 4 во время процесса разряда со скоростью 0.По оценкам, 1 C составляет 1–3 мм, что намного превышает размер пор и частиц S / C-композита и толщину электрода. Это подтверждает наличие челночного движения Li-PS, которое широко наблюдалось в опубликованных экспериментах 10,11 . Также предполагается, что диффузия Li-PS не является ограничивающим фактором для использования серы.

Исходя из содержания серы 5,0 мг / см -2 , общая масса S в катоде м с (общая) составляла 6,5 мг для катода площадью 1.3 см 2 , что соответствует объему 3,25 мм 3 . (Дополнительная таблица 1). Если бы все 6,5 мг S преобразовались в Li 2 S 4 после завершения первого плато разряда, была бы получена теоретическая емкость Q th = 420 мАч г -1 . Поскольку вся экспериментально измеренная разрядная емкость после первого плато меньше Q th , мы ввели процент использования S P s (uti) как отношение массы использованного S (преобразованных в Li 2 S 4 ), m s (uti), а общая масса S равна

$$ P_s ({\ mathrm {uti}}) = \ frac {{m _ {\ mathrm { s}} \ left ({{\ mathrm {uti}}} \ right)}} {{m _ {\ mathrm {s}} \ left ({{\ mathrm {total}}} \ right)}} = \ frac {{Q _ {{\ mathrm {pr}}}}} {{Q _ {{\ mathrm {th}}}}} $$

(3)

Q pr — это практическая емкость на первом плато, которую можно получить из рис.2b. Как показано на рис. 3а, экспериментальный P s (uti) поддерживался на уровне ~ 70% для пористости выше 60%. Таким образом, не более 70% S может быть преобразовано в Li 2 S 4 . Растворимость Li 2 S 4 в растворителе электролита в пересчете на S составляет C max = 8 M 19 . Если предположить, что эти Li 2 S 4 растворены только в электролите в поре, его концентрация все равно будет превышать предел насыщения даже при высокой пористости 70%.Это означает, что доступный объем электролита был больше, чем V поры . Дальнейшее снижение пористости ниже 60% привело к снижению P s (uti), поскольку количество доступного электролита больше не растворяет полностью образовавшийся Li 2 S 4 , что ограничивает использование активного S Следовательно, мы считаем, что первое плато будет прекращено, когда концентрация Li 2 S 4 достигнет предела насыщения, поэтому использование S будет ограничено максимальным количеством растворимого Li 2 S 4 ,

$$ P _ {\ mathrm {s}} ({\ mathrm {uti}}) = \ frac {{gV _ {{\ mathrm {pore}}} M _ {\ mathrm {s}} \ cdot C _ {{\ mathrm {max}}}}} {{m _ {\ mathrm {s}} \ left ({{\ mathrm {total}}} \ right)}} $$

(4)

, где M s = 32 г · моль -1 — молярная масса S, а доступный объем электролита был принят как г · V поры .Новый параметр г был введен для учета доступного электролита вне пор, но способствовал растворению Li-PS. Путем подгонки к практической емкости первого плато при различной пористости, как показано на рис. 2b, значение г было определено равным 1,8, предполагая, что объем использованного электролита примерно в два (1,8 раза) больше объема внутри электролита. поры.

Рис. 3

Результаты аналитического моделирования. Прогнозируемая концентрация полисульфида лития (Li-PS) и использование серы в зависимости от пористости ( a ).Прогнозируемая общая площадь поверхности и эффективная площадь поверхности как функция пористости ( b ). Расчетные кривые разгрузки при разной пористости ( c ). Прогнозируемая гравиметрическая плотность энергии на основе общей массы катода, включая S, углеродную матрицу, углеродную сажу, карбоксиметилцеллюлозу и стирол-бутадиеновый каучук (CMC-SBR), и объемную плотность энергии на основе полного объема катода ( d ). Также были вставлены схемы, показывающие разницу между низкой и высокой пористостью.Неиспользованная сера, углеродная матрица и осажденный слой Li 2 S 2 / Li 2 S были представлены желтым, черным и красным соответственно

В зависимости от количества использованной серы растворенный Li 2 S 4 Концентрация была также рассчитана в единицах моля S.

$$ c _ {\ mathrm {s}} \ left ({{\ mathrm {uti}}} \ right) = \ frac {{m_ {\ mathrm {s}} \ left ({{\ mathrm {uti}}} \ right)}} {{gV _ {{\ mathrm {pore}}} M _ {\ mathrm {s}}}} $$

(5)

На рис.3a, c s (uti) увеличивалась с уменьшением пористости и сходилась при насыщенной концентрации 8 M 19 , когда пористость была ниже 60%. Это подтвердило, что насыщение Li-PS в растворителе электролита было ограничивающим фактором для емкости на первом плато.

Углубление второго плато разряда

Электрохимическая реакция, соответствующая второму плато, будет протекать на поверхности углерода, где растворенный Li 2 S 4 забирает электроны с поверхности, а литий-ионные от электролита и осаждает как изолирующие Li 2 S 2 и Li 2 S на поверхности.\ alpha \), где α — эмпирическая константа, зависящая от структуры пор, обычно в диапазоне от -1 до 1. Учитывая тот факт, что пористость была изменена в процессе каландрирования вдоль направления толщины, α было выбрано значение 1. Далее, связав V (cat) с пористостью p , общая площадь поверхности A уменьшилась с p

$$ A (p) = \ frac {{A_0}} {{1 — p}} $$

(6)

Как мы знаем, измеренная площадь поверхности Брунауэра – Эммета – Теллера (БЭТ), A , составляла ~ 1000–1100 м 2 г -1 при p = 70%, остальная часть A может быть получена как функция от p .

Если вся сера может быть преобразована в растворенный в электролите Li 2 S 4 , углеродная поверхность, первоначально покрытая изолирующей серой, снова станет доступной для облегчения реакции переноса заряда. Однако, если после реакции, связанной с первым плато, остается неиспользованная S, часть поверхности, покрытая S, по-прежнему является изолирующей. Таким образом, эффективная площадь поверхности A eff была определена для учета неиспользованной серы, \ (m _ {\ mathrm {s}} \ left ({{\ mathrm {total}}} \ right) (1 — P _ {\ mathrm {s}} \ left ({{\ mathrm {uti}}} \ right)) \) с параметром k ,

$$ A _ {{\ mathrm {eff}}} = A-km _ {\ mathrm {s}} \ left ({{\ mathrm {total}}} \ right) (1 — P _ {\ mathrm {s}} \ left ({{\ mathrm {uti}}} \ справа)) $$

(7)

Зная процент использования серы, предполагая различные k , A, и A eff были построены как функция от p на рис.3b. И A 0 и A eff уменьшались с уменьшением пористости, но уменьшение A eff было намного быстрее по сравнению с A . Это произошло из-за увеличения неиспользованной серы, покрывающей площадь поверхности углерода. Точное значение к будет определено позже.

Если предположить, что осажденные изолирующие продукты Li 2 S 2 / Li 2 S равномерно распределены на поверхности углерода, толщина слоя d пропорциональна емкости на втором плато \ (Q — Q_ { {\ mathrm {th}}} P _ {\ mathrm {s}} \ left ({{\ mathrm {uti}}} \ right), \) и обратно пропорционально эффективной площади поверхности A eff . Q здесь был полной вместимостью. Таким образом, используя константу b , связь между толщиной d и общей емкостью Q может быть получена как

$$ d = b \ frac {{(Q — Q _ {{\ mathrm {th}}} P_ { \ mathrm {s}} \ left ({{\ mathrm {uti}}} \ right))}} {{A _ {{\ mathrm {eff}}} m _ {\ mathrm {C}}}} $$

(8)

m c = 1,85 мг — масса углеродной матрицы, использованной в эксперименте. Изолирующий слой Li 2 S 2 / Li 2 S будет индуцировать сопротивление, и электроны должны туннелировать через его толщину для продолжения электрохимических реакций.{Bd} — 1) $$

(9)

, где C и B были двумя подгоночными параметрами, которые будут рассмотрены позже. Согласно формуле. (9), R было 0, когда толщиной d можно было пренебречь. Изолирующий слой индуцировал падение IR , причем I представляло ток разряда, на кривой разряда для второго плато. Равномерное нанесение изолирующего Li 2 S 2 / Li 2 S на углеродную поверхность поддерживалось S / C электродом, полученным методом диффузии из расплава (аналогичным нашему) Pan et al. 50 . Интересно, что они также представили неоднородное осаждение Li 2 S, так называемое «цветочное» агломерацию Li 2 S, которое сохраняло электрохимическую активность углеродного волокна и серного катода. Будет интересно, удастся ли этого добиться в макропористой углеродной матрице.

Принимая равновесное напряжение холостого хода 2,4 и 2,1 В для первого и второго плато, кривая разряда покажет две стадии для напряжения В и емкости Q :

$$ V = \ left \ {{\ begin {array} {* {20} {c}} {2.\ prime (Q — Q _ {{\ mathrm {th}}} P _ {\ mathrm {s}} \ left ({{\ mathrm {uti}}} \ right))}} {{A _ {{\ mathrm {eff }}} m _ {\ mathrm {C}}}}} — 1} \ right) \ left ({Q \> \ Q _ {{\ mathrm {th}}} P _ {\ mathrm {s}} \ left ({ {\ mathrm {uti}}} \ right)} \ right)} \ end {array}} \ right. $$

(10)

B = Bb и C = CI были двумя комбинированными параметрами. Подгоняя кривые разряда с пористостью 40 и 50% на рис.2b, подобранные значения B , C ′ и k были определены как 1,07 × 10 –3 м 2 г мАч −1 , 0,050 В и 1,27 × 10 5 m 2 г −2 соответственно. Хотя мы явно не подсчитывали набухание катода, показанное на дополнительном рис. 1, избыточный объем электролита в формуле. (1) и подгоночные параметры в уравнении. (2) неявно должен был включать эффект набухания. Расчетные кривые разрядки при других значениях пористости показаны на рис.3c. Модель успешно предсказала кривые разгрузки с незначительными изменениями, когда пористость была выше 60%. Дальнейшее уменьшение пористости сокращало первое плато и понижало второе плато. Таким образом, емкость быстро падала при уменьшении пористости до 40–50%. Это также соответствовало экспериментальным наблюдениям.

Кроме того, эта аналитическая модель может также объяснить изменение напряжения холостого хода с рис. 2e на рис. 2f, когда концентрация бис (трифторметансульфонил) имида лития (LiTFSI) в электролите увеличилась с 1 до 3 М.Подобно системе «вода в соли» 51 , с увеличением концентрации LiTFSI количество свободного растворителя, которое можно использовать для сольватации Li-PS, будет падать. Это привело к более низкой концентрации насыщения Li-PS в электролите и уменьшению P s (uti), что укорачивает первое плато, а также снижает второе плато. Это причина того, что даже при высокой пористости 70% на электрохимические характеристики сильно повлиял электролит 3 M LiTFSI, показанный на рис.2f.

Объемная и гравиметрическая плотность энергии

На основании приведенного выше обсуждения влияние пористости на электрохимические характеристики можно обобщить на схемах на рис. 3d. Неиспользованная S, углеродная матрица и осажденный слой Li 2 S 2 / Li 2 S были представлены желтым, черным и красным соответственно. Когда пористость была высокой (> 55%), P s (uti) сохранялась на уровне 70%, способствуя длительному первому плато.Кроме того, A eff составлял не менее 500 м 2 г −1 , что было достаточно высоким, чтобы удерживать осажденный слой Li 2 S 2 / Li 2 S до тех пор, пока не будет образован весь Li -PS был преобразован в Li 2 S 2 и Li 2 S, как показано на схемах справа на рис. 3d. Сопротивление, вызванное этим тонким слоем, сформированным на поверхности углерода, было меньше 0,1 В, и второе плато оставалось плоским. При средней пористости (~ 50%) значение P s (uti) упало до 55%, что привело к сокращению первого плато.Кроме того, из-за уменьшения пористости и увеличения количества неиспользованной серы A eff составляло всего ~ 200 м 2 г -1 . Осажденный слой Li 2 S 2 / Li 2 S становился толще по мере продолжения второй реакции разряда, вызывая увеличение сопротивления. Как показывает аналитическая модель, падение ИК-излучения составило ~ 0,2 В при общей емкости 800 мА · ч g -1 и ~ 0,4 В при общей емкости 1100 мА · ч g -1 , демонстрируя очевидную депрессию во втором плато.При низкой пористости (<45%) P s (uti) ~ 42% привело к еще более короткому первому плато. A eff также резко упало до ~ 15 м 2 г -1 . В результате толщина слоя Li 2 S 2 / Li 2 S и соответствующее сопротивление росли очень быстро, как показано на вставленных слева схемах на рис. 3d. Общая емкость была <250 мАч g -1 , когда IR упал на 0,4 В и предел напряжения 1.Было достигнуто 7 В. В этом причина сильной депрессии второго плато, сопровождающейся низкой пористостью.

На рис. 3d расчетная гравиметрическая плотность энергии была рассчитана как общая энергия (рассчитанная по кривой разряда), деленная на общую массу катода. Объемная плотность энергии была рассчитана как полная энергия, деленная на полный объем катода, V (кат) в уравнении. (1). Гравиметрическая плотность энергии сначала монотонно увеличивается с увеличением пористости и достигает постоянной, когда пористость превышает 55%.Однако объемная плотность энергии показала пиковое значение пористости около 52%.

Критические параметры для проектирования на уровне ячейки

Хотя избыток электролита может увеличить использование серы и улучшить характеристики цикла, это неэффективный подход для достижения высокой плотности гравиметрической энергии. Недавно были продемонстрированы некоторые многообещающие характеристики Li – S-аккумуляторов с соотношением E / S <5 мкл, мг -1 при определенных условиях 52,53,54 .Как обсуждалось выше, для практического применения рекомендуемое соотношение E / S составляет 3 мкл мг -1 , что сопоставимо с коммерчески доступным литий-ионным аккумулятором 52 . В дополнительной таблице 2 показаны значения отношения E / S при различной площади поверхности и пористости на основе монетных ячеек с учетом объема пор в серном электроде и сепараторе. Отношение E / S обычно уменьшается с увеличением площади поверхности и пористости. Когда поверхностная емкость серы составляет 5 мАч см -2 , отношение E / S близко к 4 мкл мг -1 даже для электрода с пористостью 70%, и оно становится еще меньше по мере уменьшения пористости.В формате ячейки пакета соотношение E / S может быть дополнительно уменьшено за счет устранения мертвого пространства и неравномерного распределения давления 10 . Как показано на рис. 4, доля электролита увеличивается с 42 до 53%, когда объемная емкость серы изменяется от 1 до 5 мАч см −2 при фиксированной пористости 70%. Такая чрезвычайно высокая пористость электрода снижает плотность энергии и увеличивает стоимость из-за большого количества электролита. Если площадь серного электрода остается прежней, использование количества электролита уменьшается с уменьшением пористости.Для электродов емкостью 5 мАч см -2 доля электролита уменьшается на 18% при уменьшении пористости до 50%. Это явление указывает на то, что пористость играет важную роль в конструкции элемента в целом, поскольку она определяет количество электролита в элементе. Однако электрохимические характеристики элемента могут ухудшиться, если пористость электрода уменьшается ниже уровня 50%, как показано на фиг. 3c. На рис. 3d максимальная объемная плотность энергии была предсказана аналитической моделью, предполагая, что пористость от 50 до 60% является оптимальной для сбалансированного использования серы и плотности энергии на уровне ячейки для данной загрузки серы.

Рис. 4

Параметры для проектирования на уровне ячеек. Соотношение электролит / сера (E / S) в ячейке-пакете с разной пористостью при разной емкости по сере

Таким образом, аналитическая модель позволяет проектировать Li – S аккумуляторные батареи на уровне ячеек. Чтобы использовать эту модель для других конструкций ячеек, таких как другой сепаратор или электролит, можно соответствующим образом скорректировать измеренные константы, перечисленные в дополнительной таблице 3, и подгоночные параметры { g , B ‘, C ‘ и k } необходимо переоборудовать, в то время как ключевые уравнения остаются прежними.Затем модель можно использовать для оптимизации пористости катода с целью максимизации плотности энергии ячейки. Следует отметить, что катодная пористость является ключевым параметром при проектировании высокоэнергетических Li-S ячеек, но не единственным. Для описания микроструктуры электрода в будущей работе необходимо мезомасштабное моделирование с более конкретными и точными параметрами, как описано Райаном и Мукерджи 55 . Текущая аналитическая модель также не учитывает моделирование жизненного цикла ячейки, которое требует модели, основанной на механизме деградации, в которой также следует учитывать побочную реакцию электролита и старение литий-анода.

Датчики | Бесплатный полнотекстовый | Разрешение датчиков QCM для вязкости и плотности жидкостей: применение в свинцово-кислотных аккумуляторах

1. Введение

Свинцово-кислотные батареи являются одними из наиболее распространенных типов батарей, используемых во многих приложениях, таких как электромобили, фотоэлектрические системы, удаленные станции, подводные лодки, системы общей поддержки или телекоммуникационные системы. При таком большом количестве приложений время от времени становится важным знать состояние батареи в режиме реального времени, чтобы оптимизировать работу оборудования или обнаруживать неисправности на ранней стадии.Для определения состояния батареи необходимо контролировать ток, разницу в мощности между клеммами батареи, температуру, состояние заряда (SoC) и состояние здоровья (SoH). SoC — один из наиболее важных параметров, который необходимо знать, поскольку он позволяет улучшить работу, производительность, надежность и срок службы батареи. Превышение пределов заряда, установленных производителем, может сократить срок службы или даже разрушить аккумулятор [1,2].

Кварцевые кварцевые резонаторы — это пьезоэлектрические устройства, которые используются в электронных генераторах для различных целей, поскольку они могут обеспечивать высокоточный синхронизирующий сигнал на основе резонансной частоты кварца [3].Если масса адсорбируется или помещается на поверхность кристалла кварца, резонансная частота и, следовательно, частота колебаний изменяется пропорционально количеству массы. Это свойство широко используется в исследованиях массово адсорбированных газов, что позволяет использовать кварцевые кварцевые генераторы в качестве высокочувствительных микровесов, предназначенных для измерения изменений массы в диапазоне нанограмм путем покрытия кристалла материалом, который является селективным по отношению к интересующим веществам [4] . Эти типы датчиков называются QCM или Quartz Crystal Microbalance.Кроме того, из Канадзавы и Гордона [5] хорошо известно, что, когда кварцевый резонатор находится в контакте с ньютоновской жидкостью, существует линейная зависимость между сдвигом резонансной частоты и квадратным корнем из произведения плотности и вязкости жидкости. :

где Δf — сдвиг основной частоты кристалла кварца из-за изменений в квадрате произведения плотность-вязкость, Δρη, а k — коэффициент чувствительности, определяемый формулой (2):

k = −2,26⋅10−6f03 / 24πHzgcm3poise

(2)

где f 0 — номинальная частота датчика.Таким образом, датчик QCM может использоваться для обнаружения изменений в произведении плотности и вязкости жидкости. Более того, если номинальная частота датчика QCM увеличивается, чувствительность может быть улучшена для измерения изменений произведения плотности и вязкости в тестируемой жидкой среде.

Во время процесса заряда и разряда в свинцово-кислотных аккумуляторах, учитывая, что H 2 SO 4 участвует в электродной реакции, электролит становится более разбавленным во время разряда и повторно концентрируется во время заряда [1].Таким образом, такие параметры, как плотность и вязкость, меняются в зависимости от концентрации кислоты в электролите. Хорошо известно, что вязкость и, следовательно, ρη больше зависит от концентрации серной кислоты, чем от плотности [1]. Следовательно, можно использовать датчик QCM для обнаружения изменений концентрации кислоты посредством сдвига частоты из-за изменений квадрата произведения плотность-вязкость.

В этой статье описываются характеристики и применение датчика осциллятора Miller QCM с частотой 9 МГц для мониторинга SoC в режиме реального времени во время процессов зарядки и разрядки свинцово-кислотных аккумуляторов [6,7].Кроме того, в теоретическом разделе получено новое выражение для предела разрешения, которое может быть достигнуто с помощью датчиков QCM для измерения изменений в произведении плотности и вязкости жидкой нагрузки. Это выражение завершает теорию предела разрешения, ранее опубликованную Родригес-Пардо и др. В [8] для случая датчиков QCM для физических свойств жидкостей.

Основной текст разделен на четыре части. В первом разделе развивается теория разрешения и обсуждаются температурные соображения.Во втором разделе описывается экспериментальная установка: калибровка и определение характеристик датчика с растворами серной кислоты в диапазоне батарей, тепловые характеристики, самодельный кварцевый держатель для размещения резонатора внутри аккумуляторного элемента и испытания в реальном времени. датчика в процессе заряда и разряда. В третьем разделе описываются результаты и обсуждения, а в четвертом и последнем разделе резюмируются выводы. Будет показано, что датчик способен обнаруживать изменения в SoC батареи около 0.2% с интервалом времени 2 с.

2. Теория

Чтобы охарактеризовать датчик QCM, необходимо определить не только чувствительность, но также стабильность частоты генератора и его разрешение. Стабильность частоты генератора — это его способность поддерживать постоянную частоту выходного сигнала во времени. Изучение частотного шума в генераторах QCM очень важно: оно позволяет определить минимально возможный сдвиг частоты электрического сигнала, который может быть обнаружен из-за изменения массы или жидкости [8].

Для оценки стабильности частоты во временной области необходимо определить дисперсию набора частотных измерений. Обычно для измерения дисперсии используются классические статистические данные, такие как стандартное отклонение или дисперсия. Однако дисперсия работает только со стационарными данными, результаты которых не должны зависеть от времени, а частота генератора обычно нестационарна. По этой причине неклассическая статистика используется для оценки стабильности частоты во временной области. Для нормализации измерений стабильности частоты во временной области IEEE предложил девиацию Аллана уравнения (3) [9].Предел обнаружения генератора может быть оценен с использованием этого уравнения отклонения (4), то есть наименьшего отклонения частоты, которое может быть обнаружено в присутствии шума. Затем разрешение датчика можно получить, используя соотношение между пределом обнаружения и коэффициентом чувствительности Уравнение (5) [8]:

σy2 (m, τ) = 12fo (m − 1) ∑n = 1m − 1 (f¯n + 1 (τ) −f¯n (τ)) 2

(3)

f¯n (τ) = 1τ∫tntn + τf (t) dt

(6)

где f n (τ) (с этого момента f n ) — это n-я выборка средней частоты, вычисленной за интервал времени τ, начиная с момента t n Уравнение (6), f o — номинальная частота датчика, m — количество отсчетов, k — коэффициент чувствительности.
2.1. Предел разрешения QCM для измерения ρη

Виг и Уоллс предложили эмпирическую зависимость между наименьшим уровнем шума, создаваемого генератором в вакууме, и добротностью резонатора Q для времени выборки t от 0,1 до 10 с [10]:

σy (τ) мин = 1.0×10-7Q

(7)

Уравнение (7) указывает, что частотный шум уменьшается с увеличением добротности. Для датчиков QCM, работающих в жидкостях, демпфирование резонатора снижает максимально достижимую добротность.На рисунке 1 показана эквивалентная схема резонатора, предложенная Ван Дайком и Баттервортом [11] и модифицированная Мартином и Гранстаффом [12] с учетом массы и нагрузки по жидкости.

Когда нет массовой нагрузки, L Q2 = 0. Обычно L Q3 ≪ L Q1 , и в предположении идеального кварца (R Q1 ≈ 0) максимальная добротность резонатора в жидкости равна задается уравнением (8) [8], где c66¯ — постоянная сдвиговой жесткости кварца, а ρ q — плотность кварца:

Qmax≈1f0c66¯ρqπ41ρηQmax⋅fo⋅ρη≈ (7.8×105) гсм2⋅с

(8)

Затем минимально достижимый частотный шум, предполагающий Q max , увеличивается с увеличением частоты и произведением ρη:

σy (τ) min = 1,28⋅10−13f0ρη

(9)

В этом случае лучший предел обнаружения осциллятора для изменений плотности и вязкости определяется по формуле:

Δfmin = 1,28⋅10−13f03 / 2ρηHZ

(10)

Согласно уравнению (5), наилучшее разрешение вычисляется путем деления минимального предела обнаружения на коэффициент чувствительности k, указанный в уравнении (2).Это приводит к выражению:

Разрешение = 2×10-7ρηgcm3cp

(11)

Уравнение, полученное для разрешения, показывает, что наилучшее разрешение для параметров жидкости (ρη), которое может быть получено с помощью датчика QCM, не зависит от частоты генератора, но зависит от характеристик жидкости.

2.2. Температурные аспекты

Аккумуляторные приложения, работающие в реальном времени, изменяют температуру электролита во время процессов заряда и разряда.Эти изменения вызовут изменения в произведении плотности и вязкости жидкости, что приведет к сдвигу резонансной частоты датчика QCM. Точно так же кварц испытывает частотные резонансные тепловые дрейфы, присущие кристаллу [10,13]. Чтобы компенсировать эти два эффекта, необходимо получить температурные коэффициенты датчика QCM [14].

Изменение плотности электролита в свинцово-кислотных аккумуляторах в зависимости от температуры является хорошо известной величиной. Кроме того, уравнения Аррениуса и Пуазейля предсказывают изменение вязкости раствора с температурой.Раствор 40% серной кислоты, соответствующий полностью заряженному аккумулятору, имеет следующие выражения для плотности и вязкости, дрейфующих в зависимости от температуры [15,16]:

Δρ (Т) = — 7,45⋅10-4 (Т-Т0)

(12)

Δη (T) = — 1,53⋅10−5 (T − T0) 3 + 1,02⋅10−3 (T − T0) 2−4,98⋅10−2 (T − T0)

(13)

где T 0 = 25 ° C — эталонная температура. С другой стороны, тепловой дрейф кварцевого резонатора АТ-среза можно выразить как в (14):

Δf (T) f0 = A1 [T − T0] + A2 [T − T0] 2 + A3 [T − T0] 3

(14)

где A 1 , A 2 и A 3 — статические температурные коэффициенты, а T 0 — эталонная температура (обычно T 0 = 25 градусов Цельсия).Некоторые авторы приводят значения температурных коэффициентов АТ-среза кварца [17–20]. Однако предпочтительно оценивать индивидуальные коэффициенты для каждого приложения [21]. В следующем разделе получены тепловые коэффициенты для полностью заряженной батареи.

3. Экспериментальная часть

Самодельный генератор Миллера на 9 МГц использовался в качестве датчика SoC QCM для свинцово-кислотных аккумуляторов [6,7]. Чтобы оценить его экспериментальный коэффициент чувствительности к изменениям произведения плотность-вязкость электролита, калибровка проводилась с кварцевым резонатором, погруженным в растворы серной кислоты, термостатированным на 30 ° С.8 ° C с использованием циркуляционного термостата PolyScience. Температура электронного генератора поддерживалась стабильной на уровне 42 ° C во время калибровки с использованием монитора нагревателя Watlow. Концентрация серной кислоты в растворе изменялась ступенчато от 13% до 40%, что соответствует изменению состояния заряда аккумулятора с 13% до 99%. Для этого в раствор периодически добавляли небольшие количества концентрированной серной кислоты (95%), чтобы смоделировать процесс зарядки аккумулятора. На рис. 2 (а, б) показано используемое оборудование и схема подключения испытательного стенда соответственно.Детали размещения датчика QCM показаны на рисунке 2 (c). Частота генератора и температура раствора контролировались на протяжении всего процесса с временем выборки 2 с. Измерения плотности раствора также проводили для каждого этапа концентрации серной кислоты с помощью прецизионного плотномера Anton Paar DMA-35. Параметры эквивалентной схемы резонатора также измерялись для каждой концентрации анализатором импеданса HP-4194A.

С целью узнать предел обнаружения (т.е., минимальное изменение частоты (Δf), которое можно измерить из-за изменений в ρη) было проведено исследование кратковременной устойчивости. Отклонения Аллана для каждой концентрации серной кислоты в растворе рассчитывали по 150 образцам со временем отбора 2 с.

Для получения коэффициентов термокомпенсации датчика SoC QCM был проведен тест с погружением резонатора в 40% раствор серной кислоты. Температуру раствора изменяли между 17 ° C и 25 ° C, а температуру электронного генератора поддерживали стабильной на уровне 42 ° C.Частота колебаний, температура раствора и температура осциллятора отслеживались на протяжении всего процесса с временем выборки 2 с. Используя уравнения изменения плотности и вязкости раствора в зависимости от температуры (уравнения (12) и (13)) и уравнения изменения частоты Канадзавы и Гордона с квадратным корнем из произведения плотность-вязкость (уравнения (1) и ( 2)) для номинальной частоты 9 МГц была определена часть сдвига частоты из-за вклада температуры в произведение плотность-вязкость раствора:

Δfρη (T) = 4.92 × 10−6 (T − T0) 3−4,33 × 10−4 (T − T0) 2 + 3,19 × 10−2 (T − T0)

(15)

На рисунке 3 показано изменение частоты, полученное во время теплового испытания (Δf QCM ), и изменение частоты после компенсации изменения квадратного корня из произведения плотность-вязкость с температурой с использованием уравнения (15):

Δf (T) = ΔfQCM − Δfρη (T)

(16)

Используя кривую Δf (T) на рисунке 3, были получены термические коэффициенты для кварца в электролите (уравнение (14)):

А1 = 3.7 × 10−61 ° CA2 = 198 × 10−91 (° C) 2A2 = 12900 × 10−121 (° C) 3

(17)

Позже датчик был протестирован внутри свинцово-кислотного аккумулятора. Необходимо было разработать держатель подходящей формы, чтобы поместить кристалл кварца внутрь ячейки через вентиляционные отверстия в верхней части батареи (рис. 4 (a, b)). Этот держатель включает в себя воздушную камеру для обеспечения колебаний кристалла (рис. 4 (c)). Кроме того, для защиты держателя и кристалла кварца использовалось изоляционное покрытие, за исключением поверхности, контактирующей с электролитом батареи.Изоляционное покрытие предназначено для обеспечения электроизоляции и гидроизоляции.

Исследование кратковременной стабильности проводилось с датчиком внутри батареи, учитывая, что условия эксплуатации кварца отличаются от условий контролируемого испытания с растворами серной кислоты. Внутри батареи окружающая среда может быть мутной из-за взвешенных частиц. Это может вызвать нестабильность датчика. Чтобы оценить этот и любой другой эффект, который может создавать частотный шум, желательно знать разрешение датчика внутри батареи.Кроме того, после термокомпенсации интересно узнать частотный шум. Резонатор был помещен внутри аккумуляторного элемента в верхней части аккумулятора с SoC 99% (Рисунок 5). Температура электронного генератора поддерживалась постоянной на уровне 42 ° C, но электролит находился при комнатной температуре (температуре батареи). Частота колебаний, температура электролита и температура электронного генератора измерялись каждые 2 с в течение четырех дней. Проведена температурная компенсация и определены отклонение Аллана и разрешение в реальных условиях применения датчика SoC QCM.

Наконец, датчик был протестирован в процессе зарядки и разрядки в реальном времени. Зарядка и разрядка проводились с кварцем внутри батареи. И снова частота колебаний, температура генератора и температура батареи контролировались каждые 2 с, и была проведена температурная компенсация измеренной частоты, чтобы получить изменение произведения плотность-вязкость в батарее и, следовательно, изменение SoC со временем в процессах зарядки и разрядки.Кроме того, плотность электролита периодически измерялась прецизионным плотномером Anton Paar DMA-35, чтобы проверить хорошую корреляцию между измерениями SoC и QCM.

4. Результаты и обсуждение

4.1. Калибровка в серных растворах. Чувствительность, частотный шум и разрешение

Что касается калибровки с серными растворами, на рисунке 6 показаны как изменения частоты при добавлении концентрированной кислоты, так и температура жидкости. Частота имеет несколько возрастающих пиков, которые соответствуют добавлению чистой кислоты.Это действие вызывает экзотермическую реакцию, частота которой зависит от увеличения температуры. Через несколько минут температура жидкости возвращается к своему стабильному значению (30,8 ° C), а частотный сдвиг зависит только от квадратного корня из произведения плотность-вязкость. Взяв значения измерений частоты и плотности в областях, где температура снова становится постоянной (линейные зоны ступеней частоты на рисунке 6), был получен калибровочный график на рисунке 7 и экспериментальная чувствительность Кэксперименталь = Δf / Δρη −2.Для этого датчика было определено значение 2 кГц / gcm3cp. Теоретический коэффициент чувствительности, рассчитанный по уравнению (2), составляет Kтеоретическая = −1,7 кГц / г · см3cp.

В таблице 1 представлены экспериментальный коэффициент качества, отклонение Аллана, предел обнаружения и разрешение, полученные для каждой пары. обозначены ρη (каждый шаг частоты на рисунке 6). Эти результаты показывают, что шум выше минимально достижимого с использованием уравнения (9), возможно, из-за проблем со схемой. Разрешение немного уменьшается, когда ρη увеличивается, потому что добротность и, следовательно, склонность к шуму возрастают с увеличением ρη, как ожидалось для данной номинальной частоты.Рисунки 8 и 9 демонстрируют эту тенденцию. Наибольшее значение отклонения Аллана (8,8 × 10 -8 ) представляет наихудший случай. В этой ситуации коэффициент качества эксперимента Q exp составляет 1279, а разрешение 4,6⋅10−4gcm3cp может быть достигнуто. При таком разрешении датчик QCM может обнаруживать изменения SoC в батарее примерно на 0,1% с интервалом измерения 2 с.

4.2. Датчик QCM в свинцово-кислотной батарее. Разрешение «на месте» и измерения SoC в процессах заряда и разряда

На рисунке 10 показана частота колебаний датчика с кварцевым резонатором, помещенным внутри полностью заряженной батареи (40% серная кислота), и температура электролита (батарея при комнатная температура).На рисунке 11 показаны значения частоты, полученные после температурной компенсации с использованием уравнений (14) — (17) и девиации Аллана для времени усреднения от 1 до 30 с. Наихудшее значение Аллана составляет 1,6 × 10 −7 , поэтому значение разрешения равно 8,5 × 10−4 г / см3cp. Если мы сравним эти значения шума «на месте» со значениями, полученными при калибровке с серными растворами (Таблица 1), можно сделать вывод, что частотный шум немного увеличивается, когда резонатор помещается внутри аккумуляторного элемента, возможно, из-за температурной компенсации.Однако при таком разрешении изменения в SoC все еще могут быть обнаружены на уровне около 0,2% с интервалом времени 2 с.

Что касается испытаний в процессах заряда и разряда в реальном времени, то на рисунках 12–15 показаны результаты испытаний. На рисунке 12 показаны частота колебаний и температура аккумулятора во время пробной зарядки. На рисунке 13 показаны значения частоты после температурной компенсации по уравнениям (14) — (17). После температурной компенсации частота колебаний зависит только от изменения произведения вязкость-плотность из-за сдвига SoC в соответствии с уравнением (1).Смещение Измерение ρη датчиком QCM также показано на рисунке 13. Датчик демонстрирует ожидаемую тенденцию процесса заряда в свинцово-кислотных аккумуляторах: в верхней части аккумулятора из-за расслоения электролита плотность и вязкость не увеличиваются. их значения значительно до тех пор, пока процесс заряда не продвинется вперед и не возникнет пузырение [2,22].

В процессе разряда расслоение отсутствует, а плотность-вязкость изменяется линейно в зависимости от состояния заряда.На рисунке 14 показаны частота колебаний и температура аккумулятора во время пробного разряда. На рисунке 15 значения частоты после температурной компенсации по уравнениям (14) — (17) и разрешенные значения для ρη проиллюстрированы.

Важным аспектом является устойчивость датчика к химическому воздействию серной кислоты, содержащейся в электролите батареи. Была проанализирована доступная литература по химической стойкости материалов, которые должны были контактировать с электролитом: кварц, золото (электроды кристалла) и силикон (изоляционное покрытие подложки).Держатель кристалла кварца не контактирует с кислотой (он покрыт силиконом). Было обнаружено, что эти материалы невосприимчивы к кислотной атаке. Однако оставалось неясным влияние кислоты на хром, используемый в качестве адгезионного слоя для золотых электродов. Чтобы узнать это, резонатор QCM был погружен в аккумуляторную батарею на семь месяцев. По окончании испытаний были проведены пассивные измерения параметров схемы замещения кварцевого резонатора. В таблице 2 показаны измерения, сделанные до начала испытаний, и после того, как датчик находился внутри батареи в течение семи месяцев.В обоих случаях измерения проводились при установке кристалла в самодельную подставку. На основании этих результатов можно считать, что концентрация серной кислоты в электролите не является агрессивной для датчика. Хотя R меняет свое значение (8,88–11,05 Ом), это изменение незначительно и может быть связано с тем, что условия очистки кварца не одинаковы до и после погружения датчика внутрь батареи. Перед тем, как вставить датчик в батарею, кварц был тщательно очищен ацетоном и дистиллированной водой.Затем наносится изоляционный силикон, и когда он высыхает, измеряются электрические параметры датчика. После семи месяцев погружения в аккумулятор датчик извлекается и тщательно очищается, но только дистиллированной водой. Ацетон не используется во избежание химического воздействия на силикон, поэтому может оказаться, что кристалл имеет некоторую примесь на электроде при повторном измерении электрических параметров датчика. Также может быть небольшое старение датчика.

4.Выводы

Разработан датчик QCM высокого разрешения для контроля состояния заряда свинцово-кислотных аккумуляторов. Калибровка сенсора проводилась в растворах серной кислоты с концентрациями в диапазоне циклов заряда-разряда. Был определен частотный шум, показывающий, что существует корреляция между шумом и рп. Тепловые испытания кварцевого резонатора в жидких средах были проведены с целью разработки датчика QCM с температурной компенсацией, который позволяет избежать изменений в отклике датчика из-за обычных изменений температуры электролита, которые происходят в процессах заряда и разряда батареи.Таким образом, была получена зависимость между сдвигом частоты и изменением квадратного корня из произведения плотность-вязкость электролита из-за температуры для полностью заряженной батареи. Также были получены коэффициенты температурной компенсации кварца, погруженного в электролит полностью заряженной батареи. Тепловая компенсация двух эффектов была успешно применена. Кроме того, разработанный датчик был экспериментально охарактеризован в батарее, и было обнаружено, что он способен обнаруживать изменения концентрации серной кислоты в электролите посредством изменения квадрата зависимости плотности от вязкости продукта с разрешением 8.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *